Universal Walsh Series with Monotone Coefficients in Weighted L^{p} Spaces

Martin Grigoryan ${ }^{1 *}$ and Zaruhi Davtyan ${ }^{2}$
${ }^{1}$ Chair of Higher Mathematics, Yerevan State University, 1, Alex Manoogian str., 0025, Yerevan, Republic of Armenia.
${ }^{2}$ Department of Applied Mathematics and Information, Russian-Armenian (Slavonic) University, 123 Hovsep Emin str., 0051, Yerevan, Republic of Armenia.

Article Information
DOI: 10.9734/BJMCS/2015/14246
Editor(s):
(1) Ke-Lin Du, Chief Scientist, Enjoyor Labs, Hangzhou, China and Department of Electrical and

Computer Engineering, Concordia University, Canada.
(2) Paul Bracken, Department of Mathematics, The University of Texas-Pan American Edinburg, TX 78539, USA. Reviewers:
(1) Anonymous, Nigeria.
(2) Anonymous, India.
(3) Anonymous, Poland.
(4) Gen Qi Xu, Department of Mathematics, Tianjin University, China.
(5) Anonymous, India.

Complete Peer review History:
http://www.sciencedomain.org/review-history.php?iid=933\&id=6\&aid=8028

Original Research Article

Received: 24 September 2014
Accepted: 19 November 2014
Published: 03 February 2015

Abstract

For any $0<\delta<1$ there exists a measurable function $\mu(x), 0<\mu(x) \leq 1$, with $|\{x \in[0,1] ; \mu(x) \neq 1\}|<\delta$, and a series in the Walsh system $\left\{\varphi_{n}\right\}$ of the form $$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}, \quad \text { with } \quad\left|a_{n}\right| \searrow 0
$$ such that for any $p \geq 1$ and any function $f \in L_{\mu}^{p}(0,1)$ one can fined subseries of above series converging to f in $L_{\mu}^{p}(0,1)$.

Keywords: Walsh system, convergence, weighted spaces.
2010 Mathematics Subject Classification: 42C10; 42C20

[^0]
1 Introduction

Let $\mu(x)$-ia a weighted function and let

$$
L_{\mu}^{p}(0,1)=\left\{f ; \int_{0}^{1}|f(x)|^{p} \mu(x) d x<\infty\right\}
$$

A system of functions

$$
\left\{f_{k}(x)\right\}_{k=0}^{\infty}, \quad f_{k}(x) \in L_{\mu}^{1}[0,1]
$$

is called a system of representation for weighted $L_{\mu}^{1}[0,1]$ class, if for any $f(x) \in L_{\mu}^{1}[0,1]$ there is a series $\sum_{k=1}^{\infty} a_{k} f_{k}(x)$ which converges to the $f(x)$ in the metric $L_{\mu}^{1}[0,1]$.

Note, that many papers are devoted (see [1]- [14]) to the question on existence of various types of representation by different systems in the sense of convergence almost everywhere, on a measure, in L^{p} metric.

In this paper we prove the following theorem:

Theorem For any $0<\delta<1$ there exists a measurable function $\mu(x), 0<\mu(x) \leq 1$, with $|\{x \in[0,1] ; \mu(x) \neq 1\}|<\delta$, and a series in the Walsh system $\left\{\varphi_{n}\right\}$ of the form

$$
\sum_{n=1}^{\infty} a_{n} \varphi_{n}, \quad \text { with } \quad\left|a_{n}\right| \searrow 0
$$

such that for any $p \geq 1$ and any functionf $\in L_{\mu}^{p}(0,1)$ there exists a subseries

$$
\sum_{k=1}^{\infty} a_{n_{k}} \varphi_{n_{k}}
$$

converging to f in $L_{\mu}^{p}(0,1)$.
Recall the following definition: a series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}$ is said to be universal with respect to subseries in the space $L_{\mu}^{p}(0,1)$, where $p \geq 1$ is fixed, if for each function $f(x) \in L_{\mu}^{p}(0,1)$, one can select a subseries $\sum_{k=1}^{\infty} a_{n_{k}} \varphi_{n_{k}}$ which converges to $f(x)$ in $L_{\mu}^{p}(0,1)$ norm .

