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Forecasting
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aDepartment of Business Administration, Chung Yuan Christian University, Taoyuan City, Taiwan; 
bCollege of Management, Yuan Ze University, Taoyuan City, Taiwan; cDepartment of Business 
Management, National Taipei University of Technology, Taipei, Taiwan

ABSTRACT
Energy demand forecasting is increasingly important for devel
oping national energy policies. This study aims to apply the first 
order gray model with one variable (GM(1,1)) without following 
any statistical assumptions to energy demand forecasting. To 
boost the forecasting accuracy of GM(1,1), a problem arising 
from collected samples that are often derived from an uncertain 
assessment should be addressed. One way to deal with these 
uncertain and imprecise observations is by using nonlinear 
interval regression analysis with neural networks to generate 
upper and lower limits for individual samples. As a result, 
a nonlinear interval gray prediction model is constructed by 
applying the sequences of upper and lower limits to construct 
GM(1,1) with residual modification separately. By examining the 
forecasting performance of a nonlinear interval model by the 
best non-fuzzy performance values, the empirical results 
obtained based on real energy demand data show that the 
proposed models perform well compared with other interval 
gray prediction models. This study has shown the high applic
ability of the proposed model to energy demand forecasting.
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Introduction

The development of more accurate prediction models for energy demand is 
very crucial for economic prosperity and environmental security (Suganthi 
and Samuel 2012). Among diverse prediction models for energy demand 
forecasting including artificial intelligence techniques (e.g., Cankurt and 
Subasi, 2015; Ayoub et al. 2018; Lauret et al. 2008; Li et al. 2019; Norouzi 
et al. 2020c; Norouzi and Fani 2020; Toksari 2009; Xia, Wang, and McMenemy 
2010), time-series models (e.g., Tutun, Chou, and Canıyılmaz 2015), econo
metric approaches (e.g., Norouzi and Fani 2021), mathematical programming 
(e.g., Forough, Norouzi, and Fani 2021), and statistical analysis (e.g., Braun, 
Altan, and Beck 2014; Leo et al. 2020), gray prediction models (GMs) have 
indicated the uniqueness for energy demand forecasting because GMs neither 

CONTACT Yi-Chung Hu ychu@cycu.edu.tw Department of Business Administration, Chung Yuan Christian 
University, Taoyuan City, Taiwan

APPLIED ARTIFICIAL INTELLIGENCE                    
2021, VOL. 35, NO. 15, 1490–1507 
https://doi.org/10.1080/08839514.2021.1983120

© 2021 Taylor & Francis 

http://orcid.org/0000-0003-3090-1515
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/08839514.2021.1983120&domain=pdf&date_stamp=2022-03-07


need a large number of samples to construct models nor require data 
sequences to satisfy any statistical assumptions (Hu 2017b; Suganthi and 
Samuel 2012; Xu, Dang, and Gong 2017). In terms of gray prediction, the first- 
order gray model with one variable (GM (1,1)) is the most frequently used 
Figure 1univariate model (Liu and Lin 2010; Liu, Yang, and Forrest 2017).

To improve the prediction accuracy of the original GM(1,1), the rem
nant GM(1,1) (RGM(1,1)) consisting of the original and residual GM(1,1) 
is often suggested for real-world applications (Lee and Tong 2011; Liu, 
Yang, and Forrest 2017; Norouzi, Fani, and Ziarani 2020a). In terms of the 
RGM(1,1), the residual GM(1,1) is independently constructed using the 
residuals generated by the original GM(1,1). The outcomes from the resi
dual GM(1,1) can then be used to modify those from the original model. 
Several variants of the RGM(1,1) have been proposed, such as the MLP-GM 
(1,1) using a multi-layer perceptron (MLP) (Hsu and Chen 2003), Markov- 
chain-based sign estimation (Hsu 2003; Hsu and Wen 1998), GP-GM(1,1) 
using genetic programming to estimate the sign (Lee and Tong 2011), 
FLNGM(1,1) using functional-link nets (FLNs) (Hu 2017a), and gray 
Fourier models (Hu 2021; Wang 2014; Wang and Phan 2015). When 
constructing GM(1,1) and its residual GM(1,1) separately, the RGM(1,1) 
are constructed from the perspective of the local optimum. However, the 
local optimum is no guarantee of the global optimum (Cormen et al. 2009). 
To avoid independently creating a residual model, Hu (2020) proposes the 
NR-GM(1,1) to maximize the overall forecasting accuracy of a remnant 
gray prediction model. That is the reason why the NR-GM(1,1) is the most 
concerned gray model of this study.

