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A Visual Navigation System for UAV under Diverse 
Illumination Conditions
Jiang Hai , Yutong Hao, Fengzhu Zou, Fang Lin, and Songchen Han

School of Aeronautics and Astronautics, Sichuan University, Chengdu, China

ABSTRACT
The high-precision navigation and positioning ability of UAV 
(Unmanned Aerial Vehicles) is the key factor to reflect its degree 
of automation. Visual navigation based on image matching has 
become one of the important research fields for UAV to realize 
autonomous navigation, because of its low cost, strong anti- 
jamming ability, and good location result. However, the visual 
quality of images captured by UAV will be seriously affected by 
some factors, such as weak illumination conditions or insuffi
cient performance of its sensors. Resolving a series of degrada
tion of low-light images can improve the visual quality and 
enhance the performance of UAV visual navigation. In this 
paper, we propose a novel fully convolutional network based 
on the Retinex theory to solve the degradations of low-light 
images captured by UAV, which can improve the visual quality 
of the images and visual matching performance effectively. At 
the same time, a visual navigation system is designed based on 
the proposed network. Extensive experiments demonstrate that 
our method outperforms the existing methods by a large mar
gin both quantitatively and qualitatively, and effectively 
improves the performance of the image matching algorithms. 
The visual navigation system can successfully realize the self- 
localization of UAV under different illumination conditions. 
Moreover, we also prove that our method is also effective in 
other practical tasks (e.g. autonomous driving).
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Introduction

To realize long-term autonomous flight, UAV(Unmanned Aerial Vehicles) 
need an autonomous navigation and positioning system with high precision. 
At present, the navigation system of UAV mainly includes Global Navigation 
Satellite System (GNSS), Inertial Navigation System (INS), Radio Navigation 
System (RNS), and so on. The GNSS includes the GPS of America, the 
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GLONASS of Russia, the Galileo of Europe, and the BDS of China(Dong 
(Dong and Department 2017)). The GNSS has a great advantage in location 
accuracy and the error will not accumulate over time. However, the disadvan
tage is poor autonomy, it is easy to be disturbed by external factors. Therefore, 
it can not meet the needs of high-precision positioning in some scenarios; once 
the UAV loses the signal due to external interference, it will not be able to 
accomplish the mission.

With the rapid development of computer vision and artificial intelligence 
technology, a new navigation method, visual navigation, has emerged. Visual 
navigation has the advantages of good autonomy, high reliability, and low cost. 
In recent years, with the continuous updating and improvement of the con
cepts, theories, and methods for visual navigation, it has become one of the 
important research fields of UAV autonomous navigation.

The research of visual navigation is initially inspired by the Terrain Contour 
Matching Guidance System in cruise missiles(Golden (Golden 1980)). In the 
following decades, there have been extensive visual navigation methods 
designed based on visual odometry(Comport (Comport, Malis, and Rives 
2010); Strydom (Strydom, Thurrowgood, and Srinivasan 2014); Wang 
(Wang et al. 2018b); Depaola (Depaola et al. 2018)), simultaneous localization 
and mapping(SLAM) (Alpen et al. 2010), image matching (Xu et al. 2013), etc. 
Most visual navigation methods based on image matching use pre-stored 
reference images to match the image captured by the UAV with the reference 
image to obtain the real-time location information. However, the flying 
environment of the UAV is not necessarily an ideal environment with suffi
cient illumination. When the UAV flies on cloudy days or at night, the camera 
will capture low-light images due to the reduction of light, which will seriously 
affect the image quality, such as low contrast and low visibility. At the same 
time, due to the limitations of laws and regulations, manned aircraft fly much 
more frequently during the day than at night, which will greatly reduce the 
flight space of UAVs. Accordingly, the most suitable flight time for UAVs is 
the night with a small number of manned aircraft. Using the low-light image as 
the input of the high-level vision algorithm will also reduce the performance of 
the algorithms (e.g. image matching, object detection, etc.), as shown in Figure 
1. Therefore, converting low-light aerial images into high-quality normal light 
images can not only improve the visual quality of images but also improve the 
performance of UAVs in some high-level visual tasks, such as object detection 
(Jiang et al. 2021), semantic segmentation (Ke et al. 2020), etc, it can also 
enable UAV to be used in a wider range of fields, such as emergency rescue, 
environmental monitoring, etc.

