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ABSTRACT
Incorrect decision-making in financial institutions is very likely to 
cause financial crises. In recent years, many studies have demon
strated that artificial intelligence techniques can be used as alter
native methods for credit scoring. Previous studies showed that 
prediction models built using hybrid approaches perform better 
than single approaches. In addition, feature selection or instance 
selection techniques should be incorporated into building predic
tion models to improve the prediction performance. In this study, 
we integrate feature selection, instance selection, and decision tree 
techniques to propose a new approach to predicting credit 
approval. Experimental results obtained using the survey data 
show that our proposed approach is superior to the other five 
traditional machine learning approaches in the measures. In addi
tion, our approach has a lower cost effect than the traditional five 
methods. That is, the proposed approach generates fewer costs, 
such as money loss, than the traditional five approaches.
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Introduction

Credit-risk evaluation decisions are important for the financial institutions 
involved due to the high level of risk associated with wrong decisions. The ability 
to accurately predict credit failure is a very important issue in financial decision- 
making. Incorrect decision-making in financial institutions is very likely to cause 
financial crises (Tsai 2014). The purpose of credit scoring is to classify the 
applicants into two types: applicants with good credit and applicants with bad 
credit. Even a 1% improvement in the accuracy of the credit scoring of applicants 
with bad credit can greatly decrease the losses of financial institutions (Hand and 
Henley 1997).

In recent years, many studies have demonstrated that artificial intelligence (AI) 
techniques can be used as alternative methods for credit scoring, such as artificial 
neural networks (ANN) (Guotai, Abedin, and Moula 2017; Tsai 2014; Wang et al. 
2011), decision trees (DT) (Tsai 2014; Wang et al. 2011), and support vector 
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machines (SVM) (Chen and Li 2014; Zhong et al. 2014). Previous studies showed 
that prediction models built using hybrid approaches, such as classifiers with 
clustering, perform better than single approaches (classifiers only) (Hsieh 2005; 
Luo, Cheng, and Hsieh 2009; Ping and Yongheng 2011). Moreover, some previous 
studies revealed that feature selection (Catal and Diri 2009; Lee 2009; Saeys, Inza, 
and Larrañaga 2007; Tsai 2009; Tsai and Hsiao 2010) or instance selection (Sun 
and Li 2011; Tsai and Cheng 2012) should be incorporated into building predic
tion models to improve prediction performance.

In this study, we propose a new approach, integrating feature selection, instance 
selection, and classifier to build a prediction model for credit approval. The 
proposed framework is shown in Figure 1. Its process is described as follows. 
First, a measure (gain ratio) is used for feature selection. Second, a clustering 
method, expectation maximization (EM), is applied to cluster training dataset into 
k clusters in advance. Finally, a classification method, called the C4.5 algorithm, is 
used to build k decision tree classifiers for k clusters of instances.

In the experiment, we use measures named precision, true positive rate 
(TPR), accuracy, and F1 to evaluate the performance difference between the 
proposed approach and five traditional machine learning approaches, DT 
(decision tree), MLP (multiple-layer perceptron), NB (naive Bayes classifiers), 

Figure 1. The proposed framework.

1440 C.-H. WENG AND C.-K. HUANG



RF (random forest), and SVM (support vector machine). In addition, we also 
use the cost-effect to evaluate the cost-effectiveness analysis (CEA) of the 
proposed approach and the five traditional machine learning approaches 
(DT, MLP, NB, RF, and SVM).

The rest of this paper is organized as follows. Section 2 reviews related work. 
The proposed clustering-based decision tree is illustrated in Section 3. The 
evaluation criteria are illustrated in Section 4. Case studies based on real data 
are used to demonstrate the experimental results in Section 5. Section 6 
discusses the conclusions and offers suggestions for future work.

Related Work

Decision Tree Related Works

Classification is an important problem in the field of data mining. In classifica
tion, we are given a set of example records, called the training data set, with each 
record consisting of several attributes. One of the categorical attributes, called 
the class label, indicates the class to which each record belongs. The objective of 
classification is to utilize the training data set to build a model of the class label 
such that it can be used to classify new data whose class labels are unknown.

Many types of models have been built for classification, such as neural 
networks, statistical models, genetic models, and decision tree models (Han, 
Kamber, and Pei 2006). Classification trees, also called decision trees, are 
especially attractive in a data mining environment for several reasons 
(Breiman et al. 1984). First, due to their intuitive representation, the resulting 
classification model is easy for human beings to assimilate (Mehta, Agrawal, 
and Rissanen 1996). Second, decision trees do not require any parameter 
settings from the user and thus are especially suited for exploratory knowledge 
discovery. Third, decision trees can be constructed relatively quickly com
pared to other methods (Shafer, Agrawal, and Mehta 1996). Finally, the 
accuracy of decision trees is comparable or superior to that of other classifica
tion models (Lim, Loh, and Shih 1998).

Related to decision tree classifiers, Quinlan (1986) proposed a decision tree 
algorithm known as Iterative Dichotomiser 3 (ID3). Later, Quinlan (1987) 
proposed C4.5 (a successor of ID3), which became a benchmark work to 
which newer supervised learning algorithms are often compared. Breiman 
et al. (1984) proposed the classification and regression tree (CART) algorithm, 
which describes the generation of binary decision trees. Other algorithms for 
decision tree induction include SLIQ (Mehta, Agrawal, and Rissanen 1996), 
SPRINT (Shafer, Agrawal, and Mehta 1996), BOAT (Gehrke et al. 1999) and so 
on. The efficiency of existing decision tree algorithms, such as ID3, C4.5, and 
CART, has been well established for relatively small data sets. The SPRINT 
and SLIQ algorithms can both handle categorical and continuous valued 
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attributes and are also suitable for very large training sets. The BOAT algo
rithm can be used for incremental updates. That is, BOAT can take new 
insertions and deletions for the training data and update the decision tree to 
reflect these changes (Han, Kamber, and Pei 2006).

