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Abstract
In this paper, we prove the existence of fixed points and demiclosed principle for total asymptotically
nonexpansive mappings in hyperbolic spaces. As a consequence, we obtain a 4−convergence
theorem for such mappings in hyperbolic spaces. Our results improve and extend some results in
the literature.
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1 Introduction
In this paper, we work in the setting of hyperbolic spaces introduced by Kohlenbach [1]. (X, d,W )
is called a hyperbolic space if (X, d) is a metric space and W : X × X × [0, 1] → X is a function
satisfying

(I) ∀x, y, z ∈ X, ∀λ ∈ [0, 1], d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y);
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(II) ∀x, y ∈ X, ∀λ1, λ2 ∈ [0, 1], d(W (x, y, λ1),W (x, y, λ2)) = |λ1 − λ2| · d(x, y);

(III) ∀x, y ∈ X, ∀λ ∈ [0, 1], W (x, y, λ) = W (y, x, (1− λ));

(IV ) ∀x, y, z, w ∈ X, ∀λ ∈ [0, 1], d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

If a metric space satisfies only (I), it coincides with the convex metric space introduced by Takahashi
[2]. The concept of hyperbolic space in [1] is more restrictive than the hyperbolic type introduced by
Goebel [3] since (I)–(III) are equivalent to (X, d,W ) being a space of hyperbolic type in [3]. But it
is slightly more general than the hyperbolic space defined by Reich [4] (see [1]). This class of metric
spaces in [1] covers all normed linear spaces, the Hilbert ball with the hyperbolic metric (see [5]),
Cartesian products of Hilbert balls, Hadamard manifolds (see [4, 6]), R-trees in the sense of Tits and
CAT(0) spaces in the sense of Gromov (see [7]). A thorough discussion of hyperbolic spaces and a
detailed treatment of examples can be found in [1] (see also [3-5]).

A hyperbolic space X is uniformly convex [8] if for u, x, y ∈ X, r > 0 and ε ∈ (0, 2] there exists a
δ ∈ (0, 1] such that

d

(
W (x, y,

1

2
), u

)
≤ (1− δ)r,

provided that d(x, u) ≤ r, d(y, u) ≤ r and d(x, y) ≥ εr.
A map η : (0,∞) × (0, 2] → (0, 1] is called modulus of uniform convexity if δ = η(r, ε) for given

r > 0. Moreover, η is monotone if it decreases with r (for a fixed ε), that is,

η(r2, ε) ≤ η(r1, ε), ∀r2 ≥ r1 > 0.

A subset C of a hyperbolic space X is convex if W (x, y, λ) ∈ C for all x, y ∈ C and λ ∈ [0, 1]. For
any x ∈ X, r > 0, the open (closed) ball with center x and radius r is denoted by U(x, r) (respectively
U(x, r)).

Let (X, d) be a metric space and let C be a nonempty subset of X. Recall that a mapping
T : C → C is said to be a ({νn}, {µn}, ζ)-total asymptotically nonexpansive mapping if there exist
nonnegative sequences {νn}, {µn}with νn → 0, µn → 0 and a strictly increasing continuous function
ζ : [0,∞)→ [0,∞) with ζ(0) = 0 such that

d(Tnx, Tny) ≤ d(x, y) + νnζ(d(x, y)) + µn, ∀n ≥ 1, x, y ∈ C. (1.1)

It is well known that each nonexpansive mapping is an asymptotically nonexpansive mapping and
each asymptotically nonexpansive mapping is a ({νn}, {µn}, ζ)-total asymptotically nonexpansive
mapping.

T : C → C is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

d(Tnx, Tny) ≤ Ld(x, y), ∀n ≥ 1, x, y ∈ C.

Recently, Kohlenbach and Leustean [9] proved the existence of fixed points and demiclosed
principle for asymptotically nonexpansive mappings in hyperbolic spaces. Later, Zhang and Cui
[10] obtained the existence of fixed points and demiclosed principle for mappings of asymptotically
nonexpansive type in hyperbolic spaces. Motivated by [9] and [10], our purpose of this paper is to
discuss the existence of fixed points and demiclosed principle for total asymptotically nonexpansive
mappings in hyperbolic spaces.