Over the past few decades, there have been a large number of methods 
to enhance degraded images captured by insufficient illumination condi
tions. HE-based methods improve the global contrast by changing the 
histogram distribution of the weakly illuminated image into a uniform 
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distribution, such as Brightness Preserving Dynamic HE (Ibrahim 2007) 
(Ibrahim and Kong 2007), Contrast-limiting adaptive HE (Pisano 1998) 
(Pisano et al. 1998), etc. The methods based on Retinex theory (Land 1977) 
realize image enhancement by estimating the illumination and reflectance 
of the image and adjusting the dynamic range of the pixels of the illumi
nation, such as MSRCR (Jobson 1997) (Jobson, Rahman, and Woodell 
1997), SRIE (Fu 2016) (Fu et al. 2016), etc. The learning-based methods 
(Shen et al. 2017) achieve low-light image enhancement by designing 
efficient models. Although these methods have made great progress in 
improving image contrast, most methods can not properly enhance the 
image contrast, the results are often over-/under-enhanced or blurred. 
Therefore, there is a lot of room for low-light image enhancement.

In this paper, we propose a new fully convolutional network by combining 
the Retinex theory with a convolutional neural network to solve the degra
dations of low-light images captured by UAV and improve the performance 
of subsequent image matching algorithms. We design a visual navigation 
method based on the proposed low-light image enhancement network. 
Extensive experiments demonstrate that the proposed image enhancement 
method can better improve the contrast and visual quality of low-light 
images. Compared with other image enhancement methods, our method 
can improve the performance of image matching algorithms more effec
tively. It can realize the positioning requirements of UAV under diverse 
illumination conditions.

Figure 1. Comparison of matching results and detection results between low-light image and the 
enhanced image obtained by our method.
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The Proposed Low-light Image Enhancement Method

In this section, we will introduce the details of our proposed image enhance
ment method, including the network structure, the loss function, the dataset 
for training, and the implementation details.

Network Architecture

We propose a new fully convolutional network based on the Retinex theory, 
which consists of two subnetworks, Decomposition-Net (Decom-Net) and 
Enhancement-Net (Enhance-Net). The proposed low-light image enhance
ment pipeline is shown in Figure 2. The Decom-Net decomposes the input 
image into an illumination and reflectance map and suppresses the noise in the 
reflectance at the same time. Enhance-Net takes the output of Decom-Net as 
the input to enhance the contrast and brightness of the illumination map. 
Therefore, the proposed method can improve the contrast and suppress the 
noise in the low-light image, and obtain the enhanced result with better visual 
quality.

Decom-Net

Residual network (He 2016) (He et al. 2016) has been widely used in many 
computer vision tasks and achieved excellent results. Benefiting from the jump 
connection structure, the residual network can make the deep neural network 
easier to optimize during the training stage, and will not cause gradient 
disappearance. So, we use multiple residual components to form Decom-Net.

Figure 2. The proposed low-light image enhancement pipeline. The Decom-Net decomposes the 
input image into an illumination map and reflectance map, and the Enhance-Net brightens up the 
illumination map. The reflectance map and illumination map of the low-light image are used as 
the input of Enhance-Net. The decompositions of normal-light images do not participate in the 
Enhance-Net training stage.
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Decom-Net contains eight 3 × 3 convolutional layers with stride 2 and a 
Rectified Linear Unit(ReLU), the size of the input and output feature map of 
each convolutional layer are equal. By using the jump connection structure, 
the output result of the i � 1 convolutional layer and the i convolutional layer 
are combined as the input of the iþ 1 convolutional layer(i ¼ 1; . . . ; 5). The 
network architecture of Decom-Net is shown in Figure 3.

The input of Decom-Net are the low-light image and the normal-light 
image Snormal, and the output results are the illumination map(Ilow/Inormal) 
and the reflectance map(Rlow/Rnormal) of the low-light image and normal- 
light image, respectively. But other methods based on the Retinex theory do 
not suppress the noise of the reflectance map in the process of decomposition. 
This will cause the final enhancement result to be affected by the noise in the 
reflectance. Benefit from the network architecture and the loss function, 
Decom-Net can perform decomposition and noise suppression at the same 
time, it can get better decomposition results.