An attribute selection measure is a heuristic for selecting the splitting 
criterion that separates a given data partition of class-labeled training tuples 
into individual classes. The presence of redundant attributes does not 
adversely affect the accuracy of decision trees. An attribute is redundant if it 
is strongly correlated with another attribute in the data. One of the two 
redundant attributes is not used for splitting once the other attribute has 
been chosen. However, if the data set contains many irrelevant attributes, 
i.e., attributes that are not useful for the classification task, then some of these 
may be accidentally chosen during the tree-growing process, resulting in 
a decision tree that is larger than necessary (Tan, Steinbach, and Kumar 2006).

Clustering methods are used to improve the accuracy of decision trees by 
eliminating the irrelevant attributes. Pushpalatha and Rajalakshmi (2018) 
analyzed the importance of attribute selection techniques in a credit approval 
dataset. According to their study, logistic regression with the CFSSubsetEval 
attribute selection method yields better performance when compared to other 
techniques. Pristyanto, Adi, and Sunyoto (2019) proposed a proper feature 
selection model for increasing the accuracy of specific classifier models by 
comparing several existing feature selection models and some classifiers.

The related studies about the development or improvement for the classi
fication techniques are of abundance. Due to space limitation, the researches 
of Ngai, Xiu, and Chau (2009) and Ngai et al. (2011) provide the literature 
review for the classification topic.

Clustering Related Works

The k-means (KM) approach has been widely used in pattern recognition 
problems. Several variations and improvements to the original algorithm have 
been made. MacQueen’s (1967) k-means algorithm is widely used because of 
its simplicity. This algorithm has been shown to converge to a local minimum 
(Selim and Ismail 1984). Elsewhere, it has been shown that there is no 
guarantee of optimal clustering, since the convergence depends on the initial 
seeds selected (Looney 2002). The k-means algorithm, however, is not con
sidered to be the best choice for clustering due to its poor time performance 
and other requirements. It typically requires that clusters should be spherical, 
that the data should be free of noise and that its operation should be properly 
initialized (Estivill-Castro and Yang 2004).

Expectation maximization (EM) (Dempster, Laird, and Rubin 1977) is an 
improved version of the k-means algorithm, with better performance. It is 
a statistical technique for maximum likelihood estimation using mixed 
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models. The EM algorithm is the most frequently used technique for estimat
ing class conditional probability density functions (PDF) (Abd-Almageed, El- 
Osery, and Smith 2003).

EM clusters data in a manner different than in the k-means method. Unlike 
distance-based or hard membership algorithms (such as k-Means), EM is 
known to be an appropriate optimization algorithm for constructing proper 
statistical models of data (Bradley and Fayyad 1998). However, convergence to 
a local rather than the global optima is a problem arising due to its iterative 
nature. This means that the method is sensitive to the initial conditions, and 
thus not robust. To overcome the initialization problem, several methods for 
determining ‘good’ initial parameters for EM have been suggested, mainly 
based on sub-sampling, voting, and two-stage clustering (Meila and 
Heckerman 1998).

EM aims at finding clusters such that the maximum likelihood of each 
cluster’s parameters is obtained. EM starts with an initial estimate for the 
missing variables and iterates to find the maximum likelihood (ML) for these 
variables. Maximum likelihood methods estimate the parameters by values 
that maximize the sample’s probability for an event. EM is typically used with 
mixture models. The goal of the EM algorithm is to maximize the overall 
probability or likelihood of the data, given the (final) clusters. Unlike the 
classic implementation of k-means clustering, the general EM algorithm can 
be applied to both continuous and categorical variables (Bradley, Fayyad, and 
Reina 1998).

The related research about the development or improvement for the classi
fication techniques is abundant. Due to space limitation, the studies of Levin 
(2015), Reddy and Ussenaiah (2012), and Xu and Tian (2015) provide the 
literature review for the clustering topic.

Credit Scoring

The purpose of credit scoring is to classify the applicants into two types: 
applicants with good credit and applicants with bad credit. Applicants with 
good credit are very likely to repay their financial obligation. Those with bad 
credit have a high possibility of defaulting. The accuracy of credit scoring is 
critical to financial institutions’ profitability. Even a 1% improvement in the 
accuracy of credit scoring of applicants with bad credit can greatly decrease the 
losses of financial institutions (Hand and Henley 1997).

Credit scoring was originally evaluated subjectively according to personal 
experiences. However, with the tremendous increase of applicants, it is impos
sible to conduct the work manually. Statistical techniques and artificial intelli
gence (AI) techniques, which are the two major categories of automatic credit 
scoring techniques, have been investigated in prior studies (Huang et al. 2004). 
In addition, Huang et al. (2004) found that AI techniques are superior to 
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statistical techniques in dealing with credit scoring problems, especially for 
nonlinear pattern classification. Muniyandi, Rajeswari, and Rajaram (2012) 
proposed an anomaly detection method using “k-Means + C4.5,” a method to 
cascade k-means clustering and C4.5 decision tree methods for classifying 
anomalous and normal activities in a computer network.

In recent years, many studies have demonstrated that AI techniques, such as 
artificial neural networks (ANN) (Chang and Yeh 2012; Hájek 2011; Tsai 2014; 
Wang et al. 2011), stochastic gradient boosting (Orlova 2021), decision trees 
(DT) (Inyaem and Chuaytem 2020; Tsai 2014; Wang et al. 2011), ensemble 
model (Nalić, Martinović, and Žagar 2020; Zhang et al. 2021), and support 
vector machines (SVM) (Chen and Li 2014; Kim and Ahn 2012; Tsai 2014; 
Wang et al. 2011; Wang and Ma 2012; Yeh, Lin, and Hsu 2012; Zhong et al. 
2014) can be used as alternative methods for credit scoring. For completely 
understanding the previous studies, the survey of Dastile, Celik, and Potsane 
(2020) proffers the literature review with respect to this issue.

