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Abstract
In this paper, we introduce k-fractional Hilfer derivative given in [1]. A combination of fractional
Fourier transform method and Laplace transform method is adopted to solve Cauchy-type problems
involving k-fractional Hilfer derivatives and an integral operator whose kernel contains k-Mittag-
Leffler function similar to the one given in [2]. The solutions to these problems are obtained in
terms of Mittag-Leffler function.
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1 Introduction
Generally, for the past three decades, fractional calculus has been considered with great importance
due to its various applications in fluid flow, control theory of dynamical systems, chemical physics,
electrical networks,fractal heat transfer and so on, see [3]. The quest of getting accurate methods for
solving resulted non-linear model involving fractional order is of almost concern of many researchers
in this field today. In Caputo [4] and He [5], the approach used to account for the effects of changing
flux is to embody the effects of memory which has to do with posing problem in terms of fractional
calculus. Levy-flight type of transport is a well known diffusion process which is described by a
fractional system.

Fractional Fourier transform (FRFT) was introduced in [6] to solve some classes of ordinary and
partial differential equations found in quantum mechanics and some of its properties can be found
in [7, 8, 9]. Several authors have introduced what we called k-fractional derivatives such as a k-
Riemann Liouville fractional derivative in [10], a k-Riemann Liouville integral [11], the k-Wright function
in [12] and a k-Mittag-Leffler function in [2]. Due to the properties involved in Hilfer fractional type of
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derivatives (introduced by Hilfer [1]) in the sense that it generalizes the Riemann-Liouville and Caputo
fractional derivatives, a lot of studies have been done on it, including the existence and uniqueness
of solutions to such differential equations involving Hilfer fractional derivatives see [13]. Apart from
the classical methods introduced to solve this class of differential equations, some numerical and
analytical methods have also been applied as in [5, 14, 15, 16, 17].

Following the method of solution analogous to that of [18] and [19], this paper is concerned
with the solvability of Cauchy-type problems involving k-fractional Hilfer derivatives and an integral
operator with a k-Mittag-Leffler function appearing in the Kernel using the combination of FRFT
method and the classical Laplace transform method.

2 Preliminaries
In this section, we state some known results and some important definitions which will be used in the
sequel.

Definition 2.1. The Riemann-Liouville’s (RL) fractional integral operator of order α ≥ 0, of a function
f ∈ L1(a, b) is given as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1f(τ)dτ, t > 0, α > 0, (2.1)

where Γ is the Gamma function and I00+f(t) = f(t).

Definition 2.2. The Riemann-Liouville’s (RL) fractional derivative of order 0 < α < 1, of a function f
is

Dα
0+f(t) = DI1−α

0+
f(t). (2.2)

provided the right-hand side exists where D = d/dt.

Definition 2.3. The fractional derivative in the Caputo’s sense is defined as [20],

CDαf(t) = In−αDnf(t) =
1

Γ(n− α)

∫ t

0

(t− τ)n−α−1f (n)(τ)dτ, (2.3)

where n− 1 < α ≤ n, n ∈ N, t > 0.

Definition 2.4. The fractional derivative of order 0 < α < 1 and the type 0 6 β 6 1 with respect to t
is defined as [19],

Dα,β

a+
f(t) =

(
I
(1−α)β
a+

d

dt

(
I
(1−α)(1−β)
a+

f
))

(t), (2.4)

for any function for which the right hand side expression exists.

Observe that (2.4) reduces to Riemann-Liouville fractional derivative (2.2) when β = 0 and also
reduces to Caputo fractional derivative (2.3) when β = 1.

Lemma 2.1. [20] Let α ≥ 0, β ≥ 0 and f ∈ CL(a, b). Then

Iαa+I
β

a+
f(t) = Iα+β

a+
f(t), (2.5)

for all t ∈ (a, b].

Lemma 2.2. [20] Let t ∈ (a, b]. Then[
Iαa+(t− a)β

]
(t) =

Γ(β + 1)

Γ(β + α+ 1)
(t− a)β+α, α > 0, β > 0. (2.6)
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Remark 1. It is easy to see from the definitions given above that the Riemann-Liouville fractional
derivative of a constant function is not equal to zero while that of Caputo fractional derivative of
constant function is zero.