Figure 1. A flowchart of the construction of the proposed RGM(1,1)-NIM.
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The trend of energy consumption amounts in a time series is nonlinear and 
fluctuating, and available energy demand data are usually real-valued, but 
derived from uncertain assessments. It is helpful to deal with uncertainty 
and imprecision by estimating data intervals (Hwang, Hong, and Seok 2006; 
Shih et al. 2011; Zeng et al. 2014; Xie et al., 2014; Ye et al. 2019). Ye et al. (2019) 
provide a common method by characterizing the upper and lower bounds by 
the highest and lowest levels of annual energy consumption for a region. This 
method is simple but questionable, because the highest and lowest levels might 
well be outliers that have the great possibility of worsening the performance of 
forecasting models (Hladík and Černý 2014). Neural networks (NNs) have 
proved to be effective in the implementing nonlinear interval regression 
analysis (Cheng and Lee 2001; Huang, Zhang, and Huang 1998; Ishibuchi 
and Nii 2001; Ishibuchi and Tanaka 1992; Jeng, Chuang, and Su 2003; 
Nasrabadi and Hashemi 2008). This motivates the use of nonlinear interval 
regression analysis to extend each single value to an interval.

So far, little attention has been paid to developing interval gray prediction 
models, with some exceptions such as the interval gray number prediction 
model (IGNPM) by Zeng et al. (2010), the gray number gray modification 
model (GGMM(1,1)) by Shih et al. (2011), the interval GM(1,1) (I-GM(1,1)) 
and nonlinear gray Bernoulli GM(1,1) model (I-NGBM(1,1)) by Chen, Liu, 
and Hsieh (2019), the optimized discrete GM (1,1) with interval gray numbers 
by Ye et al. (2019), and the interval models with forecast combination by Jiang 
et al. (2020). To confront the problems arising from uncertainty and statistical 
assumptions for energy demand forecasting, this study aims to develop 
a nonlinear interval model (NIM) called RGM(1,1)-NIM by using NNs to 
derive data intervals first and then to construct the NR-GM(1,1) based on the 
data intervals instead of the original data. An interval can be transformed into 
a crisp representative value (Sun et al. 2016) called the best non-fuzzy perfor
mance (BNP), which is used to evaluate the prediction accuracy of the 
proposed RGM(1,1)-NIM.

The remainder of this paper is organized as follows: Section 2 introduces 
nonlinear interval regression analysis using NNs. Section 3 describes the original 
GM(1,1) and the revised residual GM(1,1), which together form the basis of the 
proposed RGM. Section 4 introduces the nonlinear interval GMs, including the 
proposed RGM(1,1)-NIM. Section 5 demonstrates the prediction accuracy of 
various NIMs and some frequently used prediction models based on real cases of 
energy demand. Section 6 discusses the outcomes and presents conclusions.

Nonlinear Interval Regression Analysis Using NNs

Interval regression analysis is a simplified version of fuzzy regression analysis 
(Tanaka 1987; Tanaka, Uejima, and Asai 1982) for obtaining interval-valued 
data. Given the high capability of NNs for nonlinear regression, Ishibuchi and 
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Tanaka (1992) used two NNs, NNu and NNl, to perform nonlinear interval 
regression analysis, where NNu and NNl determined the upper and lower 
limits, respectively, of an NIM called NN-NIM.

Interval Regression Analysis

Let a data set be made up of (t1, y1) (t2, y2), . . ., and (tn, yn), where (tp, yp) is the 
p-th input-output pattern (p = 1, 2, . . ., n) at time tp. In other words, the 
desired output corresponding to the input tp is the demand yp. In addition, let 
fu and fl be the output functions represented by NNu and NNl, respectively. 
A nonlinear optimization problem can be formulated for determining an NIM 
as follows: 

Minimize ðfu t1ð Þ � fl t1ð ÞÞ þ ðfu t2ð Þ � fl t2ð ÞÞ þ . . .þ ðfu tnð Þ � fl tnð ÞÞ (1) 

subject tofu tp
� �

ypfl tp
� �

; p ¼ 1; 2; . . . ; n (2) 

where fu(tp) – fl(tp) denotes the width of the estimated data interval for tp. 
The objective of this formulation is to determine the NIM with the least sum 
for the widths of the predicted intervals subject to the condition that the 
estimated data interval includes all the given input–output pairs. For this 
complex optimization problem, Ishibuchi and Tanaka (1992) presented two 
simple algorithms for determining fu and fl, which approximately satisfy the 
constraint condition. Each network is implemented as an MLP with a single 
input, five hidden units, a single output, and one hidden layer.

Determining the Upper and Lower Limits

The following cost function Eu with weighting scheme ωp is used to determine 
fu: 

Eu ¼
Xm

p¼1

1
2

ωpðyp � guðtpÞÞ
2 (3) 

where ωp is defined as follows: 

ωp ¼
1;ifyp > guðtpÞ

ω;ifyp�guðtpÞ

n
(4) 

To determine fl, the cost function El is defined as 

El ¼
Xm

p¼1

1
2

ωpðyp � glðtpÞÞ
2 (5) 
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where ωp is defined as follows: 

ωp ¼
1;ifyp < glðtpÞ

ω;ifyp�glðtpÞ

n
(6) 

where ω is a small positive value in the interval (0, 1). The learning rule for 
each connection weight can be derived easily from the cost function by 
gradient descent. Note that the two learning algorithms for training NNu and 
NNl are the same, except for the weighting schemes. For brevity, the learning 
rules are omitted here.