Table 1 compares hybrid learning models related to credit rating techniques 
and evaluation methods. In the related works, previous hybrid models are 
generally compared with single machine learning techniques to make the final 
conclusion.

From the above discussion, we know that (1) hybrid data mining 
approaches are popular for building prediction models (classifiers); (2) feature 
selection techniques are integrated for building classifiers; and (3) instance 
selection techniques are integrated for building classifiers. However, feature 
selection and instance selection techniques are not integrated together for 
building prediction models (classifiers).

Table 1. Comparison of works.
Work Techniques Evaluation

Chen and Li (2010) Feature selection (FS) + Classifiers (SVM) Accuracy and error rates
Hsieh (2005) Clustering (KM) + Classification (ANN) Accuracy and error rates
Hsieh and Hung (2010) Clustering (KM) + Classification (ANN) Association rules for bad 

credit status
Huang, Chen, and Wang (2007) Feature selection (FS) + Classifiers (SVM) Accuracy 

rates
Huysmans et al. (2006) Classification + Clustering (Self-Organizing Map, 

SOM)
Accuracy rates

Koutanaei, Sajedi, and 
Khanbabaei (2015)

Feature selection (FS) + Classifiers Accuracy and error rates

Lee et al. (2002) Classification + Classification Accuracy and error rates
Luo, Cheng, and Hsieh (2009) Classifiers Accuracy rates
Malhotra and Malhotra (2002) Classification + Classification Accuracy rates
Ping and Yongheng (2011) Feature selection (FS) + Classifiers (SVM) Accuracy rates
Zhao et al. (2015) Instance selection (IS) + Classifiers (Multilayer 

perceptron, MLP)
Error rates

Pristyanto, Adi, and Sunyoto 
(2019)

Feature selection (FS) + Classifiers Accuracy rates
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In general, we comprehend that a data-driven approach is sensitive to the 
distribution of datasets. Hence, there is no any best machine learning algo
rithm to outperform other algorithms. Researchers attempt to use different 
data-preprocessing strategies to remedy the problem. The first technique, 
feature selection, is to reckon the level of feature representativeness for 
distinguishing higher discriminative features. The second, instance selection, 
is to reduce the size of datasets and filter out noises or outliers from datasets. 
However, the past studies only employ one technique to develop their research 
models in the field of credit scoring. Therefore, this study adopts both respec
tive advantages to strengthen the power of data-driven approaches. The idea is 
similar to the mixing and matching strategy of COVID-19 vaccines. 
AstraZeneca and Moderna own their different ways to produce antibodies 
for COVID-19; therefore, governments adopt both to comprehensively ensure 
national health. The strategy of this study is the same as the above argument to 
assure that we could discover the best rules/patterns from any type of datasets 
by our proposed model.

In addition, the cost-effect criterion has not been considered in previous 
studies to evaluate the performance of prediction models. Therefore, we 
attempt to integrate feature selection, instance selection, and decision tree 
techniques to propose a new approach to predicting credit approval.

The Proposed Approach

In this study, we first use gain-ratio to determine clustering attributes (feature 
selection). After that, we apply the EM clustering technique to cluster the 
training data into k clusters (instance selection). For each cluster of the dataset, 
we use the C4.5 decision tree algorithm to build a decision tree classifier 
(prediction model construction). Finally, there are k C4.5 decision trees 
generated from k clusters of the dataset. That is, each cluster of the dataset is 
used to build a C4.5 decision tree. When predicting the class labels of the 
unseen data, the cluster IDs of the unseen data are first determined by the EM 
clustering algorithm (such as cluster ID = 2). The specific cluster’s C4.5 
decision tree (cluster ID = 2) is then used to predict the class labels of the 
unseen data.

Decision Tree

Quinlan (1986) proposed a decision tree algorithm, related decision tree 
classifiers known as ID3. Later, Quinlan (1987) proposed C4.5 (a successor 
of ID3), which became a benchmark work to which newer supervised learning 
algorithms are often compared. In this section, we illustrate two popular 
measures, information gain, and gain ratio, used to select the splitting 
attribute.
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Information Gain
ID3 uses information gain as its attribute selection measure. Let D, the parti
tion, be a training set of class-labeled tuples. Suppose the class label attribute 
has m distinct values defining m distinct classes, Ci (for i = 1, 2, . . ., m). Let Ci, D 
be the set of tuples of class Ci in D. Let |D| and |Ci, D| denote the number of 
tuples in D and Ci, D, respectively. Let node N represent the tuples of partition 
D. The attribute with the highest information gain is chosen as the splitting 
attribute for node N. This attribute minimizes the information needed to 
classify the tuples in the resulting partitions, reflecting the “impurity” in these 
partitions. The expected information needed to classify a tuple in D is given by 

InfoðDÞ ¼ �
Xm

i¼1
pilog2ðpiÞ (1) 

where pi is the probability that an arbitrary tuple in D belongs to class Ci and is 
estimated by |Ci, D|/|D|. A log function to base 2 is used, because the information 
is encoded in bits. Info(D) is just the average amount of information needed to 
identify the class label of a tuple in D. Info(D) is also known as the entropy of D.