2 Preliminaries
Let {xn} be a bounded sequence in a hyperbolic space X. For x ∈ X, we define

r(x, {xn}) = lim sup
n→∞

d(x, xn).
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The asymptotic radius r({xn}) of {xn} is given by

r({xn}) = inf{r(x, {xn}) : x ∈ X}.

The asymptotic radius rC({xn}) of {xn} with respect to C ⊂ X is given by

rC({xn}) = inf{r(x, {xn}) : x ∈ C}.

The asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

The asymptotic center AC({xn}) of {xn} with respect to C ⊂ X is the set

AC({xn}) = {x ∈ C : r(x, {xn}) = rC({xn})}.

In 1976, Lim [11] introduced the concept of 4− convergence in a general metric space. Recall that
a sequence {xn} in X is said to 4− converge to x ∈ X if x is the unique asymptotic center of {un}
for every subsequence {un} of {xn}. In this case we call x the 4− limit of {xn}.

The following lemmas are important in our paper.

Lemma 2.1. [9] Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity. Then the intersection of any decreasing sequence of nonempty bounded
closed convex subsets of X is nonempty.

Lemma 2.2. [12,13] Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone
modulus of uniform convexity and let C be a nonempty closed convex subset of X. Then every
bounded sequence {xn} in X has a unique asymptotic center with respect to C.

Lemma 2.3. [12] Let (X, d,W ) be a uniformly convex hyperbolic space with monotone modulus of
uniform convexity η. Let x ∈ X and {αn} be a sequence in [a, b] for some a, b ∈ (0, 1). If {xn}
and {yn} are sequences in X such that lim supn→∞ d(xn, x) ≤ c, lim supn→∞ d(yn, x) ≤ c and
limn→∞ d(W (xn, yn, αn), x) = c for some c ≥ 0. Then

lim
n→∞

d(xn, yn) = 0.

Lemma 2.4. [14] Let {an}, {bn} and {cn} be sequences of nonnegative numbers such that

an+1 ≤ (1 + bn)an + cn, ∀n ≥ 1.

If
∑∞
n=1 bn <∞ and

∑∞
n=1 cn <∞, then limn→∞ an exists.

3 Main Results
In this section, we prove our main theorems.

Theorem 3.1. (Existence of fixed points for total asymptotically nonexpansive mappings in hyperbolic
spaces) Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone modulus
of uniform convexity η. Let C be a nonempty bounded closed convex subset of X. Then every
continuous total asymptotically nonexpansive mapping T : C → C has a fixed point.

Proof. For any y ∈ C, let

By := {b ∈ R+ : there exist x ∈ C and k ≥ 1 such that d(T iy, x) ≤ b for i ≥ k}.
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By is nonempty since diam(C) ∈ By. Define βy := inf By. For any θ > 0, there exists bθ ∈ By such
that bθ < βy + θ. Then there exist x ∈ C and k ≥ 1 such that

d(T iy, x) ≤ bθ < βy + θ, ∀i ≥ k. (3.1)

It is easy to see that βy ≥ 0. We consider the following two cases:

Case 1. βy = 0. Let ε > 0 and apply (3.1) with θ = ε
2
. Then there exist x ∈ C and k ≥ 1 such

that for all i, j ≥ k

d(T iy, T jy) ≤ d(T iy, x) + d(T jy, x) <
ε

2
+
ε

2
= ε,

which implies that {T iy} is a Cauchy sequence. Assume that T iy → z as i→∞ for some z ∈ C. By
the definition of T , we obtain

d(z, T iz) ≤ d(z, T 2iy) + d(T 2iy, T iz)

= d(z, T 2iy) + d(T iz, T iT iy)

≤ d(z, T 2iy) + d(z, T iy) + νiζ(d(z, T iy)) + µi → 0 as i→∞.

Thus T iz → z as i→∞. By the continuity of T , we get

Tz = T ( lim
i→∞

T iz) = lim
i→∞

T i+1z = z.

