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Abstract 
In the framework of gravitational theory of general relativity, this article has systematically and 
radically solved the problem of galaxy formation and some significant cosmological puzzles. A 
flaw with Einstein’s equation of gravitational field is firstly corrected and the foundations of 
general relativity are perfected and developed, and space-time is proved to be infinite, expansion 
and contraction of universe are proved to be in circles, the singular point of big bang is naturally 
eliminated, celestial bodies and galaxies are proved growing up with cosmic expansion, for 
example Earth’s mass and radius at present increase by 1.2 trillion tons and 0.45mm, respectively 
in a year, in response to which geostationary satellites rise by 2.7mm.
Keywords: Background coordinates; standard coordinates; geodesic; negative pressure; 
 
PACS : 04.20.Jb, 04.25.-g, 98.80.Jk, 95.30.Sf. 
 
 
1 Introduction 
 
Though general relativity obtains considerable success, some significant problems such as the 

problem of singular point, the problem of horizon, the problem of distribution and existence of 
dark matter and dark energy, the problem of the formation of celestial bodies and galaxies, the 
mystery of solar neutrino, as well as the problem of asymmetry of particle and antiparticle, always 
are not solved naturally and satisfactorily. These problems long remain implies strongly that the 

fundamentals of general relativity have flaw and needs further perfection. For the purpose, this 
paper begins with determining the vacuum solution of Einstein’s field equation in the background 
coordinate system, then by correcting rationally Einstein’s field equation from an all new 
perspective these problems get removed.  
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2 The static metric of spherical symmetry in background 
coordinate system   

 
In this paper light’s speed 1c = . According to general relativity, for the static and spherically 
symmetric case, in the standard coordinate system (Weinberg, 1972; Peng and Xieng, 1998), the 
correct form of line element outside gravitational source is given by 

      
1

2 2 2 2 2 2 2 22 21 1 ( sin )GM GMds d dt dl l d d
l l

τ θ θ ϕ
−

⎛ ⎞ ⎛ ⎞≡ − = − − + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

            (1)  

Hereτ is proper time, M is the total mass of gravitational source; l  is called standard radial 
coordinate, doesn’t have clear physical significance and only in the far field is approximately 
viewed as true radius. In order to describe clearly motion of particle and enable general relativity 

to link up with other theories of physics and to compare results one another, it is necessary to
transform (1) into the form expressed in background coordinates. Hence we take ( )l l r= . Here r
is defined as background coordinate (ZHou, 1982; Zhou, 1983; Fock, 1964) and refers to true 
radius which are said and used usually. , ,t θ ϕ  are standard coordinates and can also be viewed as 
background coordinates, which represent true time and angle. In the following we try to 
determine ( )l l r=  by the introduction of an additional transformation equation, and such 
operation is allowed is because metric tensor satisfies Bianchi identity and if a metric is a solution 
of field equation in one coordinate system it is also a solution under arbitrary coordinate 
transformation.  

According to general relativity the dynamical equation of particle outside source is geodesic  
2

0
2 . . . 0d x dx dx dx dx dx

dt dt dt dt dt dt

µ ν λ ν λ µ
µ

νλ νλ+ − =Γ Γ ,                    (2)  

where 0x t= , and indexes , , , , , 0,1,2,3vλ µ σ α β = . Equation (2) can be proved as follows: 

 Using the usual form’s geodesic
2

2 0d x dx dx
ds ds ds

µ α β
µ
αβ+ Γ = , we have 

 
2 2 2

2
2 2 2( ) ( )d x dt d dt dx dt d x d t dx

ds ds dt ds dt ds dt ds dt

µ µ µ µ

= = + =

2
2 0

2( ) ( )dt d x dx dx dx
ds dt dt dt dt

µ α β µ

αβ−Γ , 

 on the other hand, 2( )dx dx dt dx dx
ds ds ds dt dt

α β α β
µ µ
αβ αβΓ = Γ , and adding up yields immediately 

equation  (2)  
 