Suppose we want to partition the tuples in D on some attribute A having 
v distinct values, {a1, a2, . . ., av}, as observed from the training data. Attribute 
A can be used to split D into v partitions or subsets, {D1, D2, . . ., Dv}, where Dj 
contains those tuples in D that have outcome aj of A. These partitions 
correspond to the branches grown from node N. After partitioning, it is 
quite likely that the partitions will be impure (e.g., may contain a collection 
of tuples from different classes rather than from a single class). How much 
more information do we still need (after the partitioning) in order to arrive at 
an exact classification? The amount is measured by 

InfoAðDÞ ¼
Xv

j¼1

Dj
�
�
�
�

Dj j
� InfoðDjÞ (2) 

where Djj j
Dj j is the weight of the jth partition; InfoAðDÞis the expected informa

tion required to classify a tuple from D based on the portioning by A. The 
smaller the amount of expected information required, the greater the purity of 
the partitions.

Information gain is defined as the difference between the original informa
tion requirement (i.e., based on just the proportion of classes) and the new 
requirement (i.e., obtained after portioning based on attribute A). That is

Gain(A) = Info(D) – InfoA(D). (3)
Gain(A) tells us how much would be gained by branching based on A. If 

attribute A holds the highest information gain, Gain(A), it is chosen as the 
splitting attribute at node N. That is, we partition based on attribute A for the 
“best classification,” so as to minimize the amount of information still required 
to finish classifying the tuples (i.e., minimum InfoA(D)).
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Gain Ratio
The information gain measure is biased toward tests with many outcomes. 
That is, it prefers to select attributes having a large number of values, such as 
customer_ID. The information required to classify data set D based on this 
partition would be Infocustomer_ID(D) = 0. Therefore, the information gained by 
partitioning based on this attribute is maximal. However, such a partitioning is 
useless for classification.

C4.5, a successor of ID3, uses an extension to the information gain known 
as the gain ratio, as an attempt to overcome this bias. A kind of normalization 
is applied to the information gain using a “split information” value defined 
analogously with Info(D) as 

SplitInfoAðDÞ ¼ �
Xv

j¼1

Dj
�
�
�
�

Dj j
� log2ð

Dj
�
�
�
�

Dj j
Þ (4) 

This value represents the potential information generated by splitting the 
training data set, D, into v partitions, corresponding to the v outcomes of 
a test on attribute A. Note that, for each outcome, the number of tuples having 
that outcome with respect to the total number of tuples in D is considered. 
This method differs from information gain, which measures the information 
with respect to classification that is acquired based on the same partitioning. 
The attribute with the maximum gain ratio is selected to be the splitting 
attribute. The gain ratio is defined as 

GainRatioðAÞ ¼
GainðAÞ

SplitInfoAðDÞ
(5) 

The Expectation Maximization (EM) Clustering Method

Clustering analysis is an important activity for dealing with large amounts of 
data. Automated clustering can be used to identify dense and sparse regions in 
an object space and, therefore, discover overall distribution patterns and 
interesting correlations among the data attributes. Therefore, clustering is 
also called data segmentation in some applications, because clustering parti
tions large data sets into groups according to their similarity.

The most well-known and commonly used partitioning methods are 
k-means, expectation maximization (EM), and their variations. The k-means 
algorithm takes the input parameter, k, and partitions a set of n objects into 
k clusters so that the resulting intra-cluster similarity is high but the inter-cluster 
similarity is low. The k-means algorithm is a popular clustering algorithm that 
requires a huge initial set to start the clustering. This is an unsupervised 
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clustering method that does not guarantee convergence. EM is an improvement 
of the k-means algorithm that offers better performance. It is a statistical 
technique for maximum likelihood estimation using mixture models.

The EM algorithm is an iterative statistical technique for maximum like
lihood estimation in settings with incomplete data. Given a model of data 
generation and data with some missing values, EM locally maximizes the 
likelihood of the model parameters and estimates the missing values. The 
steps for our implementation of EM are described below. Initially, we guess the 
mean and standard deviation. Then, the EM algorithm searches for an ML 
hypothesis through the following iterative scheme (Nasser, Alkhaldi, and Vert 
2006).

(1) Step 1 Initialization: initialize the hypothesis θ0 = (μ0
1, μ0

2, . . ., μ0
k)

θ0
k ¼ μ0

k (6) 

where k is the current number of Gaussians; θ0 is the estimate at the 0th 
iteration; μ is the mean.

(1) Step 2 Expectation step: estimate the expected values of the hidden 
variables zij (mean and standard deviation) using the current hypothesis 
θt = (μt

1, μt
2, . . ., μt

k)

EðzikÞ ¼
exp½� ðxi� μt

kÞ
2

2σ2 �

PK

j¼1
exp½�

ðxi� μt
jÞ

2

2σ2 �

(7) 

where t is the number of iterations; E(zik) is the expected value for the hidden 
variables (namely mean and standard deviation); k is the dimension; μ is the 
mean; σ is the standard deviation.

(1) Step 3 Maximization step: provide a new estimate of the parameters.

μtþ1
k ¼

Pn

i¼1
EðzikÞxi

Pn

i¼1
EðzikÞ

(8) 

(1) Step 4 Convergence step: if ||θt+1− θt|| < e, stop (finish iteration); 
otherwise, go to step 2.
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The Proposed Framework

The proposed framework is shown in Figure 1. The proposed framework 
involves three phases. We introduce a clustering-based decision tree (CBDT) 
algorithm to implement the proposed framework as shown in Figure 2. In the 
first phase, the measure (gain ratio) is used to evaluate features (attributes) for 
feature selection. We rank important features according to the measure (gain 
ratio). In the second phase, the clustering approach (EM) is used to cluster 
instances into different clusters for instance selection. In the third phase, the 
C4.5 decision tree method is employed to build prediction models (decision 
trees) for each cluster determined in the previous phase for prediction model 
construction.

(1) Phase 1. Determine the clustering attributes:

For training data, we first calculate Gain-Ratio values of all attributes and then 
select clustering attributes to cluster the data into k clusters in the second 
phase.