In summary, the trained NNu can create a data sequence 
xð0Þu ¼ fu t1ð Þ; fu t2ð Þ; . . . ; fu tnð Þð Þ ¼ ðxð0Þu;1; x

ð0Þ
u;2; . . . ; xð0Þu;nÞ, whereas a data 

sequence xð0Þl ¼ fl t1ð Þ; fl t2ð Þ; . . . ; fl tnð Þð Þ ¼ ðxð0Þl;1 ; x
ð0Þ
l;2 ; . . . ; xð0Þl;n Þ can be cre

ated by the trained NNl. Finally, a single point, xð0Þk , is extended to an interval, 
½xð0Þl;k ; x

ð0Þ
u;k�.

Remnant GM(1,1)

Original GM(1,1)

Let an original data sequence xð0Þ ¼ ðxð0Þ1 ; xð0Þ2 ; . . . ; xð0Þn Þ provided by one 
system be made up of n samples. A new sequence, 
xð1Þ ¼ ðxð1Þ1 ; xð1Þ2 ; . . . ; xð1Þn Þ, can be generated from xð0Þ as follows: 

xð1Þk ¼
Xk

j¼1
xð0Þk ; k ¼ 1; 2; . . . ; n (7) 

and xð1Þ1 ; xð1Þ2 ; . . . ; xð1Þn can then be approximated by a first-order differential 
equation: 

dxð1Þ

dt
þ a xð1Þ ¼ b (8) 

where a and b are the developing coefficient and the control variable, 
respectively.

The predicted value, x̂ð1Þk , of xð1Þk can be obtained by solving the differential 
equation with the initial condition xð1Þ1 ¼ xð0Þ1 : 

x̂ð1Þk ¼ ðx
ð0Þ
1 �

b
a
Þe� a k� 1ð Þ

þ
b
a

(9) 

and therefore, x̂ð1Þ1 ¼ xð0Þ1 holds. Then, a and b can be estimated with a gray 
difference equation: 

xð0Þk þ azð1Þk ¼ b (10) 
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where zð1Þk is the background value, and 

zð1Þk ¼ αxð1Þk þ ð1 � αÞxð1Þk� 1 (11) 

where α is usually specified as 0.5 (Liu, Yang, and Forrest 2017). Using n–1 
gray difference equations (k = 2, 3, . . ., n), a and b can be obtained with the 
ordinary least-squares method: 

½a; b�T ¼ BTB
� �� 1BTy (12) 

where 

B ¼

� zð1Þ2 1
� zð1Þ3 1

..

. ..
.

� zð1Þn 1

2

6
6
6
6
4

3

7
7
7
7
5

(13) 

and 

y ¼ ½xð0Þ2 ; xð0Þ3 ; . . . ; xð0Þn �
T (14) 

Then, the predicted value x̂ð0Þk with respect to xð0Þk is computed as follows: 

x̂ð0Þk ¼ x̂ð1Þk � x̂ð1Þk� 1; k ¼ 2; 3; . . . ; n (15) 

Therefore, 

x̂ð0Þk ¼ ð1 � eaÞ ðxð0Þ1 �
b
a
Þe� aðk� 1Þ

; k ¼ 2; 3; . . . ; n (16) 

NR-GM(1,1)

The NR-GM(1,1) is briefly introduced here. In the NR-GM(1,1), the residual 
GM(1,1) is constructed by the FLN. The activation function in the output node 
is expressed by the following: 

tanh zð Þ ¼
ez � e� z

ez þ e� z (19) 

where tanh(z) lies within the range (–1, 1). When the time point tk is pre
sented, an enhanced pattern can be generated as (tk, sin(πtk), cos(πtk), 
sin(2πtk), cos(2πtk)) through a functional link. The actual output value yk is 

yk ¼ tanhðw1tk þ w2sinðπtkÞ þ w3cosðπtkÞ þ w4sinð2πtkÞ þ w5cosð2πtkÞ þ θÞ
(20) 
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where wi (i = 1, . . ., 5) is the connection weight and θ is the bias. yk can be 
interpreted as the extent to which x̂ð0Þk can be modified, where yk = 1 and – 1 
mean that x̂ð0Þk can be modified up to the upper (tl) and lower bounds (–tl), 
respectively. tu and tl are heuristically defined as: 

tl ¼ 3maxfεð0Þk g; k ¼ 1; 2; . . . ; n (21) 

