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Westudy theoretical and operational issues of geodesic tractography, a geometricmethodology
for retrieving biologically plausible neural fibers in the brain from diffusion weighted magnetic
resonance imaging. The premise is that true positives are geodesics in a suitably constructed
metric space, but unlike traditional first order methods these are not a priori constrained to
connect nongeneric points on subdimensional manifolds, such as the characteristics in
traditional streamline methods. By virtue of the Hopf-Rinow theorem geodesic tractography
furnishes a huge amount of redundancy, ensuring the a priori existence of at least one tentative
fiber between any two points and permitting additional tractometric and data-extrinsic
constraints for (fuzzy or crisp) classification of true and false positives. In our feasibility study
we consider a hybrid paradigm that unifies existing ideas on tractography, combining
deterministic and probabilistic elements in a way naturally supported by metric geometry.
Particular attention is paid to an analytical prediction of geodesic deviation on numerically
computed geodesics, a ‘tidal’ effect induced by small perturbations resulting from data noise.
Taking these effects into account clarifies the inherent uncertainty of geodesics, while
simultaneosuly offering a dimensionality reduction of the tractography problem.

Keywords: diffusion weighted imaging, uncertainty quantification (UQ), diffusion tensor imaging (DTI), geodesic
tractography, geodesic deviation

1 INTRODUCTION

Ahydrogen nucleus (proton) behaves like a tinymagnetwhen interactingwith an externalmagnetic field. In
this situation the Zeeman splitting effect discloses two quantum eigenstates of its nuclear magneticmoment,
distinguishable by a relative energy gap. These states are known in the trade as “spin up”, or “parallel”, and
“spin down”, or “anti-parallel”. The attributes refer to the relative alignment with the external field, but
should be taken with a grain of salt for quantum systems of individual nuclei. In a typical macroscopic
system, however, the Zeeman effect induces a relatively small yet measurable “classical” magnetization
[Bloch (1946); Cowan (1997)], for which these attributes can be taken literally.

Magnetic resonance imaging (MRI) allows one to manipulate the magnetization of a hydrogen
spin system in a way that enables non-invasive in-vivo acquisition of informative localized signals, i.e.
“images”. Although tuned in on water-bound hydrogen, because of its abundance in the human
body, the recorded signals are affected by the physicochemical environment and therefore carry
(indirect) anatomical and/or functional information depending on the measurement protocol. MRI
is a versatile modality with endless options for image formation, cf. (Brown et al. (2014)).

The empirical feature of interest for our purpose is the anisotropic diffusivity of mobile (water-
bound) hydrogen spins in the human brain1. The MRI protocol that allows one to infer this from
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1Many moieties other than hydrogen exhibit the same phenomenon, but their paucity in biological specimens combined with
the low sensitivity of nuclear magnetic resonance makes them less suitable for imaging. Since humans are mostly water, clinical
MRI scanners are therefore set up to probe water-bound hydrogen nuclei
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measurable nuclear magnetic resonance and relaxation effects is
known as diffusion weighted imaging (DWI) (Torrey, 1956;
Moritani et al., 2009). Insight in local water diffusivity patterns
is particularly interesting for studying fibrous tissues, since it is
stipulated that anisotropic media impart non-random barriers for
diffusion, inducing relatively long mean free paths along
“preferred orientations” (candidate fibers). In particular, DWI
is the only non-invasive in-vivo technique for probing white
matter pathways (bundles of myelinated axons or nerve fibers,
aka “tracts”) in the brain. As such it plays a pivotal role in
connectomics, the 21st century’s grand challenge that aims to
disclose structure and function of the human brain.

DWI produces massive, non-visual data, calling for the right
questions to be posed in order to render such data insightful in
congruity with our visual inclination. An important question
pertains to tractography, the inverse problem that aims to infer
white matter pathways from the observed local diffusivity
patterns. Such tracts furnish the wiring between various grey
matter areas containing nerve cell bodies, the brain’s
computational units so to speak. For this reason tractography
also plays an essential role in clinical applications, such as
neurosurgery, in which spatial maps of anatomical tracts and
functional networks are relevant for effective patient
management.

However, tractography has inherent limitations that should be
taken into account as well, e.g. inter- and intra-rater variablity
makes comparisons of tractograms a challenging endavour
(Maier-Hein et al., 2017; Schilling et al., 2019). In a recent
paper by Schilling et al. (Schilling et al., 2020) the authors
argue that tractography is anatomically plausible if furnished
by appropriate constraints, notably end point conditions and no-
goes. This observation argues for a tractography paradigm that is
compatible with end point conditions imposed by the user and
that does not exclude the possibility of multiple connections, two
properties not shared by classical tracing (streamline) methods
based on diffusion tensor imaging (DTI). Moreover, no-go
conditions should be at the discretion of an expert, and not a
result from a priori methodological limitations. An example is the
fractional anisotropy (FA) stopping criterion of classical
streamline methods, which results in incomplete trajectories
due to destructive interference of anisotropic diffusivities at
fiber crossings or severely reduced effective anisotropies in
grey matter.

The conceptual issues alluded to above are gracefully handled by
geodesic tractography, themathematical details of which are explained
in section 2. It is important to realize that this is not a one-on-one
replacement of streamline tractography, but a genuine generalization
that (intentionally) raises a new problem: Any two points in the brain
are connected by at least one geodesic (“geodesic completeness”). Thus
geodesics should not be confusedwith (streamlines intended to reflect)
biological fibers, but should instead be seen as elements of a highly
redundant data representation. The premise is, of course, that these
can be pruned using data intrinsic and external knowledge to
(hopefully) produce the desired true positives without incurring
false negatives. That is, the assumption is that biological tracts are
geodesics, but not vice versa. Interestingly, one can show that classical
streamlines emerge as geodesics when the two minor eigenvalues of

theDTI tensor are set to zero. ThisGedanken experiment connects the
two tractography paradigms conceptually, but also shows (by an
argument of continuity) that there exist “streamline-like” geodesics in
brain regions characterized by high FA, with “streamline-unlike”
infillings in isotropic regions.