Note that the illumination map and reflectance map of the normal-light 
image neither participate in the follow-up training, but only provide references 
for the decomposition of the low-light image. The illumination map and 
reflectance map of the low-light image are the input of Enhance-Net.

Enhance-Net

U-Net (Ronneberger 2015) (Ronneberger, Fischer, and Brox 2015) has 
achieved excellent results in a large number of computer vision tasks due to 
its excellent structural design. In the field of low-light image enhancement, a 
large number of networks have adopted the U-Net as the main architecture or 
a part of it. However, U-Net uses multiple max-pooling layers in the feature 
extraction stage, but the max-pooling layer will lead to the loss of a large 
amount of feature information. SoSpringenberg (2015) (Springenberg et al. 

Figure 3. The network architecture of Decom-Net.
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2014) replaces the max-pooling layers with stride convolutional layers, which 
will slightly increase the network parameters, but also improve the accuracy. 
Inspired by that, we use the 2 × 2 convolutional layers with stride 2 to replace 
the max-pooling layers in the U-Net, which is beneficial for the network to 
learn more feature information and maintain translation invariance. So that 
our network can better improve the contrast of the reflectance map.

We also utilize the multi-scale fusion, concatenate the output of each 
deconvolutional layer in the expansive stage to reduce the loss of feature 
information.

Enhance-Net contains seven convolutional blocks, each of them contains 
two 3 × 3 convolutional layers with stride 1 to maintain the same size of the 
front and the back feature maps; the first three convolutional blocks are 
followed by a stride convolution to perform the down-sampling; the last 
three convolutional blocks are followed by a deconvolutional layer to perform 
the up-sampling. Then, utilizing multi-scale fusion, the output of the seventh 
convolutional block and the output of the last three deconvolutional layers are 
concatenated as the input of the next convolutional layer, which can maximize 
the combination of context information and reduce the loss of feature infor
mation. Finally, the enhanced illumination map is obtained through a 3 × 3 
convolutional layer, Each convolutional block in the Enhance-Net is followed 
by a ReLU. The network architecture of Enhance-Net is shown in Figure 4.

After obtaining the decomposition result of Decom-Net and the enhance
ment result of Enhance-Net, the output of the two subnetworks is combined 
by element-by-element multiplication as the final result, which can be 
described as: 

Î ¼ Îlow � Rlow (1) 

Where Rlow is the reflectance map obtained by Decom-Net after decomposing 
the low-light image, Îlow is the output of Enhance-Net, and � represents the 
element-by-element multiplication operation. The decomposition result of the 
whole network for a low-light image is shown in Figure 5.

Figure 4. The network architecture of Enhance-Net.
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Loss Function

In the training phase, Decom-Net and Enhance-Net are trained separately, so 
the whole loss function consists of two parts: the decomposition loss LDecom 
and the enhancement loss LEnhance.

Decomposition Loss

The decomposition loss consists of three components: reconstruction loss 
Lrecon, invariable reflectance loss Lr, and illumination smoothness loss Li: 

LDecom ¼ Lrecon þ λrLr þ λiLi (2) 

Where λr and λi are the coefficients to balance the consistency of the reflec
tance map and the smoothness of the illumination map.

Since the reflectance map and illumination map decomposed by normal- 
light image can be used as references for low-light image decomposition, we 
use the Mean Square Error (MSE) loss to represent the reconstruction loss to 
better realize the decomposition of the low-light image. 

Lrecon ¼
1
N

XN

i¼1

X

j¼low;normal
λre Rj � Ij � Sj
�
�

�
�

�
�

�
�2 (3) 

We also use MSE loss to form the invariable reflectance loss to constrain the 
decomposition process and denoise the reflectance map; 

Lr ¼
1
N

XN

i¼1
Rlow � Rnormalj jj j

2 (4) 

To recover the structure information, we use the weighted TV loss in (Wei et 
al. 2018) as the illumination smoothness loss; 

Li ¼
X

i¼low;normal
ÑIi � exp � λtvÑRið Þj jj j (5) 

Figure 5. Example of the low-light image decomposition result. (a) is the input image, (b) is the 
reflectance map generated by Decom-Net, (c) is the illumination map generated by Enhance-Net.
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Enhancement Loss

To make the result more realistic and natural, we also use reconstruction loss 
Lrecon, illumination smoothness loss Li, and structural similarity loss Lssimin 
this stage to obtain a better result. 