Note that in this theorem it is impossible to replace $L_{\mu}^{p}(0,1)$ with $L^{p}(0,1)$. This is obvious: for instance if for the function $\left(\left|a_{1}\right|+1\right) \varphi_{1}(x)$ there exists subseries $\sum_{k=1}^{\infty} a_{n_{k}} \varphi_{n_{k}},\left(n_{k} \nearrow\right)$ of series $\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x)$ which converges to this function by $L^{p}(0,1)$ norm, then it follows that $a_{n_{k}}=\int_{0}^{1}\left(\left|a_{1}\right|+\right.$ 1) $\varphi_{1}(x) \varphi_{n_{k}}(x) d x$ for all $k \geq 1$, hence, if $n_{1}>1$ we get $a_{n_{k}}=0$ for all $k \geq 1$, else if $n_{1}=1$ we get $1+\left|a_{1}\right|=a_{1}$, which is contradiction.

The following problems remain open:

Question. Is this theorem true for the trigonometric system?

2 Proof of Main Lemmas and Theorem

The Walsh system, an extension of the Rademacher system, may be obtained in the following manner:

Let r be the periodic function, of least period 1 , defined on $[0,1)$ by

$$
r=\chi_{[0,1 / 2)}-\chi_{[1 / 2,1)} .
$$

The Rademacher system, $R=r_{n}: n=0,1, \ldots$, is defined by the conditions

$$
r_{n}(x)=r\left(2^{n} x\right), \forall x \in R, n=0,1, \ldots
$$

and, in the ordering employed by Paley (see [15] and [16]), the n-th element of the Walsh system $\left\{\varphi_{n}\right\}$ is given by

$$
\begin{equation*}
\varphi_{n}=\prod_{k=0}^{\infty} r_{k}^{n_{k}} \tag{1}
\end{equation*}
$$

where $\sum_{k=0}^{\infty} n_{k} 2^{k}$ is the unique binary expansion of n, with each n_{k} either 0 or 1 .

We put

$$
I_{k}^{(j)}(x)=\left\{\begin{array}{l}
1, \text { if } x \in[0,1] \backslash \Delta_{k}^{(j)}, \tag{2}\\
1-2^{k}, \text { if } x \in \Delta_{k}^{(j)}=\left(\frac{j-1}{2^{k}}, \frac{j}{2^{k}}\right), \quad ; k=1,2, \ldots, 1 \leq j \leq 2^{k},
\end{array}\right.
$$

and periodically extend these functions on R^{1} with period 1.

By $\chi_{E}(x)$ we denote the characteristic function of the set E, i.e.

$$
\chi_{E}(x)= \begin{cases}1, & \text { if } x \in E, \tag{3}\\ 0, & \text { if } x \notin E\end{cases}
$$

Then, clearly

$$
\begin{equation*}
I_{k}^{(j)}(x)=\varphi_{0}(x)-2^{k} \cdot \chi_{\Delta_{k}^{(j)}}(x), \tag{4}
\end{equation*}
$$

and let for the natural numbers $k \geq 1$, and $j \in\left[1,2^{k}\right]$

$$
\begin{gather*}
b_{i}\left(\chi_{\Delta_{k}^{(j)}}\right)=\int_{0}^{1} \chi_{\Delta_{k}^{(j)}}(x) \varphi_{i}(x) d x= \pm \frac{1}{2^{k}}, 0 \leq i<2^{k} \tag{5}\\
a_{i}\left(I_{k}^{(j)}\right)=\int_{0}^{1} I_{k}^{(j)}(x) \varphi_{i}(x) d x=\left\{\begin{array}{l}
0, \text { if } i=0 \text { or } i \geq 2^{k}, \\
\pm 1, \text { if } 1 \leq i<2^{k} .
\end{array}\right. \tag{6}
\end{gather*}
$$