For the reasons above we focus on geodesic tractography, and
present some feasibility studies in Section 3. More specifically, we
aim to establish a conceptual and operational framework geared
towards clinical needs in a neurosurgical workflow for brain
tumor patients, in collaboration with the Department of
Neurosurgery of Elisabeth Tweesteden Hospital (ETZ), a
highly specialised referral center for brain tumor surgery in
Netherlands (Meesters et al., 2019; Meesters et al., 2021;
Rutten et al., 2014). Our approach is motivated by conceptual
as well as practical demands in this context, viz. 1) to overcome
the rigidity and shortcomings of classical tracing methods in
return for a more versatile one, and 2) to connect to clinically
viable MRI protocols, notably DTI, while keeping tabs on the
development of more sophisticated DWI models for future
refinement.

We sketch the geodesic tractography rationale in all generality,
which in principle requires so-called Finsler geometry, but work
out details for its application to DTI only. This case is
mathematically considerably less mind-boggling since it allows
us to stay within the realm of well-established Riemannian
geometry. Another practical issue is the effect of noise and
errors in (automatic or manual) seeding, which can be
naturally accounted for by considering the concept of geodesic
deviation, furnishing geodesic tracks with volumetric
counterparts in the form of tubular uncertainty
neighbourhoods (“geodesic tubes”) (Sengers et al., 2021).

2 THEORY

Taking the empirical adequacy of DWI for tractography for
granted, something must be optimal along biologically
meaningful curves. This suggests a variational approach, in
which tracts arise as extrema of some functional (Arnold,
1989; Lovelock and Rund, 1988; Rund, 1973; Sagan, 1992;
Weinstock, 1974).

In geodesic tractography, the functional of interest is
constructed on the basis of a norm or metric. The relevant
geometry is known as Riemann-Finsler geometry, or Finsler
geometry for short (Bao et al., 2000; Cartan, 1934; Shen and
Shen, 2016; Szilasi et al., 2014). Inner product induced norms are
quite special, and often used out of habit rather than necessity.
Such norms fall within the much narrower realm of Riemannian
geometry, an area much better understood and (therefore)
exploited than the general framework (do Carmo, 1976; do
Carmo, 1993; Cartan, 1963; Jost, 2011; Koenderink, 1990;
Misner et al., 1973; Spivak, 1975). The essential constraint is
that inner product norms are square roots of quadratic forms,
characterized by a small number of degrees of freedom, viz. six
per point in three spatial dimensions for specifying the
independent parameters of the defining positive-definite
symmetric Gram matrix. Such norms are especially suited for
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applications in which the observable of interest is compatible with
the quadratic restriction, notably diffusion tensor imaging (DTI).
General DWI models, however, do not have this limitation.
Extension of the variational approach based on metric
geometry beyond DTI would therefore render a genuine
Finslerian approach natural and compulsory.

Although Riemannian geodesic tractography does not cover
traditional “streamline tractography”, the latter may be viewed as
a singular limit that can be inferred from a sequence of
Riemannian metrics. In turn, Finsler geodesic tractography
may be related to an orientation-parametrized family of
Riemannian metrics (Astola, 2010; Astola and Florack, 2011;
Astola et al., 2011; Florack and Fuster, 2014; Florack et al., 2015;
Dela Haije, 2017; Dela Haije et al., 2019). In this sense
Riemannian geodesic tractography plays an intermediate role,
being a generalisation of the original streamline case and a special
instance of the Finslerian case. Its limitations are offset by the
inspiration that can be drawn from the vast body of literature on
Riemannian geometry, as well as by the particular clinical appeal
of DTI.

Positive definite matrix fields play a central role in DWI, and
in DTI in particular, and so do, a fortiori, positivity preserving
operators. In a differential geometric approach, differential
operators are of prime interest. Unfortunately, positivity is not
manifest in “standard” calculus. A more suitable framework for
differentiation and integration is provided by multiplicative
calculus, which, in the non-commutative case of positive
symmetric matrices, is a non-trivial extension in which
positivity is manifest (Bashirov et al., 2008; Florack and van
Assen, 2012; Gill and Johansen, 1990).

To make this article self-contained the most relevant
mathematical concepts are loosely explained, de-emphasizing
proofs, in subsections 2.1 (calculus of variations), 2.2
(multiplicative calculus) and 2.3 (Riemann-Finsler geometry).
Literature pointers should help the reader interested in more
detail.

2.1 Calculus of Variations
In the Lagrangian formalism of the calculus of variations the
point of departure is an action functional,

S(ϕ)^∫
Ω⊂Rm

L(x, ϕ,∇ϕ) dx. (1)

The integrand is called the Lagrangian. In many cases
Lagrangians only depend on the m-dimensional independent
variable x, the n-codimensional dependent variable ϕ, and its
first order x-derivatives, ∇ϕ:

L: Ω × Rn × Rnm →R: (x, ϕ,∇ϕ)1L(x,ϕ,∇ϕ). (2)

The variational principle relates the physical manifestation of
a Lagrangian system to critical points ϕcrit of the action
functional, formally defined in terms of a vanishing functional
derivative:

δS ϕ crit( )
δϕ

� 0. (3)

Although the left hand side can be rigorously defined, it
suffices to appreciate its intuitive meaning as the “rate of
change” of the action functional S(ϕ) with respect to any small
perturbation δϕ of the dependent variable ϕ relative to a fiducial
instance ϕcrit. Eq. 3 yields a system of n differential equations
known as the Euler-Lagrange system.