LEnhance ¼ Lrecon þ Li þ Lssim (6) 

The illumination smoothing loss is consistent with the corresponding part of 
decomposition loss, and the reconstruction loss adopts the combination of 
MSE loss and L1 loss to obtain a better reconstruction result and further noise 
suppression. 

Lrecon ¼ λre1
1
N

XN

i¼1
Î � Rlow � Snormal
�
�

�
�

�
�

�
�2 þ λre2 Î � Rlow � Snormal

�
�

�
�

�
�

�
�1 (7) 

The structural similarity loss adopts SSIM loss to gain better detail expression 
ability. 

Lssim ¼ 1 � SSIM Î � Rlow; Snormal
� �

(8) 

Dataset and Implementation Details

It is impractical to collect a large-scale paired low/normal-light image dataset 
under real conditions, all the existing aerial image datasets contain normal- 
light images. As far as we know, there is no paired low/normal-light aerial 
image dataset. Therefore, we collect 6000 high-quality aerial images in the 
Visdrone-2018 dataset (Zhu 2018) (Zhu et al. 2018) and follow the previous 
research (Lore 2017) (Lore, Akintayo, and Sarkar 2017) to darken the images 
So that we build a large-scale paired low/normal-light aerial image dataset for 
training. All images are resized to 600 × 400 and convert to JPG format.

At the same time, we randomly select 120 images from the dataset proposed 
in (Long 2017) (Long et al. 2017) as the test images for subsequent experi
ments. The image size, format, and darkening method are consistent with the 
training data.

Low-Light Image Synthesis

The degradation of low-light image is mainly reflected in its low contrast. To 
better simulate the real weakly illuminated image, we apply Gamma Correct to 
each channel of the normal-light image to change the contrast. The whole 
process can be described as: 

Ilow ¼ A� Iγ
normal (9) 
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Where Inormal represents a normal-light image, A is a constant determined by 
the maximum pixel intensity in the image, and γ obeys a uniform distribution 
U 3; 5ð Þ. An example of synthetic low-light images is shown in Figure 6.

Implementation Details

Our implementation is done with Pytorch, the network is trained for 50 
epochs on an Nvidia GTX1080Ti GPU with the proposed dataset. We use 
the ADAM (Kingma 2014) (Kingma and Ba 2014) optimizer with the para
meters are β1=0.9,β2=0.999, and lr=0.0001. The batch size and patch size are 
set to 16 and 96, respectively. The λr, λi, and λre 0.01 in Eq.2 and Eq.3 are all 
set to 0.01, λtv in Eq.5 is set to 10, λre1 and λre2 in Eq.7 are set to 0.5 and 1.5, 
respectively.

Visual Navigation System

In this section, we will introduce the visual navigation system based on the 
proposed low-light image enhancement method.

Image Definition Evaluation

When carrying out visual navigation tasks, UAV may be affected by factors 
such as insufficient lighting conditions or lack of sensor performance, so it is 
necessary to enhance the low-light images captured. However, not all images 
need to be enhanced, so it has to judge whether the image has weak illumina
tion conditions in the pre-processing stage. In this paper, we use the Laplacian 
gradient function to evaluate the image definition, which is defined as follows: 

Df ¼
X

y
X

x Gx; yj j (10) 

Figure 6. Example of synthetic low-light image.
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Where G x; yð Þ is the convolution of the Laplacian operator at the pixel x; yð Þ. 
For low-light images, the second-order partial derivative is small, so the value 
of the Laplacian gradient function will be small. For normal-light images, the 
second-order partial derivative is large, so the value of the Laplacian gradient 
function will be large, as shown in Figure 7. Therefore, the threshold can be set 
by calculating the Laplacian gradient function value of each image. If it is less 
than the threshold we set, the image needs to be enhanced, if it is larger than 
the threshold, the image does not need image enhancement processing.

