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Abstract 
 
A set of non-standard discrete models are constructed for the solution of non-homogenous 
second order equation. The method of non-local approximation and renormalization of the 
discretization functions have been applied to some examples and the result has shown that the 
schemes behave qualitatively like the original equation. 

 

Keywords: Nonstandard methods; renormalized denominator functions; initial value problems; non-
local approximation; discrete models. 

 

1 Introduction 
 
Some studies of traditional standard numerical methods have shown that numerical instabilities 
exist to the use of these methods [1]. 
 
Non-standard method therefore came as a result of the instabilities noted in other earlier standard 
methods, for example: Selection of grid size can be a problem because schemes created using 
standard methods exhibit different behavioral patterns for different sizes of h. In fact, it has been 
shown that Euler central scheme are unstable. For the decay equation the central difference 
scheme has numerical instabilities for all step-size values; the forward Euler schemes provide 
useful discrete models if limitations are placed on the step-size; and the backward Euler scheme 
can be used for any (positive) step-size. Except for the central difference scheme, the other three 
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discrete models will give excellent quantitative numerical solutions if ℎ is made small enough, i.e., 
0 < ℎ ≪ 1 [2]. 
 
It has been shown by [3,4] that the central difference scheme allows for the existence of chaotic 
orbits for all positive time-steps for the Logistic differential equation. Notable work on this problem 
has been done by other researchers including [5,6,7,8]. The major conclusion is that the use of the 
central difference scheme forces all the fixed-points to become unstable.  
 
The use of the standard rules does not lead to a unique discrete model. Consequently, one of the 
questions before us is which, if any, of the standard finite-difference schemes should be used to 
obtain numerical solutions for a particular differential equation? Another very important issue is the 
relationship between the solutions to a given discrete model and that of the corresponding 
differential equation. 
 
In the paper we will construct qualitatively stable models of some non-homogeneous second order   
ordinary differential equation by applying the set of rules suggested by [1,7]. 
 
Consider an ordinary differential equation of the form 
 

y” + p(x) y’ + Q(x) y = f(x)                                                 (1) 

 
where p(x), Q(x) and f(x) are non-zero real valued function of (x). 

 
We will apply rule 2 & 3 (see [1]) to each of the components of the equations as shown below  
 

� ′′ ≡ 
��	
����	 ���


�    where   ��ℎ�    → ℎ� + 0�ℎ�� �� ℎ → 0                  (2) 

 

 y′ ≡ 
���	
����

�       where   ��ℎ�    → ℎ + 0�ℎ�� �� ℎ → 0                (3) 

 

y′  ≡ 
���	
�����

�  where   ��ℎ�    → ℎ + 0�ℎ��, ��ℎ� → 1 �� ℎ → 0              (4) 

 

2 Analysis of the Non-standard Discrete Models 
 
The general second order ordinary differential equation (1) can be transformed as shown below: 
 

y” + p(x) y’ + Q(x) y = f(x) 
��	
����	 ���


�  + p(x ) 
���	
����

�  + Q(x ) y = f(x )                             (5) 

 
or 
 

��	
����	 ���

�  + p(x ) 

���	
�����
�  + Q(x ) y = f(x )                   (6) 

 

3 Example I (see [9]) 
 

�" − �
$  � ′ + �$%&��

$% � −  '($ = 0                                                                (7) 

 

� *π�+ = π

� *8 + e
π

%+ , �. *π�+ = 4 − π+ 0
� �π + 2�e

π

%��'� = 2'23�' + 4'�45' + 0
� '($ (6) 
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3.1 Scheme (A1) 
 
Applying the transformation equations (2) and (3) in (7) we have the following 
 

��	
����&���

� = �

$  ���	
����
� − �$%&��

$% �6 +  '($                        (7) 

 

�6&0
��$��φ�

�$  =*2 −  �
�$ − 1 − �

$%+ ��6 +  '�( $ − ��6�0                      (8) 

 

�6&0 =7 *���$%��$��$%����
�$% + ��6 + 7 '�($ − 7��6�0   (9) 

 

Where 7 =  �$
�$��φ , ' = 8ℎ,  '� = �8ℎ�� + 8ℎ�+

9%

�  

 

using = 4�45��ℎ 2: � ,� =sin �ℎ� ,   

 