Our case of interest will be m � 1, n � 3. In this situation the
domain of definition is a one-parameter interval, and one usually
writes t (“time”) or s (“length”) instead of x, and L instead of L.
Since in this case we have an ordinary rather than partial
derivative operator, the ∇-symbol now represents d/dt or d/ds.
Our codomain will be a 3-dimensional tangent space,
representing the linear space of instantaneous “velocities’”
within (any tangent space of) 3-dimensional space. For this
reason one typically uses the spatial coordinate symbol x
instead of ϕ. Its first order derivatives are then conveniently
written either as _x�dx/dt (Newton’s dot-notation) or as x′ � dx/
ds (Lagrange’s prime notation). In tractography the independent
parameter serves as an arbitrary label for disambiguating points
along a tract; the connotation with “time” or “length” is
metaphorical.

Thus the action functional that concerns us here takes the
form

S(x)^∫
I⊂R

L(t, x, _x) dt, (4)

in which x � x(t) represents the coordinate triple along a
parametrized tract over an interval I⊂R. Stationarity entails

δS x crit( )
δx

� 0, (5)

which yields an Euler-Lagrange system in the form of three
ordinary differential equations, one for each component _xi, i �
1, 2, 3, of the tangent vector _x̂ _x1 e1 + _x2 e2 + _x3 e3 relative to a
fiducial local frame of basis vectors {e1, e2, e3}:

x crit:
d

dt

zL

z _xi −
zL

zxi
� 0. (6)

The precise form of the Lagrangian is constructed on the basis
of geometric considerations and will be specified later. It is
important to realize that the spatial variability of the local
frame (more precisely, its parallel transport2) affects the form
of the Euler-Lagrange equations.

For a thorough introduction to the calculus of variations, cf.
Lovelock and Rund (1989). Rund elaborates on the profound
implications of one-homogeneous Lagrangians Rund (1973). The
book by Neuenschwander (2011) is particularly interesting in
case the Lagrangian exhibits certain symmetries, explaining
Noether’s seminal work on this issue.

2Parallel transport refers to spatial variability as judged from an intrinsic, geometric
point of view, which typically does not coincide with the usual Euclidean (flat
space) perspective. In section 2.3 this will be made more precise.
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2.2 Multiplicative Calculus
Multiplicative calculus (Bashirov et al. (2008)) provides a
natural framework in problems in which positive images or
positive symmetric matrix fields and positivity preserving
operators are of interest. In the commutative case it is a
convenient, albeit arguably redundant framework, which can
be restated in terms of standard (additive) calculus via a log-exp
commuting diagram (Arsigny et al., 2006; Fillard et al., 2007;
Florack and Astola, 2008; Pennec et al., 2006). Figure 1
illustrates this for the case involving a single independent
variable x ∈ R, with the multiplicative derivative of a positive
function f defined as

f*(x)^ exp (lnf(x))′( ). (7)

The multiplicative antiderivative is then naturally defined as

∏f(x)dx^ exp(∫ lnf(x) dx). (8)

The left hand side notation is due to Gill (Gill and Johansen,
1990) in analogy with Leibiz “continuous-sum” symbol.

For a product antiderivative or indefinite product integral we
have

∏f(x)dx � c F(x) for some constant c ∈ R+ iff F* � f, (9)

mimicking its familiar standard counterpart

∫f(x) dx � F(x) + c for some constant c ∈ R iff F′ � f.

(10)

Definite product integrals are introduced via a spatial
partitioning and limiting procedure,

∏b
a

f(x)dx � lim
△xi → 0

∏N
i�1

f ξ i( )△xi , (11)

akin to the standard Riemann sum approximation in the additive
case,

∫b

a
f(x) dx � lim

△xi → 0
∑N
i�1

f ξi( )△xi, (12)

in which △xi � xi − xi − 1, ξi ∈ (xi−1, xi) and x0 � a, xN � b. The
relationship between Eq. 9, and Eq. 11 is formalized by the
fundamental theorem of multiplicative calculus:

∏b
a

F*(x)dx � F(b)
F(a), (13)

recall the well-known classical counterpart relating Eq. 10 and
Eq. 12:

∫b

a
F′(x) dx � F(b) − F(a). (14)

Numerical approximations of Eq. 11 are obtained by
partitioning the integration domain and suppressing the
limiting procedure.

It requires minor efforts to generalize foregoing results to the
multivariate case. The non-commutative case, on the other hand,
is highly nontrivial and not without ambiguity. The complication
is apparent from the ambiguous ordering of non-commuting
factors on the right hand side of Eq. 11. There are multiple
options to establish an unambiguous definition, cf. Gantmacher
(2001) and Slavík (2007)) We will briefly discuss some and
subsequently pick the one suited for our purpose.

The log-exp framework may seem the most straightforward
option, defining the multiplicative derivative of a positive
symmetric matrix function according to Eq. 7, in which log
and exp are replaced by their well-defined matrix counterparts.
The chain rule for matrix functions, however, complicates
matters. Declining from the assumption of commutativity we
have, e.g.

(expg(x))′ � ∫1

0
exp(αg(x))g′(x) exp((1 − α) g(x)) dα,

(15)

for an arbitrary (square) matrix field g. For a positive symmetric
matrix field f we furthermore have

(lnf(x))′ � ∫1

0
(αf(x) + (1 − α) I)−1f′(x)(αf(x) + (1 − α) I)−1 dα,

(16)

in which I is the identity matrix. Both identities can be readily
proven with the help of the defining Taylor series expansions of
the exp and ln functions, cf. Higham (2008). In the commutative
case (only) Eqs 15 and 16 reproduce the familiar chain rule
formulas

(expg(x))′ � g′(x) expg(x) � expg(x) g′(x), (17)

FIGURE 1 | Commuting diagrams for (A)multiplicative differentiation, cf. (7) and (B)multiplicative integration, cf. (8) in terms of standard calculus counterparts via
the log-exp route in the commutative case. The (upward left) operators p and ∏ are defined by virtue of the equivalent counterclockwise “classical” routes in these
diagrams.
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and