Visual Navigation Pipeline

To achieve accurate positioning in the visual navigation, reference images 
need to be stored in advance, the geographical location information of the 
reference image is inputted into the database as the positioning reference. In 
the process of visual navigation, UAV need to judge whether the captured real- 
time image is under weak illumination condition firstly. If there is no lack of 
illumination in the image, there is no need to enhance it. If there is a lack of 
light in the image, the proposed image enhancement method is used to 
enhance it. So that the enhanced result can achieve better visual quality, and 
more abundant feature information can be extracted for the subsequent image 
matching algorithm.

The enhanced result/normal-light image and the pre-stored reference image 
are used as the input of the high-performance image matching algorithm. 
After successfully realizing the matching between the enhanced result/normal- 
light image and the reference image through the image matching algorithm, 
the location of the UAV needs to be determined. By searching the image in the 
reference image database with the highest matching points to the enhanced 
result or normal-light image is used as the current position reference image, 
and extract the geographical location information of the reference image as the 
current UAV location information. In addition, the reference images we chose 
are the satellite images, the reference image have a larger visual range and 

Figure 7. The Laplacian gradient function values of images under different illumination conditions.
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larger size (7200 × 3600) than the aerial images, so we split the reference image 
into several small-size reference images and match the aerial image with small- 
size images in turn, which helps to reduce the search time in the matching 
process. The visual navigation pipeline is shown in Figure 8.

Experimental Evaluation

We compare the proposed method with the existing image enhancement 
methods through extensive experiments to verify the superiority of our 
method, including MF (Fu 2016a) (Fu et al. 2016a), Dong (Dong 2015) 
(Dong et al. 2015), NPE (Wang 2013) (Wang et al. 2013), SRIE, and Lighten- 
Net (Li 2018) (Li et al. 2018). Generally speaking, we have carried out three 
parts of experiments: 1) We have qualitatively and quantitatively compared 
the proposed method with existing methods on the synthetic test images. 2) 
We illustrate that our method can improve the performance of image match
ing algorithms. 3) We combine the proposed method with an existing image 
matching method to carry out the visual navigation experiment.

Low-light Image Enhancement Experiment

To verify the superiority of our method, we compare the proposed method 
with the existing image enhancement methods on the synthetic test images. 
The Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM) are 
used to quantitatively compare our method with other methods. For fairness, 
we use the public codes of these methods and do not change any of the 
parameters. Quantitative comparison results are shown in Table 1.

Figure 8. Visual navigation pipeline.
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Our method can not only achieve higher PSNR and SSIM than other 
methods, which demonstrates that our method can improve the visual quality 
of low-light images, but also outperform other methods in speed. The average 
time cost by our method to enhance per image is 0.11 seconds on the GPU 
faster than our competitor (Dong takes 0.61s, MF takes 1.63s, SRIE takes 
58.02s, NPE takes 6.52s, and LightenNet takes 6.08s to enhance an image), 
which benefits from our smaller mode size (4.85MB) and better network 
design. The traditional methods are running on the CPU which will increase 
the inference time. Our results have better contrast, clearer details, and better 
noise suppression, as shown in Figure 9.

Image Matching Experiment

To verify that our method can improve the performance of the image 
matching algorithms, we use the proposed method and other methods to 
enhance the synthetic test images. Due to the lack of rotation invariant 
ability of the existing image matching algorithms, image rotation will ser
iously affect the accuracy of the algorithm, but we want to simulate the 
heading angle change of the UAV. Therefore, we chose to rotate the aerial 
image by 180° to perform our experiments. Using SIFT (Lowe 2004) (Lowe 
2004), SURF (Bay 2006) (Bay, Tuytelaars, and Gool 2006), and GMS (Bian 
2017) (Bian et al. 2017) algorithm to match the pre-processed images with 
the reference images and calculating the average number of successful 
matching points. Moreover, We found that when the number of extracted 
feature points is too small, it will cause matching failure, and when the 
number of extracted points is too large, it will not lead to a great improve
ment in accuracy but will increase the matching time. We found that when 
the number of extracted feature points is set to 500, there will be a better 
tradeoff between accuracy and speed. The image matching results are shown 
in Table 2.

After enhancing the low-light images, the average matching points have 
been greatly improved, and our method has achieved the best promotion 
effect, which proves the superiority of our method. Moreover, when our 

Table 1. PSNR/SSIM values on the synthetic 
test images. Note that the red, blue, and 
green in the table represent the best, sub- 
optimal, third-place results, respectively.