Hence

$$
\begin{align*}
\chi_{\Delta_{k}^{(j)}}(x) & =\sum_{i=0}^{2^{k}-1} b_{i}\left(\chi_{\Delta_{k}^{(j)}}\right) \varphi_{i}(x) \tag{7}\\
I_{k}^{(j)}(x) & =\sum_{i=1}^{2^{k}-1} a_{i}\left(I_{k}^{(j)}\right) \varphi_{i}(x) \tag{8}
\end{align*}
$$

Lemma 1. Let dyadic interval $\Delta=\Delta_{m}^{(k)}=\left((k-1) / 2^{m} ; k / 2^{m}\right), \quad k \in\left[1,2^{m}\right]$ and numbers $N_{0} \in \mathbb{N}, \gamma \neq 0, \epsilon \in(0,1)$ be given. Then there exists a measurable set $E \subset[0,1]$ and a polynomial Q in the Walsh system $\left\{\varphi_{k}\right\}$ of the following form

$$
Q=\sum_{k=N_{0}}^{N} c_{k} \varphi_{k}
$$

which satisfy the following conditions:

1) the coefficients $\left\{a_{k}\right\}_{k=N_{0}}^{N}$ are 0 or $\pm \gamma|\Delta|$
2) $|E|>(1-\varepsilon)|\Delta|$,
3) $Q(x)=\left\{\begin{array}{lll}\gamma & : & \text { if } x \in E \\ 0 & : & \text { if } x \notin \Delta\end{array}\right.$,
4) $\max _{N_{0} \leq m \leq N}\left(\int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \varphi_{k}(x)\right|^{p} d x\right)^{1 / p} \leq\left\{\begin{array}{ll}A_{2}|\gamma| \epsilon^{-1 / 2}|\Delta|^{1 / 2}, & \text { if } p=1 \\ A_{p}|\gamma| \epsilon^{-1 / q}|\Delta|^{1 / p}, & \text { if } p>1\end{array}\right.$,
where A_{p} is a constant depending only upon p, and $\frac{1}{p}+\frac{1}{q}=1$
Proof. Let

$$
\begin{equation*}
\nu_{0}=\left[\log _{2} \frac{1}{\epsilon}\right]+1 \quad ; s=\left[\log _{2} N_{0}\right]+m \tag{9}
\end{equation*}
$$

We define the polynomial $Q(x)$ and the numbers c_{n}, a_{i} and b_{j} in the following form:

$$
\begin{gather*}
Q(x)=\gamma \cdot \chi_{\Delta_{m}^{(k)}}(x) \cdot I_{\nu_{0}}^{(1)}\left(2^{s} x\right), x \in[0 ; 1] . \tag{10}\\
c_{n}=c_{n}(Q)=\int_{0}^{1} Q(x) \varphi_{n}(x) d x, \forall n \geq 0, \tag{11}\\
b_{i}=b_{i}\left(\chi_{\Delta_{m}^{(k)}}\right), 0 \leq i<2^{m}, \quad a_{j}=a_{j}\left(I_{\nu_{0}}^{(1)}\right), 0<j<2^{\nu_{0}} . \tag{12}
\end{gather*}
$$

Taking into consideration the following equation

$$
\varphi_{i}(x) \cdot \varphi_{j}\left(2^{s} x\right)=\varphi_{j \cdot 2^{s}+i}(x), \text { if } 0 \leq i, j<2^{s} \text { (see (1)), }
$$

and having the following relations (5)-(8) and (10)-(12), we obtain that the polynomial $Q(x)$ has the following form:

$$
\begin{gather*}
Q(x)=\gamma \cdot \sum_{i=0}^{2^{m}-1} b_{i} \varphi_{i}(x) \cdot \sum_{j=1}^{2^{\nu_{0}-1}} a_{j} \varphi_{j}\left(2^{s} x\right)= \\
=\gamma \cdot \sum_{j=1}^{2^{\nu_{0}-1}} a_{j} \cdot \sum_{i=0}^{2^{m}-1} b_{i} \varphi_{j \cdot 2^{s}+i}(x)=\sum_{k=N_{0}}^{\bar{N}} c_{k} \varphi_{k}(x), \tag{13}
\end{gather*}
$$

where

$$
c_{k}=c_{k}(Q)=\left\{\begin{array}{ll}
\pm \frac{\gamma}{2^{m}} \text { or } 0, & \text { if } k \in\left[N_{0}, \bar{N}\right] \tag{14}\\
0, & \text { if } k \notin\left[N_{0}, \bar{N}\right]
\end{array} \quad, \bar{N}=2^{s+\nu_{0}}+2^{m}-2^{s}-1 .\right.
$$