(lnf(x))′ � f′(x)f(x)−1 � f(x)−1 f′(x), (18)

well-known from classical calculus. In view of this one may
avoid the cumbersome expression of Eq. 16 resulting from the
log-exp trick of Eq. 7 by defining the multiplicative derivative in
a different way, viz. by replacing the expression (ln f(x))′ on the
right hand side in Eq. 7 formally by one of the alternative
expressions in Eq. 18. As these two options (or any alternative
construct obtained by sandwiching factorizations of f(x)−1 �
f(x)α − 1 f(x)−α around f′(x)) are clearly different, the application
context should determine one’s bias. We will adhere to the
following definition:

f*(x)^ exp f′(x)f−1(x)( ). (19)

It can be shown that, with this choice, Eq. 11 is applicable,
provided we use a right-to-left ordering of factors on the right
hand side:

∏b
a

f(x)dx � lim
△xi → 0

f ξN( )△xN . . . , f ξ1( )△x1 . (20)

The reason for choosing Eqs 19 and 20 is that these provide
the correct derivative/antiderivative for recasting a linear matrix
differential equation f′ � A f, with positivity constraint on f—which
will be of interest later, notably in Eq. 48 on page 13—, into its
natural multiplicative counterpart with built-in positivity
preservation, viz. f* � expA. The solution then takes the trivial
form of an antiderivative, f(x) � ∏ exp(A(x)dx), according to3
Eq. 20.

Another application of multiplicative calculus relevant for our
purpose is the so-called log-Euclidean paradigm for symmetric
positive-definite matrix functions4 (Arsigny et al., 2006; Fillard
et al., 2007; Pennec et al., 2006). We consider it in the context of
multiscale representations (Florack and Astola, 2008). Figure 2
shows how to construct a consistent multiscale representation ft
of a raw symmetric postive-definite matrix function f ^ f0, with
t > 0 denoting (quadratic) scale, according to the following
multiplicative convolution recipe:

ft � exp ϕtp lnf( ), (21)

in which ϕt denotes the normalized isotropic Gaussian of
(quadratic) scale t and p acts component-wise:

ϕt(x)^
1



4πt

√ n exp −‖x‖
2

4t
( ). (22)

This scheme ensures closure and commutativity of blurring
and inversion: If ft̂ exp(ϕtp lnf) and gt̂ exp(ϕtp lng), with
g � f−1, then gt�f−1

t at all scales t > 0.

2.3 Riemann-Finsler Geometry
Riemann-Finsler geometry is a generalization of Riemannian
geometry. Both are metric geometries, concerned with spaces
endowed with a distance concept. The generalization entails the
replacement of an inner product induced norm (square root of a
quadratic form reflecting the Pythagorean rule) by a general
norm. For this reason Riemann-Finsler geometry is sometimes
referred to as ‘Riemannian geometry without the quadratic
restriction’. First studied by Finsler (1918), it has matured
towards its present form mainly due to Cartan (1934). The
mathematics is rather mind-boggling. For modern in-depth
accounts cf. Bao et al. (2000), Shen and Shen (2016), and
Antonelli et al. (1993); (Antonelli and Zastawniak, 1999) in
relation to some applications in physics and biology.
Riemann-Finsler geometry is also attracting considerable
attention in the context of (quantum) gravity, see for example
(Fuster and Pabst, 2016; Gibbons et al., 2007; Girelli et al., 2007;
Pfeifer and Wohlfarth, 2012).

For our purpose a norm is needed to introduce an abstract
notion of “length” of a curve, one for which units of length are
proportional to local mean free path lengths of diffusing water
molecules in the underlying fibrous tissue, as observed via DWI.
This implies that if local mean free paths are indeed longest along
biological tracts, then such tracts would define “locally shortest”
paths, or geodesics, along a Riemann-Finsler manifold. The
attribute “local” means that any sufficiently small perturbation
of a fiducial geodesic with fixed endpoints would incur an
increase of length. This leaves room for multiple geodesics
connecting the same pair of endpoints. The Hopf-Rinow
theorem (Jost, 2011) ensures geodesic completeness, i.e. the
existence of a “minimal geodesic”, the length of which
corresponds to (or, if you want, defines) the distance between

FIGURE 2 | Commuting diagram for blurring and inversion. The diagram
shows that inverse relationships are preserved under blurring, so that we may
arbitrarily alter data resolution in any of the dual domains of definition of either f
or f inv as per (21).

3The alternative for Eq. 19 based on the other option suggested by Eq. 18 is
naturally associated with a differential equation of the form f′ � f A and would
imply a reverse ordering of factors in Eq. 20.
4The log-Euclidean paradigm may be most naturally considered in the context of a
symmetric and commutative matrix multiplication operator ◦, given by
f◦g � exp(lnf + lng), cf. Burgeth et al. (2007) for a more comprehensive
account of alternative matrix products. We will, however, stick to standard
matrix multiplication.
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its endpoints. In the case of multiple local minima between two
endpoints, the global one is not necessarily the biologically most
plausible one.

The Riemann-Finsler manifold is thus constructed in order to
turn the tractography problem into a geodesic problem, which
falls within the scope of the calculus of variations, recall section
2.1. The inherently positive nature of distance naturally calls for
multiplicative calculus, recall section 2.2.

The most general functional expressing the Riemann-Finsler
length of a tentative tract, arbitrarily parametrized as x � x(t), has
the following form, recall Eq. 4:

S(x)^∫
I⊂R

F(x(t), _x(t)) dt, (23)

in which the general Lagrangian L(t, x, _x) has been replaced by
the so-called Finsler norm F(x, _x), expressing the Riemann-
Finsler length of the tangent vector _x at point x in a
parameter invariant way. The latter not only means that it
does not explicitly depend on the curve parameter t ∈ I, but
also that it must be absolutely homogeneous of degree one, i.e.5

F(x, λ _x) � |λ|F(x, _x), (24)

for any tangent vector rescaling by λ∈R.
One can show that, under mild conditions besides Eq. 24,

there exists a positive-definite symmetric Riemann-Finsler metric
tensor gij(x, _x), such that6

F(x, _x) �












gij(x, _x) _xi _xj

√
. (25)

The relation between F(x, _x) and gij(x, _x) is, remarkably,
one-to-one, with

gij(x, _x) � 1
2
z2F2(x, _x)
z _xiz _xj . (26)

The Riemann-Finsler metric tensor is homogeneous of degree
zero,

gij(x, λ _x) � gij(x, _x). (27)

Thus a Riemann-Finsler metric has an orientation
dependency, but magnitude and “polarity” of the tangent
vector _x are immaterial.