(1) Phase 2. Cluster the training data into k clusters by using the EM 
clustering method (see Figure 3):

The EM algorithm is used to cluster the data into k clusters based on the 
clustering attributes generated from Phase 1.

(1) Phase 3. Build decision trees for each cluster’s training data (see 
Figure 4):

After k clusters of training data are generated in Phase 2, we start to build 
decision trees for each cluster. Since we have clustered k clusters in Phase 2, we 
will build k decision trees. Note that, each decision tree is built from different 
clusters of training data.

The EM_Clustering subroutine is summarized in Figure 3. The steps for our 
implementation of EM_Clustering are as follows. The EM_Clustering subrou
tine includes two parameters, D and clustering_attributes. We refer to D as 
a data partition. Initially, a complete set of training records describes the 
records. The clustering_attributes specify the attribute that “best” discrimi
nates the given records according to class.

The EM_Clustering subroutine starts with an initial guess for the mean and 
standard deviation from the Data partition (D) according to clustering_attributes 
(step 1). The recursive clustering stops only when ||θt+1− θt|| < e (step 5). 
Otherwise, the recursive clustering repeats the Expectation step and 
Maximization step. The expected values of the hidden variables (mean and 
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standard deviation) in the expectation step are estimated using the current 
hypothesis (step 3). The maximization step provides a new estimate of the 
parameters (step 4).

The decision tree algorithm, C4.5, adopts a greedy approach in which 
decision trees are constructed in a top-down recursive divide-and-conquer 
manner. Most algorithms for decision tree induction also follow such a top- 
down approach, which starts with a set of records and their associated class 

Figure 2. The CBDT algorithm.
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labels. The training set is recursively partitioned into smaller subsets as the tree 
is being built. A basic decision tree algorithm is summarized in Figure 4. It is 
quite straightforward. The strategy is as follows.

The Generate_Decision_Tree subroutine has three parameters: D, attribute_
list, and Attribute_selection_method. We refer to D as a data partition. Initially, 
it is the complete set of training records describing the records. 
Attribute_selection_method specifies a heuristic procedure for selecting the 
attribute that “best” discriminates between the given records according to class.

The tree starts as a single node, N, which represents the training records in 
D (step 1). The partition of class-labeled training records at node N is the set of 
records following a path from the root of the tree to node N. The set is 
sometimes referred to in the literature as the family of records at node N. 
The recursive partitioning process stops only when any one of the following 
terminating conditions is true: (1) if the records in D are all of the same class, 
then node N becomes a leaf and is labeled with that class (steps 2 and 3); (2) 
there are no remaining attributes on which the records may be further por
tioned (step 4). In this case, majority voting is employed (step 5). This involves 

Figure 3. EM_Clustering Subroutine.
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Figure 4. Generate_Decision_Tree Subroutine.
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converting node N into a leaf and labeling it with the most common class in D; 
(3) there are no records for a given branch, that is, a partition Dj is empty (step 
12). In this case, a leaf is created with the majority class in D (step 13).

Step 6 utilizes the Attribute_selection_method to determine the splitting 
criterion. The splitting criterion tells us which attribute to test at node N by 
determining the “best” way to separate or partition the records in D into 
individual classes. Step 7 labels node N with the splitting criterion. A branch is 
grown from node N for each outcome of the splitting criterion. The records in 
D are partitioned accordingly (steps 10 to 11).

Experimental Results

We conducted several experiments to evaluate the proposed approach. Three 
credit datasets (German credit data, Australian credit approval, and credit- 
approval), which were obtained from the UCI machine learning repository 
(Dua and Graf, 2019), are used for evaluating the performance of the proposed 
approach.

For each run of cross-validation, we first apply the C4.5 decision tree 
algorithm to build a single decision tree for the baseline model. In addition, 
there are several machine learning methods used to compare the proposed 
CBDT approach. These methods are MLP, NB, RF, and SVM. The five 
methods, including DT, MLP, NB, RF, and SVM, were implemented to 
build prediction models by using Python language. The two hybrid 
approaches, feature selection and instance selection (EM method), were imple
mented by using SQL Server BI.

Furthermore, we also investigate if two hybrid approaches (feature selection 
and instance selection) could improve the prediction performance of the other 
three methods (MLP, NB, and SVM). Since RF (Random Forest) is an ensem
ble method, we would not integrate two hybrid approaches (feature selection 
and instance selection) into RF method. Therefore, we would generate three 
new methods (CBMLP, CBNB, and CBSVM) from three methods (MLP, NB, 
and SVM) integrated with two hybrid approaches (feature selection and 
instance selection).

Comparisons of six approaches are listed in Table 2. The parameter settings 
used to construct the prediction models (CBDT) are shown in Table 3.

Evaluation Criteria

The confusion matrix is a useful tool for analyzing how well the classifier can 
recognize tuples of different classes. A confusion matrix for two classes is 
shown as Table 4. Given two classes, we can talk in terms of positive tuples 
versus negative tuples. True positives refer to the positive tuples that were 
correctly labeled by the classifier, while true negatives are the negative tuples 
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that were correctly labeled by the classifier. False positives are the negative 
tuples that were incorrectly labeled. Similarly, false negatives are the positive 
tuples that were incorrectly labeled.