Definition 2.5. The k-gamma function Γk in the half-plane is defined as

Γk(z) :=

∫ ∞
0

tz−1e−
tk

k dt, Re(z) > 0, t > 0. (2.7)

When k = 1, we obtain the usual gamma function.

Lemma 2.3. Let 0 < α < 1 and k > 0. Then∫ ∞
0

t
α
k
−1e−stdt =

1

s
α
k

Γ
(α
k

)
, s > 0. (2.8)

Proof. Taking m = st as a change of variable, we have the result.

Lemma 2.4. Let 0 < α < 1 and k > 0. Then

Γ
(α
k

)
= k1−

α
k Γk(α), s > 0. (2.9)

Proof. The result also follows by change of variable say y = tk

k
.

Definition 2.6. The Mittag-Leffler function with parameter α is given as

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
, Re(α) > 0 z ∈ C. (2.10)

Observe that Eα(z) = ez for α = 1.
It is defined on Cantor sets as given in ([21] with its graph) as

Eα(xα) =

∞∑
n=0

xαn

Γ(αn+ 1)
, Re(α) > 0. (2.11)

The generalization of Mittag-Leffler function in two parameters α and β, we have

Eα,β(z) =

∞∑
n=0

zn

Γ(αn+ β)
, z, β ∈ C and Re(α) > 0. (2.12)

Definition 2.7. [2] The k-Mittag-Leffler function with parameters α, β ∈ C and k ∈ R is given as

Eηk,α,β(z) =

∞∑
n=0

(η)n,k
Γk(αn+ β)

zn

n!
, Re(α) > 0, Re(α) > 0 z ∈ C, (2.13)

where (η)n,k is the Pochhammer symbol defined by

(η)n,k = η(η + k)(η + 2k) · · · (η + (n− 1)k); n = 1, 2, · · · . (2.14)
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3 Method of Solution
We shall introduce the so called the k-fractional Hilfer derivative as given in [19, 1], FRFT as given in
[22] and an integral operator εηk,σ,λΦ. Some of their properties will be stated in form of lemmas.

Definition 3.1. Let f be sufficiently well-behaved function which have its support in R+ and let α > 0
be a real number. The k-Riemann-Liouville fractional integral is given as

Iαk f(x) =
1

kΓk(α)

∫ x

0

(x− t)
α
k
−1f(t)dt, (3.1)

where Γk(α) denotes the k-Gamma function given in (2.7).
Equivalently, we can write the above k-Riemann-Liouville fractional integral as a convolution

Iαk f(x) =
1

kΓk(α)
[g(x) ∗ f(x)], (3.2)

where g(x) = x
α
k
−1 depending on both k and α.

Definition 3.2. Let f be sufficiently well-behaved function which have its support in R+ and let α > 0
be a real number. The k-Riemann-Liouville fractional derivative is given as

Dα
k f(x) = DI1−αk f(x). (3.3)

where operator D = d
dt

.

Lemma 3.1. Let f be sufficiently well-behaved function and let α be a real number, 0 < α 6 1. The
Laplace transform of the k-Riemann-Liouville fractional integral of the function f is given by

L{Iαk f(x); s} = (ks)−
α
k L{f(x); s} . (3.4)

Proof. Using the properties of Laplace transform of convolution, we have that

L{Iαk f(x); s} =
1

kΓk(α)
L{g(x); s}L{f(x); s}

=
1

kΓk(α)

[∫ ∞
0

x
α
k
−1e−stdx

]
L{f(x); s}

=
Γ
(
α
k

)
ks

α
k Γk(α)

L{f(x); s} (using lemma (2.3))

= L{Iαk f(x); s} = (ks)−
α
k L{f(x); s} (using lemma (2.4)) . (3.5)

Therefore the result follows.