The quadratic restriction of Riemannian geometry entails a
severe restriction on the Finsler norm, viz. gij(x, _x)�gij(x)
independent of orientation. Equation 26 may be interpreted
as a family of Riemannian metrics, one for each orientation.
All members of this family clearly coincide in the Riemannian
case, so that Eq. 25 reduces to its Riemannian counterpart, the
Pythagorean form

F(x, _x) �











gij(x) _xi _xj

√
. (28)

The Euler-Lagrange equations for Eq. 25 are known as the
geodesic equations, and take the form

€xi(t) + Gi(x(t), _x(t)) � d lnF(x(t), _x(t))
dt

_xi(t). (29)

The right hand side can be seen as a pseudoforce acting along
the geodesic and as such merely reflects the arbitrariness of
“time”-parametrization, contributing to an artificial
acceleration along the trajectory. It has no effect on the
relevant (parameter-invariant) geometry of the curve and can
be effectively removed via (nonlinear) reparametrization. Any
new parameter thus obtained is then coined an affine parameter,
yielding “constant speed” geodesics characterized by
F(x(t), _x(t))�constant. The geodesic spray coefficients
Gi(x(t), _x(t)) can be viewed as forces inducing an
acceleration and bending of the trajectory that is completely
determined by the inhomogeneous nature of the metric tensor,
cf. Bao (Bao et al., 2000) or Shen and Shen Shen and Shen (2016)
for technical details. In the Riemannian limit they assume a
quadratic form in the velocities _x.

Figure 3 illustrates the rationale of constructing the action
functional Eq. 23 as a data-induced curve length in the context of
the variational principle for the Riemannian case applicable
to DTI.

Apart from the geodesic equations, Eq. 29, we will be
interested in “tidal effects’, i.e. the relative separation
acceleration7 of neighbouring geodesics, aka geodesic
deviation. This is relevant for understanding how stable a
geodesic is with respect to small perturbations. By
quantifying this one can analytically predict (to linear
approximation) the behaviour of sufficiently narrow bundles
of geodesics around any fiducial geodesic. Understanding
geodesic deviation in a general metric space requires some
fairly sophisticated mathematical machinery. It suffices here to
convey the gist of it.

The geodesic deviation equations form a linear system of
ordinary differential equations for a deviation vector ξ � ξ(t)
defined along a given geodesic curve x � x(t). This vector can be
seen as connecting points on two ‘infinitesimally’
neighbouring geodesics at the same parameter value t (one
must, to begin with, first agree on an unambiguous affine
parametrization). We have

δ2ξi(t)
δt2

+ Ki
jkℓ(x(t), _x(t)) _xj(t) _xk(t) ξℓ(t) � 0. (30)

The δ-derivative is a so-called covariant modification of the d-
derivative from standard calculus, involving geometric
‘correction terms’ that depend on partial derivatives of the
metric tensor gij(x, _x) with respect to both variables. The

5If no parametrized path x � x(t) is involved, then _x indicates an arbitrary tangent
vector argument.
6We use Einstein summation convention throughout: Whenever an index occurs
twice, once as a lower and once as an upper index, it represents a dummy
summation index. Thus e.g. gij(x, _x) _xi _xj actually denotes ∑3

i,j�1gij(x, _x) _xi _xj.

7The reason for considering relative acceleration is that this captures the essential
deviation from a constant relative separation velocity observed in the case of
Euclidean space.
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tensor field Ki
jkℓ(x, _x) is one of the curvature tensors that can be

defined on a Finsler manifold. In the Riemannian case Eq. 30
simplifies considerably, with Ki

jkℓ(x, _x) reducing to the so-called
Riemann curvature tensor Ri

jkℓ(x) (a function of x only). In the
particular case of interest, with n � 3 spatial dimensions, it may be
reduced further to involve only the symmetric Ricci tensor field
Rij (x), with six local degrees of freedom

Rij(x) � Rk
ikj(x) (31)

The interested reader is referred to the literature for technical
details (Bao et al., 2000; Shen and Shen, 2016; Rund, 1959).

2.4 Riemann-DTI Paradigm: Geodesic
Tractography
DTI tensors are represented by symmetric positive definite
matrices obtained by fitting their six degrees of freedom at a
fiducial point x to the DWI local signal attenuation factor

according to the anisotropic Stejskal-Tanner equation (Stejskal
and Tanner (1965); Stejskal (1965)),

E(x, q) � exp −bDij(x)qiqj( ), (32)

in which q denotes the diffusion sensitizing magnetic gradient
direction8 and b a dimensionful constant related to diffusion time
and gradient magnitude used in the scanning protocol. A
Riemannian metric may then be constructed proportional to
the inverse of the DTI tensor (O’Donnell et al., 2002; Lenglet
et al., 2004; Fuster et al., 2016)

gij(x)∝Dinv
ij (x). (33)

The metric tensor is now only dependent on the position x and
not on the orientation _x, so that the Riemannian length of a
parameterized curve x � x(t) is given by