Then let

$$
E=\{x ; Q(x)=\gamma\}
$$

Clearly that (see (2) and (10)),

$$
\begin{align*}
|E| & =2^{-m}\left(1-2^{-\nu_{0}}\right)>(1-\epsilon)|\Delta|, \tag{15}\\
Q(x) & =\left\{\begin{array}{l}
\gamma, \text { if } x \in E, \\
\gamma\left(1-2^{\nu_{0}}\right), \text { if } x \in \Delta \backslash E, \\
0, \text { if } x \notin \Delta .
\end{array}\right. \tag{16}
\end{align*}
$$

Thus, for $p>1$ and $\frac{1}{p}+\frac{1}{q}=1$

$$
\left(\int_{0}^{1}|Q(x)|^{p} d x\right)^{\frac{1}{p}} \leq|\gamma||\Delta|^{\frac{1}{p}} 2^{1+\frac{1}{q}} \epsilon^{-\frac{1}{q}}<4|\gamma||\Delta|^{\frac{1}{p}} \epsilon^{-\frac{1}{q}}
$$

Since Q is a Walsh polynomial, it is own Walsh-Fourier series; that is,

$$
c_{n}=\int_{0}^{1} Q(x) \varphi_{n}(x) d x, \forall n \in \mathbb{N}
$$

thus, from Paley's theorem $\left\|S_{n}(Q)\right\| \leq \overline{A_{p}}\|Q\|_{p}, \forall n \in \mathbb{N}$ and $p>1$, where $\overline{A_{p}}$ is a constant depending only upon p. Hence

$$
\begin{gathered}
\max _{N_{0} \leq m \leq N} \int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \varphi_{k}(x)\right| d x \leq \max _{N_{0} \leq m \leq N}\left(\int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \varphi_{k}(x)\right|^{2} d x\right)^{\frac{1}{2}} \leq\left(\int_{0}^{1} Q^{2}(x) d x\right)^{\frac{1}{2}} \leq \\
\leq A_{2}|\gamma| \epsilon^{-1 / 2}|\Delta|^{1 / 2}
\end{gathered}
$$

and

$$
\max _{N_{0} \leq m \leq N}\left(\int_{0}^{1}\left|\sum_{k=N_{0}}^{m} c_{k} \varphi_{k}(x)\right|^{p} d x\right)^{\frac{1}{p}} \leq A_{p}|\gamma| \epsilon^{-1 / q}|\Delta|^{1 / p}, \forall p>1
$$

where $A_{p}=4 \bar{A}_{p}, p>1$.
Lemma 1 is proved.
Lemma 2. Let given the numbers $\tilde{N} \in \mathbb{N}, 0<\epsilon<1, p_{0}>1$. Then for any function $f \in$ $L^{p_{0}}(0,1),\|f\|_{L_{p_{0}}}>0$, one can find a set $E \subset[0,1]$ and a polynomial in the Walsh system

$$
Q=\sum_{k=\tilde{N}+1}^{M} a_{k} \varphi_{k},
$$

satisfying the following conditions:

1) $0 \leq\left|a_{k}\right|<\epsilon$ and the non-zero coefficients in $\left\{\left|a_{k}\right|\right\}_{k=\tilde{N}+1}^{M}$ are in decreasing order,
2) $|E|>1-\epsilon$,
3) $\left(\int_{E}|Q(x)-f(x)|^{p_{0}} d x\right)^{\frac{1}{p_{0}}}<\epsilon$,
4) $\max _{\tilde{N}+1 \leq m \leq M}\left(\int_{e}\left|\sum_{k=\tilde{N}+1}^{m} a_{k} \varphi_{k}(x)\right|^{p} d x\right)^{\frac{1}{p}}<\left(\int_{e}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\epsilon, \forall p \leq p_{0}$.
for every measurable subset e of E.