When a particle of mass m is moving along radius in the static gravitational field of spherical 
symmetry, giving consideration to the speed, in the background coordinate system, in the far field 
(weak field) the radial component of Eq. (2) should reduce to the following relativistic equation 
(3) rather than others  
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                                         2

d dr mGMm
dt dt r
⎡ ⎤⎛ ⎞ = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 ,                                   (3) 

where m refers to relativistic dynamic mass, namely 0
21

mm
v

=
−

. Why the radial component 

should reduce to (3) is that (3) stands for the equality of gravitational mass and inertial mass and 
also stands for the speed of light is the limit one. In order to enable it to reduce to (3) we may 
introduce a transformation equation as follows 

                                    
dl
dr

= 21 exp( )GM GM
l r

− −                                  (4) 

The correctness of Eq. (4) will be seen later, it determines a coordinate transformation of l r→ . 
By means of separating variables, the solution of Eq. (4) is easily given by 

 

( ) 2 2 3 3
1 2

1 1( 2 ) 2 2
2 12

l l GM GMIn l l GM C r GMInr G M G M
r r

− + + − = + − − + +⋅⋅⋅ (Θ ) 

Here constant 1C  is determined by the continuity of function ( )l l r=  on boundary of source, and 

the back equation (23) can give out the boundary value ( )el r , er  denotes source’s radius 

(celestial body radius). Note that Θ makes sure l r≈  for r →∞ , prove as follows 

Form equation (4) we see l →∞  for r →∞ , and considering of lim 0
x

Inx
x→∞

= , it holds that 

for l →∞  the left-hand side of Θ  reads  
 

2 2 21 1 1GM GM GM GMl Inl In l
l l l l

⎛ ⎞⎛ ⎞
− − − + − ≈⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

,  

and for r →∞ , the right-hand side of Θ  is 
2 2 3 3

1
2 31

2 12
C GM G M G Mr Inr r
r r r r

⎛ ⎞
+ − − + + ⋅⋅ ⋅ ≈⎜ ⎟

⎝ ⎠
 

 Under transformation of Eq. (4), (1) becomes the following (5) which is an exact external solution 
expressed in background coordinates , , ,r t θ ϕ .  

                 ( )2 2 2 2 2 2 22 21 exp( ) sinGM GMds dt dr l d d
l r

θ θ ϕ⎛ ⎞= − − + − + +⎜ ⎟
⎝ ⎠

             (5)  

Note that now ( )l l r=  is already a specific function of r , which is determined by Θ . 
 In the far field, the line element (5) provides: 

 00
2 21 1

( )
GM GMg
l r r

= − + ≈ − + , 11
2 2exp( ) 1GM GMg

r r
= − ≈ − , 2 2

22 ( )g l r r= ≈ , 

2 2 2 2
33 ( ) sin sing l r rθ θ= ≈ , 1

00 2

GM
r

Γ ≈ , 1
11 2

GM
r

Γ ≈ , 0
01 2

GM
r

Γ ≈ , 1
01 0,Γ ≈  0

00 0,Γ =  

 and introducing them into (2) and putting 1µ = , 0d dθ ϕ= = , 
drv
dt

= ,  
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we obtain 

                                                 
2

2
2 2(1 ) 0d r GMv

dt r
+ − = ,                                   (6) 

which is equivalent to Eq. (3).  Proof: assume 0,d dθ ϕ= =  0
21

mm
v

=
−

, from equation (3) 

we have 
2 1 2

2 1 2
02 2

(1 )0 [ (1 ) ]d vd dr mGM dv mGMm m v v
dt dt r dt dt r

−
−−⎡ ⎤⎛ ⎞= + = + − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

2 2
2 3 2 2 1

02 2 2 2(1 ) (1 )d r GM d r GMv m m m v
dt r dt r

− −⎡ ⎤
= − + = − +⎢ ⎥

⎣ ⎦
,  

which immediately yields (6). 
 