Lemma 3.2. Let f be sufficiently well-behaved function and let α be a real number, 0 < α 6 1. The
Laplace transform of the k-Riemann-Liouville fractional derivative of the function f is given by

L{Dα
k f(x); s} = s

α+k−1
k k

α−1
k L{f(x); s} − I1−αk f(0+). (3.6)

Proof. The proof of this lemma is straight-forward by using the Laplace transform of classical derivative
and the result obtained in Lemma (3.1), given below

L{Dα
k f(x); s} = L

{
DI1−αk f(x); s

}
= sL

{
I1−αk f(x); s

}
− I1−αk f(0+)

=
sL{f(x); s}

(ks)
1−α
k

− I1−αk f(0+)

= s
α+k−1
k k

α−1
k L{f(x); s} − I1−αk f(0+). (3.7)

Therefore the result follows.
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Definition 3.3. Let α, β ∈ R such that 0 < α < 1 and 0 6 β 6 1. We define

kDα,βf(t) =

(
I
(1−α)β
k

d

dt

(
I
(1−α)(1−β)
k f

))
(t), (3.8)

where

Iαk f(t) =
1

kΓk(α)

∫ t

0

(t− τ)
α
k
−1f(τ)dτ. (3.9)

called k-Hilfer fractional derivative of order α and type β.
When β = 0 and k = 1, we obtain the Riemann-Liouville fractional derivative and for β = k = 1, we
get Caputo fractional derivative.

Lemma 3.3. [19] Using definitions (3.3), we have the followings

kDα,β
[
(t− a)

ρ
k
−1
]

(x) =
Γk(ρ)

kΓk(1− α+ ρ− k)
(x− a)

1−α+ρ−k
k

−1 (3.10)

kDα,β
[
(t− a)

ρ
k
−1Eσk,%,ρ(w(t− a)

%
k
)
]

(x) =
(x− a)

1−α+ρ−k
k

−1

k
Eσk,%,ρ+1−α−k(w(t− a)

%
k
) (3.11)

Lemma 3.4. [19]

L
{
kDα,βf(t); s

}
=
sL{f(t); s}

(ks)
1−α
k

−
I
(1−α)(1−β)
k f(0+)

(ks)
(1−α)β

k

, (3.12)

for 0 < α < 1 and 0 6 β 6 1.

Definition 3.4. Let σ, λ, η, υ ∈ C, Re
(
σn+λ
k

)
> 1. Define

εηk,σ,λΦ(t) =

∫ t

0

(t− τ)
λ
k
−1Eηk,ρ,λ(υ(t− τ)

ρ
k )Φ(τ)dτ. (3.13)

Lemma 3.5. [19] The operator εηk,σ,λΦ defined above in (3.13) is bounded on the space of Lebesgue
integrable functions, L(a, b).

Lemma 3.6. [19] Let σ, λ, η, υ ∈ C, Re(σ) > 0, Re(λ) > 0, Re(η) > 0, Re(s) > 0, and |k1−
σ
k υs

−ρ
k | <

1. Then we have

L
{
εηk,σ,λΦ(t); s

}
=

s
ση

k2 k1−
λ
k

s
λ
k (s

σ
k − k1−σk υ)

η
k

L{Φ(τ); s}. (3.14)

Definition 3.5. Let function f be of the class of a rapidly decreasing test functions on R. The Fourier
transform of f is defined as

F {f(x); p} := f∗(p) =

∫ +∞

−∞
eiαxf(x)dx, p ∈ R, (3.15)

and the inverse Fourier transform is given as

F−1 {f∗(p);x} := f(x) =
1

2π

∫ +∞

−∞
e−ipxf∗(p)dp, x ∈ R. (3.16)

Definition 3.6. We define FRFT of a function, f∗α, of order 0 < α 6 1 as

Fα {f(x);α} := f∗α(p) =

∫ +∞

−∞
eα(p, x)f(x)dx, p ∈ R, (3.17)

where

eα(p, x) =


e−i|p|

1
α x, p 6 0

ei|p|
1
α x, p > 0.

(3.18)
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Remark 2. We can obtain the relationship between the FRFT and the classical Fourier transform as

f∗α(p) = Fα {f(x); p} = F1 {f(x);ω} = f∗(ω), (3.19)

where

ω =


−i|p|

1
α , p 6 0

i|p|
1
α , p > 0.