Proof. We choose some non-overlapping binary intervals $\left\{\Delta_{\nu}\right\}_{\nu=1}^{\nu_{0}}$ and a step function

$$
\begin{equation*}
\varphi(x)=\sum_{\nu=1}^{\nu_{0}} \gamma_{\nu} \cdot \chi_{\Delta_{\nu}}(x), \sum_{\nu=1}^{\nu_{0}}\left|\Delta_{\nu}\right|=1 \tag{17}
\end{equation*}
$$

satisfying the conditions

$$
\begin{gather*}
\max _{1 \leq \nu \leq \nu_{0}}\left|\gamma_{\nu}\right|\left(A_{2} \epsilon^{-\frac{1}{2}}\left|\Delta_{\nu}\right|^{\frac{1}{2}}+A_{p} \epsilon^{-\frac{1}{q}}\left|\Delta_{\nu}\right|^{\frac{1}{p}}\right)<\frac{\epsilon}{2}, \quad \forall p>1, \frac{1}{p}+\frac{1}{q}=1 \tag{18}\\
0<\left|\gamma_{\nu_{0}}\right|\left|\Delta_{\nu_{0}}\right|<\ldots<\left|\gamma_{\nu}\right|\left|\Delta_{\nu}\right|<\ldots<\left|\gamma_{1}\right|\left|\Delta_{1}\right|<\frac{\epsilon}{2} \tag{19}\\
\left(\int_{0}^{1}|f-\varphi|^{p_{0}} d x\right)^{\frac{1}{p_{0}}}<\frac{\epsilon}{2} \tag{20}
\end{gather*}
$$

Successively applying Lemma 1 , we determine some sets $E_{\nu} \subset[0,1]$ and polynomials

$$
\begin{equation*}
Q_{\nu}=\sum_{j=m_{\nu-1}}^{m_{\nu}-1} a_{j} \varphi_{j},\left(m_{0}=\bar{N}+1\right), \nu=1, \ldots, \nu_{0} \tag{21}
\end{equation*}
$$

where $a_{j}=0$ or $\pm \gamma_{j}\left|\Delta_{j}\right|$, if $j \in\left[m_{\nu-1}, m_{\nu}\right)$,

$$
\begin{gather*}
\left|E_{\nu}\right|>\left(1-\frac{\epsilon}{2}\right) \cdot\left|\Delta_{\nu}\right|, \tag{22}\\
Q_{\nu}=\left\{\begin{array}{cc}
\gamma_{\nu} & \text { if } x \in E_{\nu} \\
0 & : \\
\text { if } x \notin \Delta_{\nu}
\end{array},\right. \tag{23}\\
\max _{m_{\nu-1} \leq m \leq m_{\nu}-1}\left(\int_{0}^{1}\left|\sum_{k=m_{\nu-1}}^{m} a_{k} \varphi_{k}(x)\right|^{p} d x\right)^{\frac{1}{p}}<\left\{\begin{array}{ll}
A_{2}\left|\gamma_{\nu}\right| \varepsilon^{-1 / 2}\left|\Delta_{\nu}\right|^{\frac{1}{2}} & , \quad \text { if } p=1 \\
A_{p}\left|\gamma_{\nu}\right| \epsilon^{-1 / q}\left|\Delta_{\nu}\right|^{\frac{1}{p}} & , \quad \text { if } p>1
\end{array} .\right. \tag{24}
\end{gather*}
$$

Then let

$$
\begin{gather*}
E=\bigcup_{\nu=1}^{\nu_{0}} E_{\nu}, \tag{25}\\
Q=\sum_{\nu=1}^{\nu_{0}} Q_{\nu}=\sum_{k=\tilde{N}+1}^{M} a_{k} \varphi_{k}, \tag{26}
\end{gather*}
$$

Let $\tilde{N}<m \leq M$. From (21) and (26) we get

$$
\begin{equation*}
\sum_{k=\tilde{N}+1}^{m} a_{k} \varphi_{k}=\sum_{n=1}^{\nu-1} Q_{n}+\sum_{k=m_{\nu}-1}^{m} a_{k} \varphi_{k} \text { where } m_{\nu-1} \leq m<m_{\nu} \tag{27}
\end{equation*}
$$