Finally, x̂ð0Þk can be updated as follows: 

x̂ð0Þk ¼ x̂ð0Þk þ yktl; k ¼ 2; 3; . . . ; n (22) 

The range of modification for x̂ð0Þk from the original GM(1,1) is ð� tl; tlÞ.
The mean absolute percentage error (MAPE) was used to evaluate forecast

ing accuracy because MAPE is more stable than other measures, including 
mean absolute error and root mean square error (Lee and Shih 2011; 
Makridakis 1993). The formulation is as follows: 

MAPE ¼
1
n

X

k¼1::n

xð0Þk � x̂ð0Þk

�
�
�

�
�
�

xð0Þk

� 100% (23) 

The objective in this problem is to minimize MAPE by optimally determining 
the connection weights and the bias, where � 1 � w1;w2;w3;w4;w5; θ � 1. 
Details of constructing NR-GM(1,1) by a genetic algorithm (GA) can be found 
in Hu (2020) and are omitted here for simplicity.

Nonlinear Interval GMs

In this section, two interval GMs, IGNPM and GGMM(1,1), included in the 
empirical analysis are briefly described in Sections 4.1 and 4.2. Section 4.3 
presents the proposed RGM(1,1)-NIM. Evaluations of an NIM are given in 
Section 4.4.

Interval Grey Number Prediction Model (IGNPM)

As mentioned above, energy demand data are usually real-valued, and there
fore, we establish xð0Þu and xð0Þl using NNu and NNl, respectively, for the 
IGNPM. The predicted values of the upper ðx̂ð0Þu;1; x̂

ð0Þ
u;2; . . . ; x̂ð0Þu;nÞ and lower 

(ðx̂ð0Þl;1 ; x̂
ð0Þ
l;2 ; . . . ; x̂ð0Þl;n Þ limits can be determined by using a few gray number 

layers and the middle point of each gray number layer’s middle position line. 
For the k-th gray number layer, its area, sð0Þk , is defined as 
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sð0Þk ¼
xð0Þu;k � xð0Þl;k þ xð0Þu;kþ1 � xð0Þl;kþ1

2
(24) 

The middle point wð0Þk of its middle position line is defined as 

wð0Þk ¼
xð0Þu;k þ xð0Þl;k þ xð0Þu;kþ1 þ xð0Þl;kþ1

4
(25) 

A GM(1,1) can then be built using the sequence ðsð0Þ1 ; sð0Þ2 ; . . . ; sð0Þn� 1Þ such that 
ŝð0Þk is 

ŝð0Þk ¼ ð1 � easÞ ðsð0Þ1 �
bs

as
Þe� asðk� 1Þ; k ¼ 2; 3; . . . ; n � 1 (26) 

The sequence (wð0Þ1 ;wð0Þ2 ; . . . ;wð0Þn� 1) is used to construct a GM(1,1) such that 
ŵð0Þk is 

ŵð0Þk ¼ ð1 � eawÞðwð0Þ1 �
bw

aw
Þe� awðk� 1Þ; k ¼ 2; 3; . . . ; n � 1 (27) 

We can obtain x̂ð0Þu;k � x̂ð0Þl;k by as and bs, and x̂ð0Þu;k þ x̂ð0Þl;k can be derived by aw and 
bw. For a derivation of x̂ð0Þu;k and x̂ð0Þl;k , the reader is referred to Zeng et al. (2010).

Grey Number Grey Modification Model (GGMM(1,1))

Let (xð0Þm;1; x
ð0Þ
m;2; . . . ; xð0Þm;n� mþ1) denote a sequence xð0Þm ¼ ðxð0Þm ; xð0Þmþ1; . . . ; xð0Þn Þ

(1 ≤ m ≤ n – 3). In the GGMM(1,1), xð0Þm;1 is replaced with xð1Þn to obtain x̂ð0Þm;k 
to capture the latest trend (Dang, Liu, and Chen 2004): 

x̂ð0Þm;k ¼ ð1 � eamÞðxð1Þn �
bm

am
Þe� amðk� nÞ; k ¼ 2; 3; . . . ; n � mþ 1 (28) 

am and bm are estimated using a gray difference equation: 

xð0Þm;k þ amzð1Þk ¼ bm (29) 

For a derivation of x̂ð0Þu;k and x̂ð0Þl;k , the reader is referred to Shih et al. (2011).