(3.20)

So if
Fα {f(x); p} = F1 {f(x);w} = φ(w), (3.21)

then
f(x) = F−1

α {f∗α(p);x} = F−1
1 {φ(w);x} . (3.22)

Lemma 3.7. Let 0 6 α < 1 and f (n)(x) ∈ φ(R). Then

Fα
{
f (n)(x); p

}
= (−isign(p)|p|

1
α )nf∗α(p), p ∈ R. (3.23)

Lemma 3.8. [22] Let 0 6 α 6 1, any value of β and a function f(x) ∈ φ(R). Then

Fα
{
Dα
β f(x); p

}
= (−iCαp)Fα {f(x); p)} , p ∈ R, (3.24)

where
Cα = sin

(απ
2

)
+ isign(p)(1− 2β)cos

(απ
2

)
. (3.25)

4 Main Result
In this section, we present an application of FRFT and Laplace transform to solving Cauchy-type
problems, involving k-fractional Hilfer derivative and an integral operator given in (3.13) that contain
in its kernel the k-Mittag-Leffler function.

Theorem 4.1. Let f ∈ φ(R), 0 < α < 1, 0 < β 6 1 and 0 < γ 6 1. The Cauchy type problem
kDα,β

t u(x, t) = δDγ+1
ρ εηk,σ,λg(x, t),

I
(1−α)(1−β)
k u(x, 0+) = f(x).

(4.1)

where δ is constant, kDα,β
t is the k-fractional Hilfer derivative and Dγ+1

ρ is the space fractional
derivative in (3.24), is solvable for all values of ρ ∈ R and its solution u(x, t) is given by

u(x, t) = kI
(1−α)(1−β)+k
k f(x)− iδkCγ+1pt

λ
k
−1Eηk,σ,λ

(
υt

σ
k

)
∗ Iα+k−1

k g(x, t). (4.2)

Proof. Using lemma (3.8), we apply the FRFT, f∗γ+1, in x to the equations in (4.1) and obtain

kDα,β
t u∗γ+1(p, t) = −iδCγ+1p

(
εηk,σ,λg

∗
γ+1

)
(p, t), (4.3)

and the corresponding initial condition in FRFT transform gives

I
(1−α)(1−β)
k u∗γ+1(p, 0+) = f∗γ+1(p). (4.4)

We can proceed to apply Laplace transform in t to equations (4.3) and (4.4), having in mind the
results of lemma (3.4) and lemma (3.6), to get

sL{u∗γ+1(p, t); s}
(ks)

1−α
k

−
f∗γ+1(p)

(ks)
(1−α)β

k

= − iδCγ+1ps
ση

k2 k1−
λ
k

s
λ
k (s

σ
k − k1−σk υ)

η
k

L{g∗γ+1(p, t); s}. (4.5)
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This gives
sL{u∗γ+1(p, t); s}

(ks)
1−α
k

=
f∗γ+1(p)

(ks)
(1−α)β

k

− iδCγ+1ps
ση

k2 k1−
λ
k

s
λ
k (s

σ
k − k1−σk υ)

η
k

L{g∗γ+1(p, t); s}. (4.6)

Hence,

L{u∗γ+1(p, t); s} =
f∗γ+1(p)(ks)

1−α
k

s(ks)
(1−α)β

k

− iδCγ+1ps
ση

k2 k1−
λ
k (ks)

1−α
k

ss
λ
k (s

σ
k − k1−σk υ)

η
k

L{g∗γ+1(p, t); s}. (4.7)

Making some re-arrangement, we get

L{u∗γ+1(p, t); s} =
kf∗γ+1(p)

(ks)(ks)
(1−α)β

k (ks)
α−1
k

− iδkCγ+1ps
ση

k2 k1−
λ
k

(ks)s
λ
k (s

σ
k − k1−σk υ)

η
k (ks)

α−1
k

L{g∗γ+1(p, t); s}

=
kf∗γ+1(p)

(ks)
(1−α)(1−β)+k

k

− iδkCγ+1ps
ση

k2 k1−
λ
k

s
λ
k (s

σ
k − k1−σk υ)

η
k

L{g∗γ+1(p, t); s}
(ks)

α+k−1
k

. (4.8)

Using lemma (3.1), we obtain

L{u∗γ+1(p, t); s} = kL
{
I
(1−α)(1−β)+k
k f∗γ+1(p); s

}
−iδkCγ+1pL

{
t
λ
k
−1Eηk,σ,λ

(
υt

σ
k

)
; s
}
L
{
Iα+k−1
k g∗γ+1(p, t); s

}
. (4.9)

Taking the inverse Laplace transform of (4.9) and using the property of Laplace transform of convolution,
we have

u∗γ+1(p, t) = kI
(1−α)(1−β)+k
k f∗γ+1(p)− iδkCγ+1p

[
t
λ
k
−1Eηk,σ,λ

(
υt

σ
k

)
∗ Iα+k−1

k g∗γ+1(p, t)
]
.