FIGURE 3 | Riemann-DTI paradigm. At a typical point x inside the corpus callosum (black dot in the ROI in the MRI slice) there is a neat alignment of axons (cf.
the microscopy image), inducing a diffusion tensor stretched along the preferred orientation as depicted on the right. The ellipsoid is a graphical representation of the
quadratic form induced by the Riemannian metric, showing the unit level set gij(x)y

iyj � 1 for fixed x, with gij(x) identified with the (i, j)-th entry of the inverse diffusion
tensor. The red arrows illustrate two local tangent vectors. The horizontal one aligns well with the preferred orientation, rendering its Riemannian length
relatively short (upper right) as compared to the vertical one of the same Euclidean length (lower right). Geometrically, this length can be inferred via the stack of
parallel planes, illustrating the corresponding dual covectors constructed on the basis of the metric via the tangent cone drawn from the tip of each vector to the
ellipsoid. In this case one reads off a vector’s squared Riemannian length by counting the number of intervals spanned by it: 6, respectively nine for the horizontal and
vertical arrows. Note that from a Riemann-intrinsic point of view, i.e. without reference to Euclidean concepts (such as the rigid rotation relating the two arrows), no
preferred orientation can be determined. After all, the ellipsoid is, by definition, the Riemannian unit sphere, intended to mask the anisotropic nature of the underlying
tissue altogether!

8The factor b may be absorbed in the tensor qiqj, yielding the so-called B-tensor.
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S(x) � ∫
I⊂R











gij(x) _xi _xj

√
dt, (34)

recall Eqs 23, 28. Recall that geodesic tractography entails finding
curves x � x(t) for which S(x) is locally minimal. This endeavour
may be tackled in two different ways, either by directly
minimizing Eq. 34, or by solving its Euler-Lagrange equations,
Eq. 29. In the Riemannian case at hand, and using an affine
(“constant speed”) parametrization, these equations reduce to

€xi(t) + Γijk(x(t)) _xj(t) _xk(t) � 0, (35)

in which the so-called Christoffel symbols of the second kind
(Spivak, 1975) are given by linear combinations of derivatives
of gij:

Γijk(x) �
1
2
gim(x) zjgkm(x) + zkgmj(x) − zmgjk(x)( ). (36)

Equation 35may be reformulated in purely geometrical terms
by defining a so-called covariant differential operator D (Spivak,
1975), given in terms of the standard differential operator d and
Γ-correction terms (a special case of the δ-operator used in Eq.
30), accounting for the non-constant nature of gij (x). For a vector
function v � v (t) defined along the curve x � x (t) we have

Dvi(t)
dt

� dvi(t)
dt

+ Γijk(x(t))vj(t) _xk(t), (37)

so that Eq. 35 is equivalent to

D _xi(t)
dt

� 0. (38)

For disambiguation of its solution, Eq. 35 requires a pair of
initial or boundary conditions

(x(0), _x(0))^ x0, v0( ) , or (39a)

(x(0), x(T))^ x0, xT( ). (39b)

The existence of a geodesic constrained by either Eq. 39a or
39b is guaranteed by the Hopf-Rinow theorem (Jost, 2011). For
this reason the x-manifold is called geodesically complete.
Uniqueness is not provided for the boundary problem, as
there may be multiple curves (locally) minimizing Eq. 34 for
sufficiently distant endpoints x0 and xT allowing for multiple
potential fiber tracts connecting these endpoints.

2.5 Riemann-DTI Paradigm: Geodesic
Deviation
Let us consider a single geodesic x � x (t) obtained either by
minimization of Eq. 34 or by integration of Eq. 35. In order to
understand the stability of this geodesic with respect to small
perturbations of its initial or boundary conditions, Eq. 39, we
may employ perturbation theory in the form of the linear
geodesic deviation equations, recall Eq. 30, restricted to the
Riemannian case of interest. This allows us to predict the
behaviour of neighbouring geodesics without explicitly solving
their nonlinear geodesic equations, as long as these are sufficiently
close to the fiducial geodesic x � x (t), as described in Sengers et al.

(2021), in which families of neighbouring geodesics are defined
via continuous perturbations of the side conditions, Eq. 39. Here
we extend our uncertainty quantification by including the effect
of DTI data noise, i.e. perturbations of the metric field gij (x) along
(a full neighbourhood of) a fiducial geodesic, which requires a
generalization of Eq. 30 by accounting for an inhomogeneous
“force” term. We consider general perturbations of the metric
field, as to capture the intrinsic data-induced uncertainty, arising
when using the Riemann-DTI tractography paradigm. In
practice, these perturbations include perturbations in the DTI
tensor and the underlying DWI data.

Thus we consider two types of perturbations, those affecting
the intitial or boundary conditions in Eq. 39 and those affecting
the metric field, viz.

�x0, �v0( ) � x0, v0( ) + ε y0, w0( ) +O ε2( ), (40a)

�x0, �xT( ) � x0, xT( ) + ε y0, yT( ) +O ε2( ), (40b)

respectively

�gij(x; ε) � gij(x) + εhij(x) +O ε2( ). (41)

The formal parameter 0 ≤ ε≪ 1 is dimensionless. We are
interested in O(ε) effects; O(ε2) terms are considered irrelevant
and will be suppressed9.

For an arbitrary geodesic x � x (t) satisfying Eq. 35, consider
the parameterized family of neighbouring tracks,

�xi(t; ε) � xi(t) + εyi(t), (42)

induced by any of the perturbations in Eqs 40a, 40b, 41. The
perturbative, vector-valued function y � y (t), defined along the
geodesic x (t), must be such that the perturbed path represents
itself a geodesic with respect to the metric �gij(x; ε) for any
sufficiently small value of ε. Thus the perturbed path, Eq. 42,
satisfies Eq. 35 up to O(ε), with the replacement gij→�gij. The
vectors y(t) are referred to as deviation vectors, measuring the
extent to which �x(t; ε) deviates from x(t)� �x(t; 0). Substitution
of (42) into Eq. 35, with gij→�gij, yields (cf. Eq. 30)

D2yi

dt2
+ Ri

jkℓ _x
jyk _xℓ � fi, (43)

where D/dt denotes the covariant derivative operator along x (t),
recall Eq. 37, and Ri

jkℓ(x) is the Riemann curvature tensor given,
in terms of the Christoffel symbols of Eq. 36, by

Ri
jkℓ � zkΓijℓ − zℓΓijk + ΓikmΓmjℓ − Γi

ℓmΓmjk. (44)

Writing the first order expansion of the Christoffel symbols as

�Γijk(x; ε) � Γijk(x) + εHi
jk(x) +O ε2( ), (45)

akin to Eq. 41, the inhomogeneous term in Eq. 43 is given by

9For “small enough” y0, w0, yT, hij in Eqs 40a, 41 we may set ε � 1 without loss of
generality
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fi � −Hi
jk _x

j _xk � −1
2
giℓ zkhjℓ + zjhℓk − zℓhkj − 2hlmΓmjk( ) _xj _xk.