The Proposed RGM(1,1)-NIM

To build the proposed RGM(1,1)-NIM, the first step is to find the interval data 
for model fitting by using NNu and NNl beforehand. Using xð0Þu , a prediction 
model can be built, such that the predicted value, x̂ð0Þu;k, of xð0Þu;k is 
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x̂ð0Þu;k ¼ ð1 � ea
uÞðx

ð0Þ
u;1 �

bu

au
Þe� auðk� 1Þ þ yu;ktu;l; k ¼ 2; 3; . . . ; n (30) 

where yu,k obtained by the FLN is the extent to which x̂ð0Þu;k can be modified, and 

tu;l ¼ 3maxf xð0Þu;k � x̂ð0Þu;k

�
�
�

�
�
�g; k ¼ 1; 2; . . . ; n (31) 

This prediction model is referred to as the upper RGM(1,1).
To build the prediction model using xð0Þl , the lower RGM(1,1) can also be 

created such that the predicted value, x̂ð0Þl;k , of xð0Þl;k is 

x̂ð0Þl;k ¼ ð1 � ea
l Þðx

ð0Þ
l;1 �

bl

al
Þe� alðk� 1Þ þ yl;ktl;l; k ¼ 2; 3; . . . ; n (32) 

where yu,k obtained by the FLN is the extent to which x̂ð0Þl;k can be modified, and 

tl;l ¼ 3maxf xð0Þl;k � x̂ð0Þl;k

�
�
�

�
�
�g; k ¼ 1; 2; . . . ; n (33) 

Note that the upper and lower RGM(1,1) constitute the RGM(1,1)-NIM.

Evaluating NIMs

For a NIM, the BNP value for xð0Þk can be viewed as a representative point 
denoted by ~xð0Þk between x̂ð0Þu;k and x̂ð0Þl;k , where ~xð0Þk can be formulated as (Sun 
et al. 2016): 

~xð0Þk ¼
1=2ðx̂ð0Þu;k þ x̂ð0Þl;k Þ; k ¼ 1; 2; . . . ; n (34) 

Then, we can use the MAPE to measure the prediction accuracy of a NIM. In 
addition, the mean absolute relative error for gray number (MAREG) (Shih 
et al. 2011) is used to evaluate the reasonableness of the upper and lower limits 
for an interval model: 

MAREG ¼
1
n

X

k¼1::n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 ððx̂

ð0Þ
u;k � xð0Þk Þ

2
þ ðx̂ð0Þl;k � xð0Þk Þ

2
Þ

q

xð0Þk

� 100% (35) 

If the gap between xð0Þk and its two limits (x̂ð0Þu;k, x̂ð0Þl;k ) is large, then the interval 
(x̂ð0Þl;k , x̂ð0Þu;k) becomes meaningless for tk.
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Empirical Analysis

Experiments were conducted using two real-world data sets to compare the 
energy demand prediction accuracy of different NIMs. Section 5.1 considers 
electricity demand in China, and Section 5.2 investigates energy demand in 
Taiwan.

Case I

The first experiment was conducted based on historical annual electricity 
demand in China using data from the China Statistical Yearbook 2016. In 
Case I, data from 2001 to 2012 were used for model fitting, and data from 2013 
to 2016 were used for ex post testing. Figure 2 depicts the data intervals 
determined for model fitting by the two NNs. These data intervals can be 
used by different NIMs, except for the GGMM(1,1). The results obtained from 
the various prediction models are summarized in Tables 1 and table 2.

The results in Table 1 show that the proposed RGM(1,1)-NIM is promising 
because the RGM(1,1)-NIM was superior to the other NIMs considered for 
both model fitting and ex post testing. Table 2 summarizes the prediction 
accuracy obtained by applying the NN, autoregressive integrated moving 
average (ARIMA), GM(1,1), and FLNGM(1,1) to the original data sequence. 
It is obvious that the RGM(1,1)-NIM was superior to the NN, GM(1,1), and 
FLNGM(1,1) for ex post testing. The RGM(1,1)-NIM was slightly inferior to 
GM(1,1) and FLNGM(1,1) for model fitting, but ex post testing is a primary 
norm used to examine the performance of a prediction model.

The results obtained by ARIMA for ex post testing are encouraging. 
However, for the first two years (2013 and 2014), the average result obtained 
by RGM(1,1)-NIM for ex post testing (1.75%) was clearly better than that 
produced by ARIMA (2.81%). In 2017, the Chinese National Energy 
Administration released the 13th Five-Year Plan for medium- and long- 

Figure 2. Lower and upper limits determined by NNs for Case I.
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term energy development to show China’s determination to decrease its 
environmental impact. Therefore, two years can be roughly treated as 
a short-term period. Therefore, the proposed RGM(1,1)-NIM can also be 
used for short-term energy demand forecasting. As mentioned above, the 
MAREG measures the reasonableness of x̂ð0Þu;k and x̂ð0Þl;k by computing the 
distance between x̂ð0Þu;k and xð0Þk and that between x̂ð0Þl;k and xð0Þk . The results in 
Table 3 illustrate that data intervals obtained by the proposed RGM(1,1)- 
NIM are more reasonable than those from the other NIMs considered for ex 
post testing.

Table 1. Prediction accuracy obtained by different NIMs for Case I (unit: 100 million kWh).