3.2 Scheme (A2) 
 
Applying the transformation equations (2) and (4) in (7) we have the following 
 

��	
����&���

� = �

$  ���	
�β���
� − �$%&��

$% �6 +  '($                                   (10) 

 

�6&0
��$��φ�

�$  =*2 −  ��
�$ − 1 − �

$%+ ��6 +  '�($ − ��6�0               (11) 

 

�6&0 =7 *���$%���$��$%����
�$% + ��6 + 7 '�($ − 7��6�0                      (12) 

 

Where   7 =  �$
�$��φ , ' = 8ℎ,  '� = �8ℎ�� + 8ℎ�+

9%

�   

    

And    � = 4�45��ℎ 2: � ,� =sin �ℎ� ,  � = 23��ℎ�  

 

3.3 Scheme (A3) 
 
Modify the scheme (A2) by changing the denominator function � in equation (12) 
 

�6&0 =7 *���$%���$��$%����
�$% + ��6 + 7 '�($ − 7��6�0                     (13) 

 

7 =  �$
�$��φ , ' = 8ℎ,  '� = �8ℎ�� + 8ℎ�+

9%

�                                   (14) 

 

Using  � = 4�45��ℎ 2: � ,� = 
>?@A�0B

C   , λ ϵ R ,  � = 23��ℎ�  
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Fig. 1. Graph of the schemes of  E" − F
G  EH + �GF&F�

GF E −  GIG = J for h=0.003 
 

 
 

Fig. 2. Graph of the errors of deviation of the schemes of  E" − F
G  EH + �GF&F�

GF E −  GIG = J 
 

 
 

Fig. 3. Graph of the schemes of  E" − F
G  EH + �GF&F�

GF E −  GIG = J for h=0.0001 
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Table 1. Result and error of schemes A1, A2, A3 for h=0.003 
 

  T A1 A2 A3 Analytic E1 E2 E3 

1.5 9.558448 9.558448 9.558448 9.558448 0 0 0 
1.503 9.580832 9.580832 9.580832 9.580832 0 0 0 
1.506 9.603494 9.603198 9.603198 9.603198 0.000295639 0 0 
1.509 9.626101 9.625547 9.625547 9.625546 0.000554085 9.53675E-07 9.53675E-07 
1.513 9.648654 9.647879 9.64788 9.647879 0.000775337 0 9.53674E-07 
1.516 9.671154 9.670193 9.670195 9.670193 0.000961304 0 1.90735E-06 
1.519 9.693601 9.69249 9.692492 9.692489 0.001111984 9.53674E-07 3.8147E-06 
1.522 9.715994 9.714768 9.714772 9.714769 0.001224518 9.53674E-07 2.86102E-06 
1.525 9.738335 9.73703 9.737035 9.737031 0.001303673 9.53674E-07 3.8147E-06 
1.528 9.760623 9.759274 9.75928 9.759276 0.001346588 2.86102E-06 3.8147E-06 
1.531 9.782859 9.781499 9.781508 9.781505 0.001354218 5.72205E-06 3.8147E-06 
1.534 9.805043 9.803707 9.803719 9.803715 0.001328468 7.62939E-06 3.8147E-06 
1.538 9.827177 9.825898 9.825912 9.825909 0.001268387 1.04904E-05 2.86102E-06 
1.556 9.958935 9.958672 9.958709 9.958713 0.000222206 4.1008E-05 3.8147E-06 
1.559 9.980722 9.980739 9.980781 9.980788 6.58035E-05 4.95911E-05 7.6294E-06 

Note: E1 is the column for error of deviation  of A1 from Analytic solution, E2  is the column for error of deviation  of A2 from Analytic solution and E3 is the column for 
error of deviation  of A3 from Analytic solution 

 