TP: the number of true positives; FP: the number of false positives;
TN: the number of true negatives; FN: the number of false negatives.
The true positive rate (TPR) is the proportion of positive tuples that are 

correctly identified. The accuracy of a classifier on a given test dataset is 
indicated by the percentage of test dataset tuples that are correctly classified 
by the classifier. Recall, referred to as the true positive rate (TPR), measures the 
fraction of positive examples correctly predicted by the classifier. Precision 
determines the fraction of records, actually turning out to be positive in the 
group that the classifier has declared as a positive class. Recall (TPR) and 
Precision are summarized into another metric known as the F1 measure. These 
measures are defined as follows (Tan, Steinbach, and Kumar 2006): 

Recall ¼ TPR ¼
TP

TP þ FN
(9) 

Pr ecision ¼
TP

TPþ FP
(10) 

Table 2. Comparison of the six approaches.
Approaches Features selection Instances selection Prediction model

DT None None C4.5
MLP None None Multiple Layer perceptron
NB None None Naive Bayes classifier
RF None None Random Forest
SVM None None Support Vector Machine
CBDT (this study) Gain-ratio EM C4.5

Table 3. Parameter settings of the proposed CBDT model.
Aim Model Parameters

Clustering EM Cluster_Count = 2
Clustering_Method = 1 (EM)
Mininmum_support = default
Modeling_Cardinality = default
Stoping_Tolerance = default

Prediction C4.5 Complexity_Penalty = default
Mininmum_support = default
Score_Method = default
Split_Method = default

Table 4. Confusion matrix for positive and negative tuples.
Predicted Class

Actual Class C1 (P) C2 (N)
C1 (P) True Positives (TP) False Negatives (FN)
C2 (N) False Positives (FP) True Negatives (TN)
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Accuracy ¼
ðTP þ TNÞ

ðTP þ FP þ FN þ TNÞ
(11) 

F1 ¼
2� Recall � Pr ecision

Recall þ Pr ecision
(12) 

In this study, we also apply cost-effectiveness analysis (CEA), which compares 
the relative costs and outcomes (effects) to evaluate the performance. A cost 
matrix is shown in Table 5. The cost effect measure is defined as follows. 

CostEffect ¼
ðTP � TPCþ FP� FPC þ FN � FNC þ TN � TNCÞ

ðTPþ FPþ FN þ TNÞ
(13) 

TPC: the cost of true positives; FPC: the cost of false positives;
TNC: the cost of true negatives; FNC: the cost of false negatives.
In the experiment, we use the measures named Precision, TPR, F1, and 

Accuracy to evaluate the performance differences between the proposed CBDT 
approach and the other five approaches listed in Table 2. Moreover, we also 
apply cost-effectiveness analysis (CEA) in this study. A cost matrix (see Table 
6) is provided on the Statlog (German credit data) dataset website. The rows 
represent the actual classification and the columns represent the predicted 
classification. It is worse to classify a customer as good when they are bad 
(cost = 5) than it is to classify a customer as bad when they are good (cost = 1).

Statlog (German Credit Data) Dataset

There are 1000 instances in the German-credit-data dataset. This file has 
been edited, and several indicator variables are added to make it suitable for 
algorithms that cannot cope with categorical variables. Several attributes 
that are ordered categorically (such as attribute 17) have been coded as 
integers.

Table 5. Cost matrix.
Predicted Class

P N

Actual Class P TPC FNC
N FPC TNC

Table 6. Cost matrix for credit approval.
Predict

P(Good) N(Bad)

Actual P(Good) 0 1
N(Bad) 5 0
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Firstly, we compare the proposed CBDT approach with the other five 
methods (DT, MLP, NB, RF, and SVM) in prediction performance. The 
average experimental results compared with the other five methods for 
3-fold cross-validation are shown in Table 7. From Table 7, it can be seen 
that the proposed CBDT approach with F1 (0.92) has higher prediction 
performance than the other five methods. Besides, the proposed CBDT 
approach with Accuracy (0.89) has higher prediction performance than the 
other five methods. Please note that the proposed CBDT approach with 
CostEffect (0.28) has lower cost effect than the other five methods. It is very 
important to note that the proposed CBDT approach generates the lowest 
costs (such as money loss) among the six approaches.

Secondly, we investigate if two hybrid approaches (feature selection and 
instance selection) could improve the prediction performance of the other 
three methods (MLP, NB and SVM). The average experimental results com
pared with the three new methods (CBMLP, CBNB, and CBSVM) are shown 
in Table 8. From Table 8, it can be seen that the new method (CBSVM) which 
integrated with hybrid approaches (feature selection and instance selection) 
outperform than the original method (SVM) in measures (Precision, TPR, F1, 
Accuracy, and CostEffect).

Finally, we compare the proposed CBDT approach with the new methods 
(CBMLP, CBNB, and CBSVM) in prediction performance. The average 
experimental results compared with the three new methods (CBMLP, 
CBNB, and CBSVM) of the Statlog (German credit data) dataset for 3-fold 
cross-validation are shown in Table 9. From Table 9, it can be seen that the 
proposed CBDT approach with F1 (0.92) still has higher prediction perfor
mance than the other five methods. Besides, the proposed CBDT approach 

Table 7. The average experiment results compared with the other 5 methods.
Method Precision TPR/Recall F1 Accuracy CostEffect

CBDT 0.93 0.91 0.92 0.89 0.28
DT 0.92 0.84 0.88 0.84 0.35
MLP 0.74 0.96 0.84 0.73 1.24
NB 0.84 0.80 0.82 0.75 0.69
RF 0.79 0.94 0.86 0.78 0.91
SVM 0.85 0.94 0.89 0.83 0.67

Table 8. The average experiment results of the new three methods.
Method Precision TPR F1 Accuracy CostEffect

CBMLP (MLP) 0.74 
(0.74)

0.97 
(0.96)

0.84 
(0.84)

0.73 
(0.73)

1.24 
(1.24)

CBNB 
(NB)

0.80 
(0.84)

0.39 
(0.80)

0.53 
(0.82)

0.50 
(0.75)

0.78 
(0.69)

CBSVM 
(SVM)

0.86 
(0.85)

0.96 
(0.94)

0.91 
(0.89)

0.86 
(0.83)

0.58 
(0.67)
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with Accuracy (0.89) still has higher prediction performance than the other 
three methods. Please note that the proposed CBDT approach with CostEffect 
(0.28) still has lower cost effect than the other three methods.