Year Actual

NN-NIM FLNGM-NIM IGNPM GGMM(1,1) RGM(1,1)-NIM

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

2001 14633.46 14300.67 2.27 14300.67 2.27 16390.77 12.01 14633.46 0.00 14300.67 2.27
2002 16331.45 16896.3 3.46 16878.96 3.35 16896.3 3.46 17100.29 4.71 16604.13 1.67
2003 19031.6 19869.09 4.40 21423.59 12.57 24537.58 28.93 20285.82 6.59 19630.73 3.15
2004 21971.38 23127.66 5.26 23944.65 8.98 21084.28 4.04 22267.95 1.35 23131.37 5.28
2005 24940.32 26568.33 6.53 26895.6 7.84 29148.86 16.87 23979.10 3.85 26908.08 7.89
2006 28587.97 30087.24 5.24 30283.08 5.93 26161.65 8.49 26167.56 8.47 30192.13 5.61
2007 37211.8 33590.06 9.73 33799.86 9.17 34739.44 6.64 31033.86 16.60 33457.47 10.09
2008 34541.35 36997.67 7.11 37230.13 7.78 32317.31 6.44 35095.77 1.61 36644.76 6.09
2009 37032.14 40248.17 8.68 40492.88 9.35 41517.28 12.11 36746.24 0.77 39732.22 7.29
2010 41934.49 43296.46 3.25 43162.98 2.93 39780.23 5.14 39545.96 5.70 42751.47 1.95
2011 47000.88 46112.69 1.89 45088.18 4.07 49734.53 5.82 43678.58 7.07 45803.52 2.55
2012 49762.64 48680.08 2.18 48321.47 2.90 48828.04 1.88 48243.27 3.05 49061.19 1.41
MAPE 5.00 6.43 9.32 4.98 4.60
2013 54203.41 50992.52 5.92 52557.06 3.04 59696.86 10.13 53064.90 2.10 52445.59 3.24
2014 56383.69 53052.18 5.91 57474.69 1.93 59797.33 6.05 58246.18 3.30 56525.05 0.25
2015 58019.97 54867.18 5.43 63048.75 8.67 71774.88 23.71 63938.25 10.20 61919.16 6.72
2016 61297.09 56449.38 7.91 69324.71 13.10 73096.15 19.25 70191.92 14.51 68530.21 11.80
MAPE 6.29 6.68 14.79 7.53 5.50

Table 2. Prediction accuracy obtained by different prediction models for Case I (unit: 100 million 
kWh).

Year Actual

NN ARIMA GM(1,1) FLNGM(1,1)

Predicted APE Predicted APE Predicted APE Predicted APE

2001 14633.46 16398.85 12.06 14633.46 0.00 14633.46 0.00 14633.46 0.00
2002 16331.45 17533.93 7.36 14937.32 8.54 18481.63 13.17 16146.45 1.13
2003 19031.6 19207.48 0.92 18984.30 0.25 20423.29 7.31 18932.71 0.52
2004 21971.38 21518.08 2.06 22888.61 4.17 22568.94 2.72 21966.45 0.02
2005 24940.32 24483.08 1.83 26655.28 6.88 24940.00 0.00 25281.11 1.37
2006 28587.97 28004.94 2.04 30289.16 5.95 27560.17 3.60 28678.21 0.32
2007 37211.8 31880.39 14.33 33794.93 9.18 30455.61 18.16 32017.3 13.96
2008 34541.35 35855.23 3.80 37177.11 7.63 33655.24 2.57 35277.03 2.13
2009 37032.14 39694.69 7.19 40440.06 6.61 37191.02 0.43 38487.54 3.93
2010 41934.49 43231.85 3.09 43587.98 3.94 41098.26 1.99 41705.57 0.55
2011 47000.88 46379.42 1.32 46624.93 0.80 45415.99 3.37 45239.89 3.75
2012 49762.64 49114.49 1.30 49554.81 0.42 50187.34 0.85 49670.02 0.19
MAPE 4.78 7.16 4.51 2.32
2013 54203.41 51454.11 5.07 52381.41 3.36 55459.96 2.32 55111.25 1.67
2014 56383.69 53434.01 5.23 55108.35 2.26 61286.52 8.70 61322.78 8.76
2015 58019.97 55094.69 5.04 57739.17 0.48 67725.21 16.73 68209.12 17.56
2016 61297.09 56474.52 7.87 60277.23 1.66 74840.33 22.09 75801.45 23.66
MAPE 5.80 1.94 12.46 12.91

1500 Y.-C. HU ET AL.



Case II

The second experiment was conducted based on the historical annual energy 
demand of Taiwan using data from the Taiwan Energy Bureau. Data from 
2001 to 2012 were used for model fitting, and data from 2013 to 2016 were 
used for ex post testing. Figure 3 depicts the data intervals determined for 
model fitting by two NNs.