(46)

In order to appreciate the Eqs 43–46, consider the
hypothetical case of a homogeneous, noise free DTI tensor
image, inducing a constant metric tensor field. In the absence
of noise we have no metric perturbations, so that fi � 0, while the
x-independent nature of the metric also induces a vanishing
Riemann tensor, Ri

jkℓ �0, as well as a trivial covariant derivative,
D/dt � d/dt. Equation 43 then reduces to €yi�0, implying a linear
evolution of the deviation vector along the geodesic xi � xi(t).
Both the fiducial geodesic as well as all geodesics induced by this
type of deviation are then straight paths by virtue of Eqs 35–38
and Eq. 42. This is what one would expect of a deviation vector in
a flat space. In a curved space, with a nonzero Riemann tensor
Ri
jkℓ in Eq. 43, neighbouring geodesics may be locally attracted

towards or repelled away from the fiducial one, depending on the
nature of curvature. Random data noise, producing a nonzero
force term fi in Eq. 43, adds further jitter to the geodesic paths.

Defining the block matrix M ∈ R6×6 and the column vectors
F, Y ∈ R6 by

M(t) � −Γijk _xk δij
−Ri

jkℓ _x
j _xℓ −Γijk _xk

⎡⎣ ⎤⎦ F(t) � 0
fi[ ] , and

Y(t) � y(t)
_y(t)[ ],

Equation 43 can be written as an inhomogeneous linear first
order system of matrix differential equations

dY(t)
dt

� M(t)Y(t) + F(t). (48)

This equation may be solved with non-commutative
multiplicative calculus (Bashirov et al., 2008; Florack and van
Assen, 2012; Gill and Johansen, 1990) using the product integral
defined in Eq. 20:

Y(t) � ∏t
0

exp(M(s)ds)

Y(0) + ∫t

0
∏0
σ

exp(−M(τ) dτ)F(σ) dσ⎛⎝ ⎞⎠.

(49)

The block structure in M, F and Y induces a similar structure
in the product integrals:

Π(t)�· ∏t
0

exp(M(s)ds) �· Π11(t) Π12(t)
Π21(t) Π22(t)[ ] , and (50a)

Π−1(t) � ∏0
t

exp(−M(s)ds) �· Ξ11(t) Ξ12(t)
Ξ21(t) Ξ22(t)[ ], (50b)

with the help of which the solution y (t) to the initial value
problem may be expressed compactly as

y(t) � Π11(t)y0 + Π12(t)w0 + ∫t

0
Θ(t, σ)f(σ) dσ, (51)

with

Θ(t, σ) � Π11(t)Ξ12(σ) + Π12(t)Ξ22(σ). (52)

If one considers instead the boundary value problem, the
initial tangent vector _y(0)�w0 must be treated as an
unknown and upon setting t � T can be solved for in terms of
y0, yT and ∫Θ(T, σ) f(σ) dσ. The solution of the boundary value
problem presents itself as

y(t) � Π11(t) − Π12(t)( Π12(T)−1Π11(T))y0 + Π12(t)Π12(T)−1yT

+∫t

0
Θ(t, σ)f(σ) dσ − Π12(t)Π12(T)−1 ∫T

0
Θ(T, σ)f(σ) dσ. (53)

3 EXPERIMENTAL RESULTS

So far the theory has been formulated in a continuous setting. In
clinical applications of tractography we have a discretized DTI and
ditto metric field. This raises the question of sub-voxel tensor field
interpolation and discrete differentiation for evaluating Christoffel
symbols, recall Eq. 36. These issues are simultaneously handled by
using a multiscale representation of the field, Eq. 21, combined
with Log-Euclidean interpolation (Arsigny et al. (2006)). For
technical details, cf. Florack et al. (2021). Supplied with initial
conditions (39a), we may solve for a geodesic by time-integrating
Eq. 35 over a specified interval t ∈ (0,T), e.g. using the Runge-Kutta
fourth order integration scheme. If instead boundary conditions
(39b) are supplied, both direct minimization of Eq. 34 and a non-
linear solver for Eq. 35 are viable solution strategies. Finally, we
may discretize the explicit analytical solutions to obtain geodesic
deviation vectors from Eq. 53.

To illustrate our perturbative approach, we perform
experiments on a DWI dataset from the Human Connectome
Project. In our experiments the metric tensor of our Riemann-
DTI paradigm is the adjugate of the DTI matrix D,
gij�detDDinv

ij , cf. Fuster et al. (2016). We restrict ourselves to
perturbations of the metric given by Eq. 41, while keeping
boundary conditions fixed, Eq. 39b i.e. we only consider the
influence of perturbations on the DTI tensor field. The effect of
boundary variations of type Eq. 40a have recently been
considered elsewhere (Sengers et al. (2021)). These two types
of perturbations are invariably present in any tractography
algorithm due to DTI domain and codomain uncertainties.

We simulate DTI field perturbations �Dij from Dij by a
bootstrapping procedure (Whitcher et al., 2008).
Corresponding metric perturbations are then determined as hij�
�gij−gij according to Eq. 41 with ε � 1, recall footnote 10.
Subsequently, the deviation y(t) along an arbitrary track x (t)
can be determined by Eq. 53, with y (0) � y(T) � 0, resulting in a
perturbed track �x(t)�x(t) + y(t). Recall that, apart from
discretization, Eq. 53 is an analytical result, rendering this
perturbation procedure quite efficient. This data noise
simulation procedure is repeated so as to obtain a large
collection of perturbed tracks.