Hence, z ∈ F (T ).

Case 2. βy > 0. For any n ≥ 1, let

Cn :=
⋃
k≥1

⋂
i≥k

U

(
T iy, βy +

1

n

)
, Dn := Cn

⋂
C.

Taking θ = 1
n

in (3.1), there exist x ∈ C, k ≥ 1 such that x ∈
⋂
i≥k U(T iy, βy + 1

n
). Thus {Dn} is a

decreasing sequence of nonempty bounded closed convex subsets of X. By Lemma 1, we have

D :=
⋂
n≥1

Dn 6= ∅.

For any x ∈ D and θ > 0, let N ≥ 1 be such that 2
N
≤ θ. It follows that x ∈ CN and there exists a

sequence {xNn } ⊂ CN such that limn→∞ x
N
n = x. Let P ≥ 1 be such that d(x, xNn ) ≤ 1

N
for all n ≥ P

and let K ≥ 1 be such that xNP ∈
⋂
i≥K U(T iy, βy + 1

N
). Then for all i ≥ K, we have

d(T iy, x) ≤ d(T iy, xNP ) + d(xNP , x) ≤ βy +
1

N
+

1

N
≤ βy + θ. (3.2)

Now we are in the position to prove that any point of D is a fixed point of T. Let x ∈ D and assume by
contradiction that Tx 6= x. Then {T ix} does not converge to x as i → ∞ and so we can find ε > 0,
for any m0 ≥ 1, there exists m ≥ m0 such that

d(Tmx, x) ≥ ε. (3.3)

Without loss of generality, we assume that ε ∈ (0, 2]. Then ε
βy+1

∈ (0, 2] and there exists θy ∈ (0, 1]

such that

1− η
(
βy + 1,

ε

βy + 1

)
≤ βy − θy
βy + θy

.
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Taking θ =
θy
2

in (3.2), there exists K ≥ 1 such that

d(T iy, x) ≤ βy +
θy
2
, ∀i ≥ K. (3.4)

By the definition of T , there exists M0 such that if i ≥M0, then we have

d(T ix, T iz) ≤ d(x, z) + νiζ(d(x, z)) + µi

≤ d(x, z) +
θy
2
, ∀x, z ∈ C. (3.5)

By (3.3) with m0 = M0, there exists M ≥M0 such that

d(TMx, x) ≥ ε. (3.6)

Let i ≥ 1 be such that i ≥M +K. It follows from (3.4), (3.5) and (3.6) that

d(x, T iy) ≤ βy +
θy
2
< βy + θy;

d(TMx, T iy) = d(TMx, TMT i−My)

≤ d(x, T i−My) +
θy
2

≤ βy + θy;

d(TMx, x) ≥ ε =
ε

βy + θy
· (βy + θy) ≥ ε

βy + 1
· (βy + θy).

It follows from X is uniformly convex and η is monotone that

d(W (x, TMx,
1

2
), T iy) ≤

[
1− η

(
βy + θy,

ε

βy + 1

)]
(βy + θy)

≤
[
1− η

(
βy + 1,

ε

βy + 1

)]
(βy + θy)

≤ βy − θy
βy + θy

· (βy + θy)

= βy − θy.

Hence, there exist k := M+K and z := W (x, TMx, 1
2
) ∈ C such that for all i ≥ k, d(z, T iy) ≤ βy−θy.

It implies that βy − θy ∈ By, which contradicts with βy = inf By. Thus, x ∈ F (T ).