Taking into consideration that for any $x \in E, Q(x)=\varphi(x)$ (see (17), (23) and (26)), from (18), (24), and (27) for every measurable $e \subset E$ we obtain:

$$
\begin{gathered}
\left(\int_{e}|Q(x)-f(x)|^{p_{0}} d x\right)^{\frac{1}{p_{0}}}=\left(\int_{e}|\varphi(x)-f(x)|^{p_{0}} d x\right)^{\frac{1}{p_{0}}}<\epsilon \\
\left(\int_{e}\left|\sum_{k=\tilde{N}+1}^{m} a_{k} \varphi_{k}(x)\right|^{p} d x\right)^{\frac{1}{p}} \leq\left(\int_{e}\left|\sum_{n=1}^{\nu-1} \gamma_{n} \chi_{\Delta_{n}}(x)\right|^{p} d x\right)^{\frac{1}{p}}+\left(\int_{e}\left|\sum_{n=m_{\nu}-1}^{m} a_{n} \varphi_{n}(x)\right|^{p} d x\right)^{\frac{1}{p}} \leq
\end{gathered}
$$

$$
\leq\left(\int_{e}|\varphi(x)|^{p} d x\right)^{\frac{1}{p}}+\frac{\epsilon}{2} \leq\left(\int_{e}|f(x)|^{p} d x\right)^{\frac{1}{p}}+\epsilon, \quad \text { for all } p \leq p_{0}
$$

According to (19), (21), (22) and (25) it follows

$$
|E|>1-\epsilon
$$

and $0 \leq\left|a_{k}\right|<\epsilon$ and the non-zero coefficients in $\left\{\left|a_{k}\right|\right\}_{k=\tilde{N}+1}^{M}$ are monotonically decreasing, i.e. the statements 1)-3) of Lemma 2 are valid.

Lemma 2 is proved.
Lemma 3. For any $0<\delta<1$ there exist a weight function $\mu(x), 0<\mu(x) \leq 1$, with $|\{x \in[0,1] ; \mu(x) \neq 1\}|<\delta$ such that for each numbers $p_{0}>1, \tilde{N} \in \mathbb{N}, 0<\epsilon<1$, and every function $f \in L_{\mu}^{p_{0}}(0,1),\|f\|_{L_{p_{0}}}>0$, there exists a polynomial in the Walsh system of the form

$$
Q=\sum_{k=N}^{M} a_{n_{k}} \varphi_{n_{k}}, N>\tilde{N}
$$

satisfying the following conditions:

1) $0<\left|a_{n_{k+1}}\right|<\left|a_{n_{k}}\right|<\epsilon, N<k<M$,
2) $\left(\int_{0}^{1}|Q(x)-f(x)|^{p_{0}} \mu(x) d x\right)^{\frac{1}{p_{0}}}<\epsilon$,
3) $\max _{\tilde{N}+1 \leq m \leq M}\left(\int_{0}^{1}\left|\sum_{k=\tilde{N}+1}^{m} a_{n_{k}} \varphi_{n_{k}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<\left(\int_{0}^{1}|f(x)|^{p} \mu(x) d x\right)^{\frac{1}{p}}+\epsilon, \forall p \leq p_{0}$.

Proof of Lemma 3

This is proved analogously to Lemma 3 of [6] (see pp. 9, 10).

Proof of Theorem

Let $\delta \in(0,1)$ and let

$$
\begin{equation*}
p_{k} \nearrow+\infty \text { and let }\left\{f_{k}(x)\right\}_{k=1}^{\infty}, \quad x \in[0,1], \tag{28}
\end{equation*}
$$

be the sequence of all algebraic polynomials with rational coefficients. Applying repeatedly Lemma 3, we obtain a weight function $\mu(x)$ with $0<\mu(x) \leq 1$ and $|\{x \in[0,1] ; \mu(x)=1\}|>1-\delta$ a sequences of polynomials in the Walsh systems $\left\{\varphi_{n}(x)\right\}$