Table 2. Result and error of schemes A1, A2, A3 for h=0.0001 
 

  t A1 A2 A3 Analytic E1 E2 E3 

1.5 9.558448 9.558448 9.558448 9.558448 0 0 0 
1.5001 9.559165 9.559165 9.559165 9.559165 0 0 0 
1.5002 9.559896 9.559882 9.559882 9.559881 1.43051E-05 9.53674E-07 9.53674E-07 
1.5003 9.56063 9.560599 9.560599 9.560598 3.14713E-05 9.53674E-07 9.53674E-07 
1.5004 9.561368 9.561316 9.561316 9.561314 5.43594E-05 2.86102E-06 2.86102E-06 
1.5005 9.56211 9.562034 9.562034 9.562031 7.9155E-05 2.86102E-06 2.86102E-06 
1.5006 9.562856 9.562751 9.562751 9.562747 0.000108719 3.8147E-06 3.8147E-06 
1.5007 9.563605 9.563468 9.563468 9.563464 0.000141144 3.8147E-06 3.8147E-06 
z        
1.5008 9.564359 9.564185 9.564185 9.56418 0.000178337 4.76837E-06 4.76837E-06 
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1.5009 9.565116 9.564902 9.564902 9.564897 0.000219345 5.72205E-06 5.72205E-06 
1.501 9.565877 9.565619 9.565619 9.565613 0.000264168 6.67572E-06 6.67572E-06 
1.5011 9.566642 9.566337 9.566337 9.566329 0.000312805 7.6294E-06 7.6294E-06 
1.5012 9.56741 9.567054 9.567054 9.567045 0.000365257 8.58307E-06 8.58307E-06 
1.5013 9.568183 9.567771 9.567771 9.567761 0.000421524 9.53674E-06 9.53674E-06 
1.5014 9.568959 9.568488 9.568488 9.568479 0.000480652 9.53674E-06 9.53674E-06 
1.5015 9.569739 9.569205 9.569205 9.569195 0.000544548 1.04904E-05 1.04904E-05 
1.5016 9.570523 9.569922 9.569922 9.569911 0.000612259 1.14441E-05 1.14441E-05 
1.5017 9.571311 9.57064 9.57064 9.570627 0.000683784 1.23978E-05 1.23978E-05 
1.5018 9.572103 9.571357 9.571357 9.571343 0.000759125 1.33514E-05 1.33514E-05 
1.5019 9.572898 9.572074 9.572074 9.572059 0.000839233 1.52588E-05 1.52588E-05 

 

Table 3. Result and error of schemes B1, B2, B3 for h=0.1/40 
 

T B1 B2 B3 Analytic E1 E2 E3 

1 2 2 2 2 0 0 0 
1.0025 2.025078773 2.025078773 2.025078773 2.025078773 0 0 0 
1.005 2.050312996 2.050313711 2.050312996 2.050312996 0 7.15255E-07 0 
1.0075 2.075703144 2.07570529 2.075703144 2.075705767 2.6226E-06 4.76837E-07 2.6226E-06 
1.01 2.101249695 2.101253748 2.101249695 2.101254702 5.0068E-06 9.53674E-07 5.00679E-06 
1.0125 2.126953363 2.126959801 2.126952887 2.126963139 9.7752E-06 3.33786E-06 1.0252E-05 
1.015 2.152814388 2.152823687 2.152813196 2.152828693 1.4305E-05 5.00679E-06 1.54972E-05 
1.0175 2.178833246 2.178845882 2.1788311 2.178854465 2.1219E-05 8.58307E-06 2.3365E-05 
1.02 2.205010653 2.205026865 2.205006838 2.205038548 2.7895E-05 1.16825E-05 3.17097E-05 
1.0225 2.231346846 2.231367111 2.231341124 2.231383562 3.6716E-05 1.64509E-05 4.24385E-05 
1.025 2.257842541 2.257867098 2.257834435 2.25788784 4.53E-05 2.07424E-05 5.34058E-05 
1.0275 2.284498453 2.284527302 2.284487009 2.284554243 5.579E-05 2.69413E-05 6.7234E-05 
1.03 2.31131506 2.3113482 2.311299324 2.311380386 6.5327E-05 3.21865E-05 8.10623E-05 

Note: E1 is the column for error of deviation of B1 from Analytic solution, E2  is the column for error of deviation  of B2 from Analytic solution and E3 is the column for 
error of deviation  of B3 from Analytic solution 



 
 