It is well known that one of the fundamental and celebrated results in the theory of nonexpansive
mappings is Browder’s demiclosed principle [15] which states that X is a uniformly convex Banach
space, C is a nonempty closed convex subset of X, and T : C → X is a nonexpansive mapping, then
I − T is demiclosed at 0, i.e., for any sequence {xn} in C if xn → x weakly and ‖(I − T )xn‖ → 0,
then x = Tx. In the following, we shall prove that a total asymptotically nonexpansive mapping in
a complete uniformly convex hyperbolic space X with monotone modulus of uniform convexity is
demiclosed. Let X be a hyperbolic space and let C be a nonempty closed convex subset of X. Let
{xn} be a bounded sequence in C. In what follows, we denote it by

{xn}⇀ ω if and only if Φ(ω) = inf
x∈C

Φ(x),

where Φ(x) := lim supn→∞ d(xn, x).
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Theorem 3.2. (Demiclosed principle for total asymptotically nonexpansive mappings in hyperbolic
spaces) Let (X, d,W ) be a complete uniformly convex hyperbolic space with monotone nodulus of
uniform convexity η. Let C be a nonempty closed and convex subset of X. Let T : C → C be a
uniformly L-Lipschitzian and ({µn}, {νn}, ζ)− total asymptotically nonexpansive mapping. Let {xn}
be a bounded sequence in C such that limn→∞ d(xn, Txn) = 0 and {xn} ⇀ p. Then we have
T (p) = p.

Proof. Since limn→∞ d(xn, Txn) = 0, by induction we can prove that

lim
n→∞

d(xn, T
mxn) = 0 for each m ≥ 1. (3.7)

In fact, it is obvious that, the conclusion is true for m = 1. Suppose the conclusion holds for m ≥ 1,
now we prove that it is also true for m+ 1. Indeed, since T is uniformly L-Lipschitzian, we have

d(xn, T
m+1xn) ≤ d(xn, T

mxn) + d(Tmxn, T
m+1xn)

≤ d(xn, T
mxn) + Ld(xn, Txn)→ 0 as n→∞.

Thus (3.7) is proved. Now for each x ∈ C and m ≥ 1, from (3.7) we have

Φ(x) := lim sup
n→∞

d(xn, x) = lim sup
n→∞

d(Tmxn, x). (3.8)

In (3.8), taking x = Tmp, we get

Φ(Tmp) = lim sup
n→∞

d(Tmxn, T
mp)

≤ lim sup
n→∞

[d(xn, p) + νmζ(d(xn, p)) + µm].

Letting m→∞ and taking superior limit on the both sides, we have

lim sup
m→∞

Φ(Tmp) ≤ Φ(p). (3.9)

We assume by contradiction that Tp 6= p. Then {Tmp} does not converge to p as m→∞, so we can
find ε0 > 0, for any k ≥ 1, there exists m ≥ k such that d(Tmp, p) ≥ ε0. We can assume ε0 ∈ (0, 2].
Then ε0

Φ(p)+1
∈ (0, 2] and there exists θ ∈ (0, 1] such that

1− η
(

Φ(p) + 1,
ε0

Φ(p) + 1

)
≤ Φ(p)− θ

Φ(p) + θ
. (3.10)

By the definition of Φ and (3.9), there exist N1,M1 ≥ 1 such that

d(p, xn) ≤ Φ(p) + θ, ∀n ≥ N1;

d(Tmp, xn) ≤ Φ(p) + θ, ∀n ≥ N1, m ≥M1.

Besides, there exists m ≥M1 such that

d(Tmp, p) ≥ ε0 =
ε0

Φ(p) + θ
· (Φ(p) + θ) ≥ ε0

Φ(p) + 1
· (Φ(p) + θ).

Since X is uniformly convex and η is monotone, by (3.10) we get

d(W (p, Tmp,
1

2
), xn) ≤

[
1− η

(
Φ(p) + θ,

ε0

Φ(p) + 1

)]
· (Φ(p) + θ)

≤ Φ(p)− θ
Φ(p) + θ

· (Φ(p) + θ)

= Φ(p)− θ.