Method PSNR SSIM

Dong 13.9642 0.4251
MF 15.1901 0.4921
SRIE 11.2053 0.3412
NPE 15.2126 0.4883
LightenNet 12.8605 0.4254
Ours 21.0668 0.6882
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method is combined with the three methods for image matching under low- 
light conditions, it only takes 0.22s, 0.18s, and 0.16s to complete the matching 
process, respectively, which is better than other enhancement methods.

Figure 9. Visual comparison of the synthetic test images. Please zoom in for a better view.

Table 2. Comparison of matching results on the synthetic test images.

Method

SIFT SURF GMS

MP T (s) MP T (s) MP T (s)

Input 8.3 0.09 6.3 0.07 58.6 0.04
Dong 5.8 0.72 5.0 0.68 54.2 0.65
MF 25.5 1.75 34.5 1.70 84.8 1.68
SRIE 13.7 58.14 11.0 58.09 62.6 58.07
NPE 25.4 6.63 25.1 6.59 70.9 6.57
LightenNet 24.5 6.19 24.1 6.15 68.8 6.12
Ours 36.0 0.22 36.2 0.18 105.2 0.16

Notes: We rotated the aerial images by 180°. MP represents the average number of successful matching points on 
the test images. T represents the sum of the time cost by the image enhancement algorithm and the image 
matching algorithm. Note that the red, blue, and green in the table represent the best, sub-optimal, third-place 
results, respectively.
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Figure 10. Experimental results of visual navigation.
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Note that the performance of the image matching algorithms will be 
degraded when the visual angle changes greatly. This is because the existing 
image matching algorithms are very sensitive to image rotation. Due to this 
limitation, in the following visual navigation experiment, we do not consider 
the pose change of the UAV, but assume that the UAV is flying flat.

Visual Navigation Experiment

In the image matching experiment, we found that GMS has the highest 
accuracy and the fastest speed, so we chose GMS as the matching algorithm 
of our visual navigation system. Moreover, when the visual angle changes 
greatly, it will seriously affect the accuracy of image matching algorithms 
(Shetty and Gao 2019). So we assumed that the UAV is flying flat in the 
visual navigation experiment, and the pose change is not taken into 
account.
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In the visual navigation experiment, we collected a dataset which contains 5 
satellite images with large visual range, and each satellite image corresponds to 
10 aerial images with a small range. We take the satellite images as reference 
images and carry out the experiment based on the visual navigation pipeline 
we proposed. Eq.9 is used to darken half of the aerial images of each satellite 
image to simulate the low-light images, and the rest of them are used as normal 
light images for experiments. When the aerial images are low-light images, we 
use our proposed enhancement method to transform them into high-quality 
normal-light images and match them with the reference images.

Because the size of the satellite image we selected is too large (7200 × 3600), 
the matching time will be increased, so we divided the satellite image into 9 
images with equal spacing, all of the small-size reference images are 
2400 × 1200. During the matching process, the aerial images are matched 
with the small-size satellite images we obtained in turn, and the small-size 
images with the highest degree of matching are selected. According to the 
position relationship between the small-size image and the original satellite 
image, the aerial image is mapped to the original satellite image using homo
graphy estimation, and the longitude and latitude information of the corre
sponding position of the satellite image is extracted as the current position 
information of the UAV. Note that the geographical location of satellite 
images and aerial images is known.

The estimated location information we got may be different from the 
ground truth location information, so we use the Haversine formula to 
calculate the distance between the estimated position and the actual position 
for evaluation. The haversine formula is defined as follow: 

D¼2�R�acrsinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin
LatE� LatR

2

� �2

þcosðLatEÞcosðLatRÞsin
LngE� LngR

2

� �2
s

Þ

(11) 

Where (LngR, LatR) and (LngE, LatE) are location information of ground truth 
and our estimated results, respectively, and R is the radius of the earth. Some 
examples of experimental results are shown in Figure 10. The red box is the 
region where the aerial image is mapped to the satellite image, and the red point 
in the yellow box is the location where the center point of the aerial image is 
mapped to the satellite image, and the latitude and longitude information of 
this red position is the current position of the UAV estimated by our method.