Consequently, we conclude that (5) is the appropriate line element which satisfies the 
requirements completely. 

As a serious emphasis, we must point out that using directly l r=  in (1) gives another 
exact solution, namely the following (7) 

1
2 2 2 2 2 2 22 21 1 ( sin )GM GMds dt dr r d d

r r
θ θ ϕ

−
⎛ ⎞ ⎛ ⎞= − − + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.    (7) 

However, in accordance with (7) the corresponding geodesic can’t reduce to (3) in weak field, 
instead it reduces to 

2
2

2 2(1 3 ) 0d r GMv
dt r

+ − =                                   (8) 

Proof:  
 

(7) provides 00
21 GMg

r
= − + ,

1

11
21 GMg

r

−
⎛ ⎞= −⎜ ⎟
⎝ ⎠

, 2
22g r= , 2 2

33 sing r θ= , 0( )gµν µ ν= ≠

, 1 11 1 11
11 1 1 2

1 ( )
2 (1 2 )

g g g GMg
x x x GM r r
ρ ρρ

ρ

∂ ∂ ∂
Γ = + − = −

∂ ∂ ∂ −
, 0

01 2(1 2 )
GM
GM r r

Γ =
−

,

1
00 2

(1 2 )GM r GM
r

−
Γ =  1

01 0,Γ =  substituting them into (2) and taking 1µ =  and 

0d dϕ θ= =  yield immediately  
 

2
1 1 2
00 112

d r v
dt

= −Γ −Γ + 2 0 2
01 2 2

2 32 (1 )
(1 2 )

GM GM GMv v
r r GM r r

Γ = − − +
−

, and for

2 1GM
r

<< , this equation obviously reduces to Eq. (8), which isn’t Eq. (3). It is easily found that 

Eq. (8) not only goes against the elementary principle of equality of gravitational mass and inertial 
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mass but also leads to incorrect conclusion that gravitational field becomes repulsive one for a 
particle whose speed exceeds 0.58c. Hence Eq. (8) must be wrong, and implies (7) can’t describe 

high speed and has shortcoming as compared with (5).  
Note that the angle of orbital precession of Mercury described by (5) is still the same as that 
described by line element (7) (Peng and Xieng, 1998), it doesn’t change under the transformation 
of radial coordinates. In a word, (5) is the correct line element expressed in background coordinate 
system  
And again, though general relativity doesn’t exclude to use other coordinates, we must use 
background coordinates when we take geodesic to compare with Newtonian gravitational law 
because the meaning of every term in the geodesic is not clear in other coordinates and the 
comparison cannot realize. 
                               
3 Modification of Einstein’s gravitational field equation  
 
It is seen from the above discussions that in the case of weak field approximation, 

00
21 GMg

r
= − +  and 11

21 GMg
r

= −  instead of the previous 11
21 GMg

r
= + , which are just 

the requirement of that (6) can hold and hint us to alter the coupling constant γ  in gravitational 

field equation Rµν = (Tµνγ − 1 )
2

Tgµν . Note that the coupling constant γ  relates to the form of 

weak field approximation metrics gµν and is determined in the course of solving weak field 
approximation metrics, and the change of the metrics means that the coupling constantγ  need 
change too. And now we set out to reconfirm the coefficient γ  by solving weak field 

approximation metrics gµν .  

Here  Tµν ( )p U Uµ νρ≡ + + pgµν ,  and 
dxU
d

µ
µ

τ
≡ , U g Uν

µ µν≡ .  

And from 2 2ds d g dx dxµ ν
µντ= − = , we have 1U U µ

µ = − , then it follows that  

( ) ( ) 4 3v vT g p U U pg g p U U p pµν µν µ
µ µ µρ ρ ρ= + + = + + = −  

Similar to previous calculation to appear in standard textbooks, the following discussions are still 
carried out in right-angled coordinate system. For weak field we have g hµν µν µνη= +

 
and 

1vhµ << . Here Minkowskian metrics 00 1η = − , 11 22 33 1η η η= = = , 0µνη = (µ ν≠ ).  