Hence z := W (p, Tmp, 1
2
) ∈ C and z 6= p, which contradicts Φ(p) = infx∈C Φ(x). Thus Tp = p.
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Theorem 3.3. Let C be a nonempty closed and convex subset of a complete uniformly convex
hyperbolic space X with monotone modulus of uniform convexity η. Let Ti : C → C, i = 1, 2, be
uniformly L-Lipschitzian and ({ν(i)

n }, {µ(i)
n }, ζ(i))-total asymptotically nonexpansive mappings. Suppose

that F (T1)
⋂
F (T2) 6= ∅. For arbitrarily chosen x1 ∈ C, {xn} is defined as follows{

xn+1 = W (xn, T
n
1 yn, αn),

yn = W (xn, T
n
2 xn, βn),

(3.11)

where the following conditions are satisfied:

(i)
∑∞
n=1 ν

(i)
n <∞ and

∑∞
n=1 µ

(i)
n <∞, i = 1, 2;

(ii) there exist constants a, b ∈ (0, 1) such that {αn} ⊂ [a, b];

(iii) there exists a constant M∗ > 0 such that ζ(i)(r) ≤M∗r, r ≥ 0, i = 1, 2.

Then the sequence {xn} defined by (3.11) 4−converges to a common fixed point of T1 and T2.

Proof. Without loss of generality, we can assume that Ti : C → C both are ({νn}, {µn}, ζ)-total
asymptotically nonexpansive mappings, where νn = max{ν(i)

n , i = 1, 2}, µn = max{µ(i)
n , i = 1, 2}

and ζ = max{ζ(i), i = 1, 2}. It is easy to see that conditions (i) and (iii) are still satisfied. Now we
divide our proof into three steps.

Step 1. In the sequel, we shall show that

lim
n→∞

d(xn, p) exists for each p ∈ F (T1) ∩ F (T2). (3.12)

In fact, by conditions (1), (I) and (iii), one gets

d(yn, p) = d(W (xn, T
n
2 xn, βn), p)

≤ (1− βn)d(xn, p) + βnd(Tn2 xn, p)

≤ (1− βn)d(xn, p) + βn[d(xn, p) + νnζ(d(xn, p)) + µn]

≤ (1 + βnνnM
∗)d(xn, p) + βnµn (3.13)

and

d(xn+1, p) = d(W (xn, T
n
1 yn, αn), p)

≤ (1− αn)d(xn, p) + αnd(Tn1 yn, p)

≤ (1− αn)d(xn, p) + αn[d(yn, p) + νnζ(d(yn, p)) + µn]

≤ (1− αn)d(xn, p) + αn[(1 + νnM
∗)d(yn, p) + µn]. (3.14)

Combining (3.13) and (3.14), we have

d(xn+1, p) ≤ (1 + σn)d(xn, p) + ξn, ∀n ≥ 1, (3.15)

where σn = αnνnM
∗(1 + βn + βnνnM

∗) and ξn = αnµn(1 + βn + βnνnM
∗). Furthermore, using the

condition (i), we get

Σ∞n=1νn <∞ and Σ∞n=1µn <∞, (3.16)

a combination of (3.15), (3.16) and Lemma 4 shows that (3.12) is proved.

Step 2. We claim that

lim
n→∞

d(xn, Tixn) = 0, i = 1, 2. (3.17)
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In fact, it follows from (3.12) that limn→∞ d(xn, p) exists for each given p ∈ F (T1) ∩ F (T2). Without
loss of generality, we assume that

lim
n→∞

d(xn, p) = c ≥ 0. (3.18)

By (3.13) and (3.18), one has

lim inf
n→∞

d(yn, p) ≤ lim sup
n→∞

d(yn, p) ≤ lim
n→∞

[(1 + βnνnM
∗)d(xn, p) + βnµn] = c. (3.19)

Noting

d(Tn1 yn, p) = d(Tn1 yn, T
n
1 p)

≤ d(yn, p) + νnζ(d(yn, p)) + µn

≤ (1 + νnM
∗)d(yn, p) + µn, ∀n ≥ 1,

by (3.19) we obtain

lim sup
n→∞

d(Tn1 yn, p) ≤ c. (3.20)

Besides, by (3.15) we get

d(xn+1, p) = d(W (xn, T
n
1 yn, αn), p) ≤ (1 + σn)d(xn, p) + ξn,

which yields that

lim
n→∞

d(W (xn, T
n
1 yn, αn), p) = c. (3.21)