Table 3. MAREG obtained by different NIMs for Case I.
Phase NN-NIM FLNGM-NIM IGNPM GGMM(1,1) RGM(1,1)-NIM

model-fitting 11.22 13.30 14.21 8.11 10.53
ex post testing 6.46 7.42 16.48 12.36 5.62

Figure 3. Lower and upper limits determined by NNs for Case II.

Table 4. Prediction accuracy obtained by different NIMs for Case II (unit: 104 kLOE).

Year Actual

NN-NIM FLNGM(1,1)-NIM IGNPM GGMM(1,1) RGM(1,1)-NIM

Predicted APE Predicted APE Predicted APE Predicted APE Predicted APE

2001 91333.4 92222.6 0.97 92222.6 0.97 92222.6 0.97 91333.4 0.00 92222.6 0.97
2002 95385.9 96977.9 1.67 97293.0 2.00 96977.9 6.48 97463.4 2.18 97551.31 2.27
2003 99252.5 100972.1 1.73 102674.8 3.45 107376.6 3.63 100689.8 1.45 100772.9 1.53
2004 103553.3 104180.7 0.61 104082.3 0.51 99487.7 0.59 104298.3 0.72 104513.3 0.93
2005 105700.9 106626.1 0.88 105739.0 0.04 109917.2 0.20 106626.8 0.88 107594 1.79
2006 107773.8 108398.4 0.58 107027.0 0.69 102059.5 0.87 109862.2 1.94 109094.2 1.23
2007 113024.6 109638.7 3.00 108561.3 3.95 112520.6 4.27 110826.3 1.95 109370.6 3.23
2008 109819.2 110493.4 0.61 109684.5 0.12 104694.8 0.23 106287.3 3.22 109835.8 0.02
2009 107677 111082.4 3.16 110919.9 3.01 115188.4 3.05 100195.6 6.95 110642 2.75
2010 114368 111492.4 2.51 111582.0 2.44 107395.3 1.74 143562.3 25.53 111898.6 2.16
2011 113105.3 111781.6 1.17 112783.4 0.28 117922.0 0.62 113244.6 0.12 112709.2 0.35
2012 112870.8 111988.6 0.78 113733.0 0.76 110162.6 2.11 114043.2 1.04 113843.8 0.86
MAPE 1.47 1.52 4.07 3.83 1.51
2013 115893.7 112138.8 3.24 115153.0 0.64 120723.2 4.17 114553.4 1.16 115761.3 0.11
2014 116826.5 112249.1 3.92 116136.7 0.59 112998.2 3.28 115079.3 1.50 116881.6 0.05
2015 116509.1 112330.8 3.59 117615.5 0.95 123593.7 6.08 115621.2 0.76 115654.7 0.73
2016 116808.9 112391.9 3.78 118940.7 1.82 115903.9 0.77 116179.3 0.54 115576.8 1.05
MAPE 3.63 1.00 3.57 0.99 0.49
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The forecasting results obtained by the various prediction models are 
summarized in Tables 4 and table 5. These results show that the proposed 
RGM(1,1)-NIM was slightly inferior to the NN-NIM, NN, and FLNGM(1,1) 
for model fitting, but it performed better than all the prediction models 
considered for ex post testing. In terms of the MAREG for ex post testing, 
Table 6 shows that the reasonableness of the data intervals estimated by the 
proposed prediction model was slightly inferior to those from the FLNGM- 
NIM but superior to those from the other NIMs considered.

Discussion

This study has proposed the RGM(1,1)-NIM, which is made up of two 
NR-GM(1,1). In particular, the upper and lower RGM(1,1) are created by 
the NR-GM(1,1). Compared to the other remnant GM(1,1) variants, the 
NR-GM(1,1) features the ability to leverage the residual model by provid
ing a novel adjustment mechanism for the predicted values to maximize 
prediction accuracy (Hu 2020). The reason for choosing a value that is 
three times larger than the max{εð0Þk } in Eq. (21) is based on the three- 
sigma limits used to set the upper and lower control limits in statistical 
quality control charts (Montgomery 2012), thereby making the modifica
tion much more flexible.

Table 5. Prediction accuracy obtained by different prediction models for Case II (unit: 104 kLOE).