For the sake of comparison we explicitly compute, for each
simulated metric perturbation �gij, the geodesic x̂(t) subject to
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x̂(0)�x(0) and x̂(T)�x(T). We thus obtain two collections of
tracks, viz. a set of (computationally intensive) explicitly
computed geodesics {x̂k(t)}, and a set of (analytical, thus
computationally efficient) approximations {�xk(t)} to geodesics
{x̂k(t)}, where k � 1, . . . , N pertains to the track associated with
the kth perturbed DTI field. In our experiments we take N � 100.

Figure 4 illustrates the behaviour of analytical perturbations
vs. simulated geodesics. In the first case the analytically computed
tracks almost completely coincide with the simulation results,
while in the second case a small degree of misalignment is clearly
observable. Even though the DTI perturbations are of similar
order everywhere, the linear approximation of Eq. 42 apparently
does not suffice in all cases, from which we may infer that the
mathematical notion of a “sufficiently small” perturbation is case
dependent.

In Figure 5 we extend the experiment of Figure 4 to a bundle
of geodesics. For each of 4,237 (unperturbed) geodesics starting in
the brain stem and ending in the precentral gyrus, their
(simulated) perturbed geodesics {x̂k} and (analytical)

approximations {�xk} are determined, again with k � 1, . . . ,
N � 100, producing two sets of 423,700 tracks each. For each of
these sets we construct isosurfaces of the densities obtained by
counting the number of tracks passing through each voxel.
Subsequently, we threshold the density maps and construct
two additional ones, so called difference maps. The difference
is set to ±1 for voxels in which fibers are present in only one of the
two density maps, and to 0 otherwise. A significant overlap
between the analytical and simulated isosurfaces can be
observed, confirming the feasibility of our approach.

4 DISCUSSION

We have presented an extension to the Riemann-DTI paradigm
in the form of an uncertainty quantification due to DTI data
noise. To appreciate the Riemmanian framework an overview of
some of the neccesary tools upon which it is built is given as well.
Variational calculus lies at the basis of geodesic tractography as

FIGURE 4 | Two sets of perturbed tracks associated with two different fiducial geodesics starting in the brain stem and ending in the precentral gyrus. (A,D): In
green, the collection of tracks is obtained from the analytically computed perturbations, cf. Equation 53. (B,E): In purple, tracks obtained by brute-force computation of
the geodesics using the perturbed metric �gij . (C,F): Overlay for alignment comparison. The 2D background DWI image (apparent low resolution due to close-up view) is
only shown for reference as a plane behind the 3D curves and it should not be used to judge the quality of the tracks. Only the difference between the analytical and
simulated perturbations is of interest here.
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the mathematical machinery allowing to deduce the geodesic
equations from the length functional in the form of Euler-
Lagrange equations. The solutions of the geodesic equations
are the locally “shortest” paths between two fiducial points in
the brain, when “distance” is measured in units of mean free path
length by the (inverse) of the DTI tensor.

Linear perturbation theory is applied to the geodesic
equations, taking into account perturbations in the metric field
induced by DTI noise, and leading to an inhomogeneous geodesic
deviation equation. Together with multiplicative calculus, notably
product integrals, this allow us to express the first order behaviour
of the perturbations along the tracks in closed-form. As long as
the perturbations in the DTI tensor are sufficiently small (which
is case dependent), the analytically computed perturbed tracks do
not significantly differ from the explicitly computed tracks, which
are geodesics with respect to the perturbed DTI metric.

This is confirmed by our experiments, both in the case of a
single (unperturbed) geodesic as well as for bundles of geodesics.
In the experiments we compared both the analytically computed
perturbations as well as the simulated geodesics with respect to
the perturbed metric. In practice, however, one may prefer the
analytical approach, as it offers a strong computational

advantage. By doing brute force simulations we need to solve
non-linear differential equations to find the perturbed tracks,
while in our analytical approach we employ a linear differential
equation with a closed-form solution that can be efficiently
computed.

We recall that geodesic completeness ensures (at least) one
connecting track for any pair of sufficiently distant endpoints. In
case of multiple connections external knowledge may be
necessary to select the most plausible one from the biological
point of view. For example, tractometric features can be used to
classify and subsequently prune connections according to their
diffusion-related characteristics (Colby et al. (2012); De Santis
et al. (2014)).We will address this important point in future work.

Our perturbative analysis may be extended past the
Riemannian paradigm by using Finsler geometry, which
appears to be a natural extension for general DWI models
beyond DTI. This extension removes the quadratic restriction
in the metric and allows for a more accurate modelling of the
DWI signal capturing additional features such as intra-voxel
heterogeneity, e.g. due to partial volume effects or crossing
fibers. The Finslerian approach yields stronger descriptive
power, at the cost of a mathematically similar but more

FIGURE 5 | (A): The green isosurface is obtained by accumulating the analytically computed perturbations, cf. Equation 53 for 4,237 tracks. (B): The purple
isosurface is obtained by recomputing the geodesics with the simulated perturbed metric �gij for each of those 4,237 tracks. (C): The red surface contains is the
intersection of the analytical (green) and simulated (purple) isosurfaces. The blue surface indicates the region which contains analytically perturbed tracks but not
simulated tracks, and vice versa for the yellow surface. The background DWI image is included purely for reference to the location of the bundle in the brain.
However, since the slice of the DWI image is offset from the bundle itself, this visualisation should not be used to judge the quality of the tracks, merely that of the
difference between the analytically computed perturbations and their simulated counterparts.
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cumbersome representation. The Finslerian counterpart of the
Riemannian geodesic deviation equation may likewise inform us
on the effect of perturbations on general DWI data.
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