Due to the fact from (3.19) and (3.20), the above latest quantity becomes

u∗(ω, t) = kI
(1−α)(1−β)+k
k f∗(ω)− iδkCγ+1p

[
t
λ
k
−1Eηk,σ,λ

(
υt

σ
k

)
∗ Iα+k−1

k g∗(ω, t)
]
.

Then we apply inverse Fourier transform and observing that the first component of the convolution in
the above latest quantity does not depend on ω to obtain

u(x, t) = kI
(1−α)(1−β)+k
k f(x)− iδkCγ+1pt

λ
k
−1Eηk,σ,λ

(
υt

σ
k

)
∗ Iα+k−1

k g(x, t).

The above can be computed using (3.1) and then we have the desired solution.

Theorem 4.2. Let f be sufficiently well-behaved function which have its support in R+, 0 < α < 1
and 0 < β 6 1. The Cauchy type problem

kDα,β
t u(x) = µDα

k u(x) + f(x),

I
(1−α)(1−β)
k u(0+) = C1 and I

(1−α)
k u(0+) = C2

(4.10)

where kDα,β
t is the k-fractional Hilfer derivative and Dα

k is k-Riemann-Liouville fractional derivative in
(3.3), is solvable for all values of µ ∈ R− {0, 1} and its solution u(x) is given by

u(x) =
k

1− µ

[
I
(1−α)(1−β)+k
k C1 − µIα+k−1

k C2 + Iα+k−1
k f(x)

]
. (4.11)
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Proof. We apply Laplace transform to equations (4.10), using the results of lemma (3.2) and lemma
(3.4), to get

sL{u(x); s}
(ks)

1−α
k

− C1

(ks)
(1−α)β

k

= µs(ks)
α−1
k L{u(x); s} − µC2 + L{f(x); s}. (4.12)

This gives
s− µs

(ks)
1−α
k

L{u(x); s} =
C1

(ks)
(1−α)β

k

− µC2 + L{f(x); s}. (4.13)

Hence,

L{u(x); s} =
kC1(ks)

1−α
k

(1− µ)(ks)(ks)
(1−α)β

k

− µkC2(ks)
1−α
k

(ks)(1− µ)
+

k(ks)
1−α
k

(ks)(1− µ)
L{f(x); s}. (4.14)

Making some re-arrangement, we get

L{u(x); s} =
k

1− µ

[
C1

(ks)
(1−α)(1−β)+k

k

− µC2

(ks)
α+k−1
k

+
1

(ks)
α+k−1
k

L{f(x); s}

]
. (4.15)

Applying lemma (3.1), we obtain

L{u(x); s} =
k

1− µ

[
L
{
I
(1−α)(1−β)+k
k C1; s

}
− µL

{
Iα+k−1
k C2; s

}
+ L

{
Iα+k−1
k f(x); s

}]
. (4.16)

The inverse Laplace transform of (4.16) then gives

u(x) =
k

1− µ

[
I
(1−α)(1−β)+k
k C1 − µIα+k−1

k C2 + Iα+k−1
k f(x)

]
. (4.17)

The above can be computed using (3.1) and then we have the desired solution.

5 Conclusion
The solvability of Cauchy-type problems involving k-fractional Hilfer derivatives and an integral operator
with a k-Mittag-Leffler function appearing in the Kernel is made possible using the combination of
FRFT method and the classical Laplace transform method. The elegant nature of Mittag-Leffler
function gives the form of solution presented an easy way to describe it. As a matter of fact, the
combination of fractional Fourier transform method and Laplace transform method presents a wide
applicability to handling related fractional Cauchy-type problems and some special type of fractional
models containing a k-Mittag-Leffler function in their the Kernel.
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