Statlog (Australian Credit Approval) Dataset

There are 690 instances in the Australian-credit-approval dataset. This file 
concerns credit card applications. All attribute names and values have been 
changed to meaningless symbols to protect the confidentiality of the data. This 
dataset is interesting because there is a good mix of attributes – continuous, 
nominal with small numbers of values, and nominal with larger numbers of 
values. That is. All attributes have been coded as integers.

Firstly, we compare the proposed CBDT approach with the other five 
methods (DT, MLP, NB, RF, and SVM) in prediction performance. The 
average experimental results compared with the other five methods for 
3-fold cross-validation are shown in Table 10. From Table 10, it can be seen 
that the proposed CBDT approach with F1 (0.92) has higher prediction 
performance than the other five methods. Besides, the proposed CBDT 
approach with Accuracy (0.93) has higher prediction performance than the 
other five methods. Please note that the proposed CBDT approach with 
CostEffect (0.20) has lower cost effect than the other five methods. It is very 
important to note that the proposed CBDT approach generates the lowest 
costs (such as money loss) among the six approaches.

Secondly, we investigate if two hybrid approaches (feature selection and 
instance selection) could improve the prediction performance of the other 
three methods (MLP, NB, and SVM). The average experimental results com
pared with the three new methods (CBMLP, CBNB, and CBSVM) are shown 
in Table 11. From Table 11, it can be seen that the new methods (CBSVM) 
which integrated with hybrid approaches (feature selection and instance 

Table 9. The average experiment results compared with the other three methods.
Method Precision TPR F1 Accuracy CostEffect

CBDT 0.93 0.91 0.92 0.89 0.28
CBMLP 0.74 0.97 0.84 0.73 1.24
CBNB 0.80 0.39 0.53 0.50 0.78
CBSVM 0.86 0.96 0.91 0.86 0.58

Table 10. The average experiment results compared with the other five methods.
Method Precision TPR/Recall F1 Accuracy CostEffect

CBDT 0.92 0.92 0.92 0.93 0.20
DT 0.81 0.90 0.85 0.85 0.56
MLP 0.76 0.51 0.46 0.60 1.18
NB 0.82 0.62 0.70 0.78 0.46
RF 0.76 0.87 0.80 0.79 0.83
SVM 0.64 0.67 0.57 0.71 0.87
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selection) outperforms than the original method (SVM) in measures 
(Precision, TPR, F1, Accuracy, and CostEffect). Besides, the new methods 
(CBNB) which integrated with hybrid approaches (features selection and 
instances selection) slightly outperforms than the original method (NB) in 
measures (Precision, F1, and CostEffect).

Finally, we compare the proposed CBDT approach with the new methods 
(CBMLP, CBNB, and CBSVM) in prediction performance. The average 
experimental results compared with the three new methods (CBMLP, 
CBNB, and CBSVM) of the Statlog (Australian credit approval) dataset 
for 3-fold cross-validation are shown in Table 12. From Table 12, it can 
be seen that the CBSVM approach with F1 (0.94) has higher prediction 
performance than the other five methods. Besides, the CBSVM approach 
with Accuracy (0.94) has higher prediction performance than the other 
three methods. Please note that the CBSVM approach slightly outperforms 
than the proposed CBDT approach. However, the proposed CBDT approach 
with CostEffect (0.20) still has lower cost effect than the other three 
methods.

Credit-approval Dataset

There are 690 instances in the credit-approval dataset. The data set infor
mation are shown as follows. This file concerns credit card applications. 
All attribute names and values have been changed into meaningless sym
bols to protect the confidentiality of the data. This dataset is interesting 
because there is a good mix of attributes – continuous, nominal with small 
numbers of values, and nominal with larger numbers of values. There are 
also a few missing values. After data preprocessing, only 653 instances 
remained and the categorical data would be transformed to be numerical 
data.

Table 11. The average experiment results of the new three methods.
Method Precision TPR F1 Accuracy CostEffect

CBMLP (MLP) 0.68 
(0.76)

0.93 
(0.51)

0.78 
(0.46)

0.78 
(0.60)

0.99 
(1.18)

CBNB 
(NB)

0.85 
(0.82)

0.61 
(0.62)

0.71 
(0.70)

0.78 
(0.78)

0.41 
(0.46)

CBSVM 
(SVM)

0.92 
(0.64)

0.96 
(0.67)

0.94 
(0.57)

0.94 
(0.71)

0.22 
(0.87)

Table 12. The average experiment results compared with the other three methods.
Method Precision TPR F1 Accuracy CostEffect

CBDT 0.92 0.92 0.92 0.93 0.20
CBMLP 0.68 0.93 0.78 0.78 0.99
CBNB 0.85 0.61 0.71 0.78 0.41
CBSVM 0.92 0.96 0.94 0.94 0.22
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Firstly, we compare the proposed CBDT approach with the other five 
methods (DT, MLP, NB, RF, and SVM) in prediction performance. The 
average experimental results compared with the other five methods for 
3-fold cross-validation are shown in Table 13. From Table 13, it can be seen 
that the proposed CBDT approach with F1 (0.93) has higher prediction 
performance than the other five methods. Besides, the proposed CBDT 
approach with Accuracy (0.94) has higher prediction performance than the 
other five methods. The performance between the proposed CBDT approach 
and DT is similar and the proposed CBDT approach slightly outperforms than 
the DT approach. Please note that the proposed CBDT approach with 
CostEffect (0.16) has lower cost effect than the other five methods. It is very 
important to note that the proposed CBDT approach generates the lowest 
costs (such as money loss) among the six approaches.