Now by (3.18), (3.20), (3.21) and Lemma 3, we have

lim
n→∞

d(xn, T
n
1 yn) = 0. (3.22)

On the other hand, we have

d(xn, p) ≤ d(xn, T
n
1 yn) + d(Tn1 yn, p)

≤ d(xn, T
n
1 yn) + d(yn, p) + νnM

∗d(yn, p) + µn

= d(xn, T
n
1 yn) + (1 + νnM

∗)d(yn, p) + µn,

which implies that lim infn→∞ d(yn, p) ≥ c. Combining with (3.19), it yields that

lim
n→∞

d(yn, p) = c,

that is,

lim
n→∞

d(W (xn, T
n
2 xn, βn), p) = c.

By Lemma 3 we can also have that

lim
n→∞

d(xn, T
n
2 xn) = 0. (3.23)

By virtue of (3.23), we have

d(yn, xn) = d(W (xn, T
n
2 xn, βn), xn)

≤ βnd(Tn2 xn, xn)→ 0 as n→∞. (3.24)
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Combining (3.22) and (3.24), one obtains

d(xn, T
n
1 xn) ≤ d(xn, T

n
1 yn) + d(Tn1 yn, T

n
1 xn)

≤ d(xn, T
n
1 yn) + d(xn, yn) + νnζ(d(xn, yn)) + µn

≤ d(xn, T
n
1 yn) + (1 + νnM

∗)d(xn, yn)

+µn → 0 as n→∞. (3.25)

This jointly with (3.22) yields that

d(xn+1, xn) = d(W (xn, T
n
1 yn, αn), xn)

≤ αnd(Tn1 yn, xn)→ 0 as n→∞. (3.26)

Now by (3.23), (3.25) and (3.26), for each i = 1, 2, we get

d(xn, Tixn) ≤ d(xn, xn+1) + d(xn+1, T
n+1
i xn+1) + d(Tn+1

i xn+1, T
n+1
i xn)

+d(Tn+1
i xn, Tixn)

≤ (1 + L)d(xn, xn+1) + d(xn+1, T
n+1
i xn+1)

+Ld(Tni xn, xn)→ 0 as n→∞.

Therefore, (3.17) is proved.

Step 3. Now we are in a position to prove the 4−convergence of {xn}. Since {xn} is bounded,
by Lemma 2, it has a unique asymptotic center AC({xn}) = {x∗}. Let {un} be any subsequence
of {xn} with AC({un}) = {u}. Since limn→∞ d(xn, T1xn) = limn→∞ d(xn, T2xn) = 0, it follow from
Theorem 2 that u ∈ F (T1) ∩ F (T2). By the uniqueness of asymptotic centers, we get that x∗ = u. It
implies that x∗ is the unique asymptotic center of {un} for each subsequence {un} of {xn}, that is,
{xn} 4−converges to x∗ ∈ F (T1) ∩ F (T2). The proof is completed.

Example 1. Let R be the real line with the usual norm | · | and let C = [−1, 1]. Define two
mappings T1, T2 : C → C by

T1(x) =

{
−2 sin x

2
, x ∈ [0, 1],

2 sin x
2
, x ∈ [−1, 0),

and

T2(x) =

{
x, x ∈ [0, 1],
−x, x ∈ [−1, 0).

It is proved in [16, Example 3.1] that both T1 and T2 are asymptotically nonexpansive mappings with
kn = 1, ∀n ≥ 1. Therefore, they are total asymptotically nonexpansive mappings with νn = µn =
0, ∀n ≥ 1, ζ(t) = t, ∀t ≥ 0. Moreover, they are uniformly L-Lipschitzian mappings with L = 1.
F (T1) = {0} and F (T2) = {x ∈ C : 0 ≤ x ≤ 1}. Let

αn =
n

2n+ 1
, βn =

n

3n+ 1
∀n ≥ 1.

Therefore, the conditions of Theorem 3 are fulfilled.

4 Conclusion
The major findings of this study are the proofs of the existence of fixed points and demiclosed principle
for total asymptotically nonexpansive mappings in hyperbolic spaces.
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