$$
\begin{equation*}
Q_{k}(x)=\sum_{i=N_{k}}^{M_{k}} a_{n_{i}} \varphi_{n_{i}}(x), \tag{29}
\end{equation*}
$$

where

$$
N_{1}=1 ; N_{k}=M_{k-1}+1, k \geq 2,
$$

which satisfy the following conditions:

$$
\begin{equation*}
2^{-k}>\left|a_{n_{i}}\right| \geq\left|a_{n_{i+1}}\right|>0, \forall i \in\left[N_{k}, M_{k}\right], k=1,2, \ldots, \tag{30}
\end{equation*}
$$

$$
\begin{gather*}
\left(\int_{0}^{1}\left|Q_{k}(x)-f_{k}(x)\right|^{p_{k}} \mu(x) d x\right)^{\frac{1}{p_{k}}}<2^{-4 k}, \tag{31}\\
\max _{N_{k} \leq m \leq M_{k}}\left(\int_{0}^{1}\left|\sum_{i=N_{k}}^{m} a_{n_{i}} \varphi_{n_{i}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<\left(\int_{0}^{1}\left|f_{k}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}+2^{-k-1}, \forall p \leq p_{k}, \tag{32}
\end{gather*}
$$

Consider a series

$$
\begin{equation*}
\sum_{s=1}^{\infty} a_{s} \varphi_{s}(x), \text { where } a_{s}=a_{n_{i}} \text { if } s \in\left[n_{i}, n_{i+1}\right) \tag{33}
\end{equation*}
$$

Clearly (see (30), (33))

$$
\left|a_{k}\right| \searrow 0
$$

Let $p \geq 1$ and let $f(x) \in L_{\mu}^{p}(0,1)$. We choose some $f_{\nu_{1}}(x)$ from sequence (28), to have

$$
\left(\int_{0}^{1}\left|f(x)-f_{\nu_{1}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-4} \quad, \quad \nu_{1}>k_{0} \quad, \quad p_{\nu_{1}}>p
$$

Suppose that the numbers $k_{0}<\nu_{1}<\ldots<\nu_{q-1}$ and polynomials $Q_{\nu_{1}}(x), \ldots, Q_{\nu_{q-1}}(x)$ are already determined satisfying to the following conditions:

$$
\begin{gather*}
\left(\int_{0}^{1}\left|f(x)-\sum_{n=1}^{s} Q_{\nu_{n}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-4 s}, s \in[2, q-1] \tag{34}\\
\max _{N_{\nu_{n}} \leq m \leq M_{\nu_{n}}}\left(\int_{0}^{1}\left|\sum_{i=N_{\nu_{n}}}^{m} a_{n_{i}} \varphi_{n_{i}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-n}, n \in[2, q-1] \tag{35}
\end{gather*}
$$

Let a function $f_{\nu_{q}}(x), \nu_{q}>\nu_{q-1}$ be chosen from the sequence (28) such that

$$
\begin{equation*}
\left(\int_{0}^{1}\left|\left[f(x)-\sum_{j=1}^{q-1} Q_{j}(x)\right]-f_{\nu_{q}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-4(q+1)} \tag{36}
\end{equation*}
$$

Hence by (34) we obtain

$$
\begin{equation*}
\left(\int_{0}\left|f_{\nu_{q}}\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-q-1} \tag{37}
\end{equation*}
$$

From the conditions(31), (32), (37) follows that

$$
\begin{gather*}
\left(\int_{0}^{1}\left|f(x)-\sum_{n=1}^{q} Q_{\nu_{n}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-4 q}, \tag{38}\\
\max _{N_{\nu_{q}} \leq m \leq M_{\nu_{q}}}\left(\int_{0}^{1}\left|\sum_{i=N_{\nu_{n}}}^{m} a_{n_{i}} \varphi_{n_{i}}(x)\right|^{p} \mu(x) d x\right)^{\frac{1}{p}}<2^{-q}, \tag{39}
\end{gather*}
$$

Then we obtain that the series

$$
\sum_{k=1}^{\infty} \delta_{k} a_{k} \varphi_{k}(x) \quad \text { (see (29) and (33)) }
$$

where

$$
\delta_{k}=\left\{\begin{array}{l}
1, \text { if } k=n_{i}, \text { where } i=\bigcup_{q=1}^{\infty}\left[N_{\nu_{q}}, M_{\nu_{q}}\right], \\
0, \text { otherwise } .
\end{array}\right.
$$

converges to $f(x)$ in the $L_{\mu}^{p}(0,1)$ - norm.
Theorem is proved.