Fig. 4. Graph of the errors of
 

4 Example II (see [9]) 
 

�" − K
$  � ′ + 3

  ��0� = 2, � ′�0
 

4.1 Scheme (B1) 
 
Applying the transformation equations (2),(
 

��	
����&���

�

�6&0 =  2�6 −

�6&0 *1 − K�
�$

�6&0 =  
*��K�M

Using   � = 4�45��ℎ 2: � ,� =sin �ℎ�
 

4.2 Scheme (B2) 
 
Applying the transformation equations (2),(4) in (15) we have the following
 

��	
����&���
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�$

0

0.005

0.01

0.015

1 7 13

E
rr

o
r

 Obayomi; BJMCS, 7(2): 120-129, 2015; Article no.BJMCS.20

 

Graph of the errors of deviation of the schemes   for h=0.0001

3� −  2' = 0                                                           

�0� = 10  ��'� = 3'K − 2' + '� + '�N3O'     

Applying the transformation equations (2),(3) in (15) we have the following 


 = 2' + K
$  ���	
����

� −  3�P�6 + ��6&0�   

− �6�0 + K�
�$ �6&0 − K���

�$ −  3�P�6 −  3���6&0 + 2�' 

−  3��+ = *2 − 3�P − �K�
�$� + �6 − �6�0 +  �2�'� 

�M��QR
ST� +��� ���
& ���$�

*0�QR
ST� KU�+

                                                             

�  

Applying the transformation equations (2),(4) in (15) we have the following 


 = 2' + K
$  ���	
�����

� −  3�P�6 + ��6&0�                       

− �6�0 + K�
�$ �6&0 − K����

�$ −  3�P�6 −  3���6&0 + 2�' 

− 3��+ = *2 − 3P� − �K��
�$ � + �6 − �6�0 +  �2�'� 

13192531 37 43 49 55 61 67 73

t

h=0.0001

E1

E2
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deviation of the schemes   for h=0.0001 
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�6&0 =  
*��KM�

Using     ' = 8ℎ,  '� = �8ℎ�� + 8ℎ�

And     � = 4�45��ℎ 2: � ,� =sin �ℎ� ,  

 

4.3 Scheme (B3) 
 
Modify the scheme (B2) by changing the denominator function 
 

�6&0 =  
*��

Using ' = 8ℎ,  '� = �8ℎ�� + 8ℎ�+

And     � = 4�45��ℎ 2: � ,� = 
>?@A�0B

C
 

Fig. 5. Graph of the schemes of  

Fig. 6. Graph of the erro
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changing the denominator function �  in equation (24) 

* �KM���QRV
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ST � KU�+
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�  
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Graph of the schemes of  E" − W
G  EH + WE −  FG = J for h=0.0025

 

 
Graph of the errors of deviation of the schemes for h=0.0025 
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5 Observations and Conclusion 
 
It can be observed that all the schemes derived display the same dynamics as the analytic solution 
(see Figs. 1, 3 and 5). The schemes are also stable with respect to monotonicity of solution. The 
renormalization of the discretization functions through the introduction of β has led to significant 
improvement of the schemes because the error of approximation reduced considerably (see 
curves of schemes A2,A3, and their corresponding errors presented in Figs. 2 and 4 and Tables 1 
and 2. The absolute errors generated for scheme A1 are larger). (see also curves of B2,B3  and 
their corresponding errors presented in Fig. 6 and Table 3. The absolute errors generated for 
scheme B1 are larger). The choice of normalized denominator can make some difference. It has 

been observed in the tested cases that the use of � = 
>?@A�0B

C   , λ ϵ R  is better than � =sin�ℎ� (see 

Table 1 for Schemes A2 and A3, Table 2 for Schemes A2 and A3, Table 3 for Schemes B2 and 
B3).This is not unconnected with the opportunity to choose λ   appropriately  to satisfy  the 
condition ��ℎ�    → ℎ + 0�ℎ�� �� ℎ → 0 .  This is also because the step size is dynamically varied 
during the iterations .This confirms some earlier results (for example see [7] and [8]). It can be 
shown that using a fixed h during iterations makes each of the schemes perform poorly. We can 
conclude here that the renormalization of the discrete derivatives and the use of normalized and 
dynamic denominator functions create schemes that have the same dynamics as the original 
equation .However the complex activity of choosing the best combination of parameters and 
functions still depend on the experience of the modeler and a fair knowledge of the dynamics of 
the modeled differential equation. There are no definite rules yet on how to select this variables 
and functions. The concept of best schemes may be achieved if this riddle is resolved. 
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