Table 3. Self-localization accuracy and average matching points of the autonomous 
driving experiment.

Low-light + GMS Our method + GMS Normal-light + GMS

Acc 0.388 0.727 0.801
MP 47.52 94.10 118.71
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As can be seen from the experimental results, when using low-light images 
directly as input, the matching points are not enough to achieve self-localization, 
while using our method to enhance the low-light images, the image matching 
performance can be effectively improved and self-localization of UAV can be 
achieved successfully. It is proved that the visual navigation system we designed 
can solve the limitation of UAV visual navigation in low-light conditions and 
realize self-localization under diverse illumination conditions.

Autonomous Driving Experiment

In addition to applying our method to UAV visual matching navigation, we 
also want to further explore the performance of our method in other practical 
tasks, such as autonomous driving, etc. A large number of researchers have also 
tried to apply visual navigation to autonomous driving and collected many real- 
world datasets in different environments and different illumination conditions 
(e.g. 4Seasons (Wenze et al. 2020), Apollo Scape (Wang et al. 2018)).

The Apollo Scape dataset contains pairs of RGB images from different angles 
taken by two cameras in different streets, we use the Apollo Scape dataset for our 
autonomous driving experiment. We used 1121 paired images with different 
angles in the Apollo Scape dataset. We chose the images captured by the second 
camera as the reference images and use Eq.9 to darken the image captured by 
camera 1 to simulate the low-light image as real-time images obtained by the 
vehicle. By using our proposed enhancement method, the low-light images are 
converted into high-quality normal-light images and then matched with 1121 
reference images in turn. The reference image with the highest matching degree is 
selected, and the position of the reference image is extracted as the current 
position of the vehicle. Because the images captured by the two cameras are in 

Figure 11. Experimental results of autonomous driving.
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pairs, we considered that the self-localization failed when the enhanced results can 
not match the corresponding reference image correctly. At the same time, we also 
calculate the average matching logarithm between the enhanced image and the 
reference image with the highest degree of matching in the matching process, and 
the results are shown in Table 3.

As can be seen from Table 3, our method can effectively improve the 
positioning accuracy of autonomous driving under low-light conditions and 
the accuracy of the matching algorithm. Some self-localization examples are 
shown in Figure 11.

Conclusion

In this paper, we propose a novel low-light image enhancement method to 
improve the positioning accuracy of UAV visual navigation under low-light 
conditions. And we design a visual navigation system based on the proposed 
method, which can meet the navigation and positioning requirements of UAV 
under diverse illumination conditions. Overall, the main contributions of our 
work are twofold: (1): To solve the degradations in low-light images captured 
by UAV, we propose a new fully convolutional network, which can effectively 
improve the contrast of low-light images and obtain high visual quality results. 
(2): We design a visual navigation system based on the proposed image 
enhancement method. Our visual navigation system can determine the loca
tion of the UAV successfully under different lighting conditions. Moreover, we 
also verify that our method can effectively improve the positioning accuracy of 
autonomous driving based on image matching under low-light environments.

The experimental results demonstrate that the enhanced results of our 
method have more feature information and can meet the requirements of 
image matching. The visual navigation system can realize the autonomous 
positioning of UAV under diverse illumination conditions. In addition, there 
are some problems that need to be improved in the future, (1):In this paper, 
the low-light images we used are synthetic, but in the real-world low-light 
condition, the UAV will extend the camera’s exposure time to avoid the image 
being too dark, but this may cause the image to become blurred. Therefore, in 
our follow-up work, we will design an efficient network that can solve the 
insufficient illumination and blur in the aerial images captured under low-light 
conditions at the same time. (2): Although our proposed low-light enhance
ment method is faster than our competitors, it still can not meet the high- 
speed requirements (e.g. 60fps). In the future, We will explore an efficient 
method with excellent speed and performance to realize the real-time self- 
localization of UAV. (3): Because the change of the image rotation angle will 
seriously affect the accuracy of the image matching algorithms, we do not 
consider the pose change of the UAV in our experiment but assume that the 
UAV is flying flat. However, the pose estimation of UAV is also very important 
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in the process of navigation, so our follow-up work will take the pose estima
tion into account.
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