Year Actual

NN ARIMA GM(1,1) FLNGM(1,1)

Predicted APE Predicted APE Predicted APE Predicted APE

2001 91333.4 90894.3 0.48 91333.4 4.24 91333.4 0.00 91333.4 0.00
2002 95385.9 95719.4 0.35 95203.1 4.60 100267.5 5.12 95315.22 0.07
2003 99252.5 99957.2 0.71 99774.9 4.03 101798.4 2.57 100601.9 1.36
2004 103553.3 103408.2 0.14 103256.6 2.27 103352.8 0.19 103278.7 0.27
2005 105700.9 106103.0 0.38 105907.9 2.11 104930.8 0.73 105702.5 0.00
2006 107773.8 108158.0 0.36 107927.1 1.57 106533.0 1.15 107747.7 0.02
2007 113024.6 109704.4 2.94 109464.7 2.11 108159.6 4.30 109379.3 3.23
2008 109819.2 110859.7 0.95 110635.7 1.56 109811.1 0.01 110579.4 0.69
2009 107677 111719.6 3.75 111527.4 4.21 111487.7 3.54 111368.7 3.43
2010 114368 112358.6 1.76 112206.5 1.44 113190.0 1.03 111885.9 2.17
2011 113105.3 112833.4 0.24 112723.6 0.01 114918.3 1.60 112392.1 0.63
2012 112870.8 113186.5 0.28 113117.5 0.48 116672.9 3.37 113147.5 0.25
MAPE 1.03 7.16 1.97 1.01
2013 115893.7 113449.6 2.11 113417.4 1.79 118454.36 2.21 114310.1 1.37
2014 116826.5 113645.9 2.72 113645.8 2.72 120263.00 2.94 115957.9 0.74
2015 116509.1 113792.8 2.33 113819.7 2.31 122099.26 4.80 118145.1 1.40
2016 116808.9 113903.0 2.49 113952.2 2.45 123963.56 6.13 120887.8 3.49
MAPE 2.41 2.40 4.02 1.75

Table 6. MAREG obtained by different NIMs for Case II.
Phase NN-NIM FLNGM-NIM IGNPM GGMM(1,1) RGM(1,1)-NIM

model-fitting 3.16 3.38 5.26 6.28 3.35
ex post testing 4.39 3.14 5.02 4.36 3.76
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Real-valued data were collected to verify the prediction accuracy of the 
proposed RGM(1,1)-NIM. The results showed that the proposed model was 
superior to the other interval gray prediction models considered for ex post 
testing. Both the MAPE and MAREG results indicate that the proposed RGM 
(1,1)-NIM is promising for applications in energy demand forecasting. In 
addition to RGM(1,1)-NIM, it is interesting to examine forecasting accuracy 
of the other novel interval models, such as the discrete GM(1,1) of interval 
gray numbers (Ye et al. 2019) as well by using data intervals generated by two 
MLPs, but this remains to future study.

This study has focused on forecasting rather than projection. Projection is 
required to answer “what-if” questions to extrapolate development trends. In 
other words, it is concerned about what would happen to carbon dioxide 
emissions based on certain future scenarios. In this case, the key factors that 
can have the greatest impact on the scenarios must be identified (Norouzi, 
Fani, and Ziarani 2020b). Besides, Kristjanpoller and Minutolo (2021) point 
out that the series has underlying characteristics of autocorrelation, hetero
skedasticity, and non-linearity. Understanding the cross-correlation rela
tionships between electricity production and demand can boost the 
performance of the models used to forecast both production and demand. 
Their findings suggest a way to improve the forecasting performance of the 
proposed interval model.

Note that the FLN uses the hyperbolic tangent function as its activation 
function and computes a weighted sum for a connection weight vector with an 
enhanced pattern. Therefore, such a model assumes the additivity property of 
the interactions among individual variables in the enhanced pattern (Onisawa 
et al. 1986). However, the criteria are not always independent (Tzeng and Shen 
2017). Therefore, it would be interesting to apply a non-additive version of the 
FLN (Hu 2017c) to energy demand forecasting in future research.

Conclusions

Energy demand forecasting has played a very important role in economic 
growth and environmental security. It can be regarded as a gray system 
problem (Suganthi and Samuel 2012) because factors, such as income and 
population influence energy demand, but their precise effects are not clear. 
Therefore, gray prediction, which does not require that data conform to 
statistical assumptions (Liu and Lin 2010; Liu, Yang, and Forrest 2017), is 
appropriate for energy demand forecasting. In practice, GM(1,1) forms the 
development base of the proposed interval model.

The problem addressed in this study is that available energy demand data 
are usually real-valued, but are uncertain and imprecise. This makes it possible 
to use nonlinear interval regression analysis with two MLPs, one for the upper 
limits and the other for the lower limits, to generate interval-valued data to 
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represent uncertainty. Subsequently, the upper and lower RGM(1,1) can be 
built by working on the data sequences that make up the upper and lower 
limits, respectively. The experimental results show that the proposed models 
performed well compared with other interval gray prediction models. The 
RGM(1,1)-NIM has indicated its high applicability to energy demand fore
casting as well.

In Taiwan, almost 98% of energy is imported, and its cost accounts for 
13%–15% of the gross domestic product. Furthermore, the energy supply is 
highly dependent on fossil fuel imports, which are the leading source of high 
carbon dioxide emissions. The public sectors may leverage the proposed 
GM to plan an energy development policy to achieve the goals of environ
mental protection, sustainable economic growth, and green industry 
development.
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