Secondly, we investigate if two hybrid approaches (feature selection and 
instance selection) could improve the prediction performance of the other 
three methods (MLP, NB, and SVM). The average experimental results com
pared with the three new methods (CBMLP, CBNB, and CBSVM) are shown 
in Table 14. From Table 14, it can be seen that the new method (CBMLP) 
which integrated with hybrid approaches (feature selection and instance 
selection) outperforms than the original method (MLP) in measures 
(Precision, TPR, F1, Accuracy, and CostEffect). Besides, the new method 
(CBSVM) which integrated with hybrid approaches (feature selection and 
instance selection) outperforms than the original method (SVM) in measures 
(Precision and CostEffect).

Finally, we compare the proposed CBDT approach with the new methods 
(CBMLP, CBNB, and CBSVM) in prediction performance. The average 
experimental results compared with the three new methods (CBMLP, 
CBNB, and CBSVM) of the Statlog (credit-approval dataset) dataset for 

Table 13. The average experiment results compared with the other five methods.
Method Precision TPR/Recall F1 Accuracy CostEffect

CBDT 0.95 0.91 0.93 0.94 0.16
DT 0.93 0.94 0.93 0.94 0.20
MLP 0.71 0.56 0.62 0.70 0.72
NB 0.86 0.66 0.75 0.80 0.39
RF 0.90 0.88 0.89 0.90 0.28
SVM 0.72 0.67 0.67 0.84 0.19

Table 14. The average experiment results of the new three methods.
Method Precision TPR F1 Accuracy CostEffect

CBMLP (MLP) 0.80 
(0.71)

0.82 
(0.56)

0.78 
(0.62)

0.80 
(0.70)

0.66 
(0.72)

CBNB 
(NB)

0.75 
(0.86)

0.57 
(0.66)

0.64 
(0.75)

0.69 
(0.80)

0.76 
(0.39)

CBSVM 
(SVM)

0.92 
(0.72)

0.65 
(0.67)

0.67 
(0.67)

0.84 
(0.84)

0.17 
(0.19)
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3-fold cross-validation are shown in Table 15. From Table 15, it can be seen 
that the proposed CBDT approach with F1 (0.93) has higher prediction 
performance than the other five methods. Besides, the proposed CBDT 
approach with Accuracy (0.94) has higher prediction performance than the 
other three methods. Please note that the proposed CBDT approach with 
CostEffect (0.16) still has lower cost effect than the other three methods.

Comparison with Other past Studies

There are some previous studies, conducting the same public datasets 
(German credit data or Australian credit approval data) yet only performing 
the feature selection approach with various machine learning algorithms (Ilter, 
Deniz, and Kocadagli 2021; Jadhav, He, and Jenkins 2018; Nalić, Martinović, 
and Žagar 2020; Pławiak et al. 2020; Tripathi, Edla, and Cheruku 2018). 
Although they employ the identical datasets to verify the performance, this 
is hard to consider using their results to be compared with ours because there 
are distinct ideas for the respective models. In summary, the accuracy of the 
past studies in German credit data is between 0.75 and 0.9 and that in 
Australian credit approval data is between 0.71 and 0.9. The evaluation 
performance of our model is superior to that of the past studies in spite of 
using different ideas to develop respective algorithms.

Conclusion and Future Works

This study makes several contributions. We propose a new approach that 
integrates feature selection, instance selection, and classifiers to build 
a prediction model for credit approval. Firstly, a measure (gain ratio) is used 
for feature selection. Secondly, a clustering method (EM) is applied to cluster 
the training dataset into k clusters in advance. Finally, the C4.5 algorithm is 
used to build k decision tree classifiers for k clusters of instances. When 
predicting the class labels of previously unseen records, the EM clustering 
method is applied to determine which cluster-based decision tree should be 
used to predict the class labels of previously unseen records.

Experimental results obtained using the survey data show that the proposed 
CBDT approach is superior to the other five methods (DT, MLP, NB, RF, and 
SVM) in the measures (F1, Accuracy, and CostEffect). Furthermore, the 

Table 15. The average experiment results compared with the other three methods.
Method Precision TPR F1 Accuracy CostEffect

CBDT 0.95 0.91 0.93 0.94 0.16
CBMLP 0.80 0.82 0.78 0.80 0.66
CBNB 0.75 0.57 0.64 0.69 0.76
CBSVM 0.92 0.65 0.67 0.84 0.17
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proposed two hybrid approaches (feature selection and instance selection) 
were integrated with three methods (MLP, NB, and SVM) to be the three 
new methods (CBMLP, CBNB, and CBSVM). Experimental results obtained 
using the survey data show that the new CBSVM approach is superior to the 
original method (SVM) in the measures (F1, Accuracy, and CostEffect). 
Finally, experimental results obtained using the survey data show that the 
proposed CBDT approach is superior to the three new methods (CBMLP, 
CBNB, and CBSVM) in the measures (F1, Accuracy, and CostEffect) in two of 
the three datasets.

In the practical use of the proposed model, managers of the banking and 
auditing industries can consider hybrid ideas and feature and instance selec
tions, to establish their information systems for credit approval. Therefore, 
this kind of systems can be more precise to evaluate the trustworthiness of 
their customers, greatly reducing the expense of bad debts. In addition, 
managers might rethink the data-collection strategy for credit approval/scor
ing, focusing on the significant features/instances to save the managerial cost 
as they are going to implement digital transformation in their industries.

There are several issues that remain to be addressed in the future. First, we 
use a gain-ratio measure here to determine attributes for clustering. In the 
future, we hope to adopt other attribute selecting approaches to determine 
attributes used for clustering. In addition, we use the EM clustering algorithm 
to cluster records. In this regard, we hope to adopt other algorithms, such as 
CLIQUE. Finally, it would be helpful to design a more efficient algorithm to 
address this issue.
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