3 Conclusion

We prove that for any $0<\delta<1$ there exists a measurable function $\mu(x), 0<\mu(x) \leq 1$, with $|\{x \in[0,1] ; \mu(x) \neq 1\}|<\delta$, and a series in the Walsh system $\left\{\varphi_{n}\right\}$ of the form

$$
\sum_{n=0}^{\infty} a_{n} \varphi_{n}, \quad \text { with } \quad\left|a_{n}\right| \searrow 0
$$

such that for any $p \geq 1$ and any function $f \in L_{\mu}^{p}(0,1)$ one can fined subseries of above series converging to f in $L_{\mu}^{p}(0,1)$.

Acknowledgment

This work was supported by State Committee Science MES RA, in frame of the research project N SCS 13-1A313

Competing Interests

The authors declare that no competing interests exist.

References

[1] Grigorian MG. On the representation of functions by orthogonal series in weighted L^{p} spaces. Studia. Math. 1999;134(3):207-216.
[2] Grigorian M. G. Universal or quasiuniversal in $L_{[0,1]}^{p}$ orthogonal series. Journal of Contemporary Mathematical Analysis. 2000;35(4):44-64.
[3] Grigorian MG. On the L_{μ}^{p}-strong property of orthonormal systems. Matem. Sbornik. 2003;194(10):1503-1532.
[4] Grigorian MG, Robert E. Zink Subsystems of the Walsh orthogonal system whose multiplicative completions are quasibases for $L_{[0,1]}^{p}, 1 \leq p<\infty$. Proc. Amer. Math. Soc. 2002;131:1137-1149.
[5] Grigorian MG, Minasyan A. Representation of Functions in weighted spaces by series with monotone coefficients in the Walsh genrealized system. Applied Mathematics. 2013;4(11):612.
[6] Ivanov VI. Representation of functions by series in symmetric metric spaces without linear functionals [in Russian]. Trudy MIAN SSSR. 1989;189:34-77.
[7] Krotov VG. Representation of measurable functions by series with respect to Faber-Schauder system and universal series. Izv. AN. SSSR, Ser. Math. 1977;41(1):215-229.
[8] Men'shov DE. Sur la representation des fonctions measurables des series trigonometriques. Mat. Sbornik. 1941;9:667-692.
[9] Men'shov DE. On the partial sums of trigonometric series [in Russian]. Mat. Sbornik. 1947;20(2):197-238.
[10] Talalian AA. Representation of measurable functions by series [in Russian]. UMN. 1960;15(5):567-604.
[11] Ul'janov PL. Representation of functions by series and classes $\varphi(L)$ [in Russian]. UMN. 1972;25(2):3-52.
[12] Episkoposyan SA. On the existence of universal series by trigonometric system. Journal of Functional Analysis. 2006;230:169-183.
[13] Galoyan LN. On the convergence in the metric $L^{p}, p>1$ of negative order Cesaro means of Walsh- Fourier series Izvestie NAN Armenii. 2012;47(3):25-40.
[14] Melikbekyan RG. Representation of functions by Walsh's series with monotone coefficients. Journal of Mathematics Research. 2013;5(1):107-113.
[15] Golubov BI, Efimov AF, Skvartsov VA. Series and transformations of Walsh. Moskow, N; 1987.
[16] Paley RE. A. C. A remarkable set of orthogonal functions. Proc. London Math. Soc. 1932;34:241-279.
(C)2015 Grigoryan and Davtyan; This is an Open Access article distributed under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)
www.sciencedomain.org/review-history.php?iid=933\&id=6\&aid=8028

[^0]: *Corresponding author: E-mail: gmarting@ysu.am