Omitting the terms of less than 2( )o h  we have (Weinberg, 1972)  

1 ( )
2

g g g
x x x
ρα ρβ αβµ µρ

αβ β α ρη
∂ ∂ ∂

Γ = + −
∂ ∂ ∂

, h hµ µρ
β ρβη= , and h h hµ µρ

µ µρη= = .  

 
Correspondingly, Rich tensor 

, ,R σ σ
µν µσ ν µν σ= Γ −Γ = 1

2
 , ,hσλ

µν λ ση  +
1
2

( , , , , , ,h h hλ σ
µ ν µ λ ν ν σ µ− − ) .  
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Note that , AA
xµ µ

∂
≡
∂

.  

May as well use harmonic condition 

 ,hσ
µ σ =

1
2

,h µ .                         (9) 

Differentiating Eq. (9) with respect to xν  yields , ,hσ
µ σ ν

1
2

= , ,h µ ν . Similarly, we 

have , ,hσ
ν σ µ

1
2

= , ,h ν µ . Using , , , ,h hν µ µ ν=  and adding up the above two equations 

yield , , , , , ,h h hλ σ
µ ν µ λ ν ν σ µ− − = 0 . Hence, we obtain 

2
2

2

12 ( ) 2 [( ) ]
2 2

h ph T T p U U
t
µν

µν µν µν µ ν µν
ργ η γ ρ η

∂ −
∇ − = − = + +

∂
,  

which have retarded solutions 
22( ) ( ) ' ' '

4
p U ph dx dy dzλ λλ

λλ
ρ ρ ηγ

π ξ
+ + −

= − ∫ .  

Here 2 2 2( ) ( ) ( )x x y y z zξ ′ ′ ′= − + − + − ,  , , 1, 2,3i j k = , the terms in the integral sign take 

the values of 't t ξ= − . Note that the above retarded solutions can be used in arbitrary cases of 

motion of source. Hence, in order to get the external metrics 00
21 GMg

r
= − +  and 

21jj
GMg
r

= −  in the case of static spherical symmetry ( 0 0 1U U µ
µη= = − , 0jU = ), it must be 

required that   the constant coefficient 4 Gγ π=  and simultaneously pressure p  satisfies 
 

 ' ' 'p Mdx dy dz dx dy dz
r

ρ
ξ ξ

′ ′ ′ = − = −∫ ∫  for 2 2 2
er x y z r= + + ≥ , which means 

pdxdydz dxdydz Mρ= − = −∫ ∫ .                           (10)  

 
In view of (3) it must hold that 0 0jh =  in the static case. Next we solve for the other three ijh . 

Inserting h hσ σλ
µ λµη=  and 00 113h h h hνλ

νλη= = − +  into (9), and noticing 11 22 33h h h= = , 
i j
j ij ji ih h h h= = = , 0 0 0i

ih h= = , 0
0 0i ih h= − = , we obtain three equations as follows  
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13 1 23 2 11 00 3

12 1 23 3 11 00 2

12 2 13 3 11 00 1

1, , ( ),
2
1, , ( ),
2
1, , ( ),
2

h h h h

h h h h

h h h h

+ = −

+ = −

+ = −

 

After a certain calculation we arrive in 

 11 00 11 00 11 00
1, , ( ), , ( ), , ( ), ,
4ij i j i i j j k kh h h h h h h⎡ ⎤= − + − − −⎣ ⎦  

Here i j≠ ， i k≠ � k j≠ ，and , , 1, 2,3i j k = . With the condition 0ijh →  for 

r →∞ , ijh  are solved by  

1
4jih =

j ix x

∞ ∞∫ ∫
2 2 2

11 002 2 2[( )( )]
( ) ( ) ( )i j k h h
x x x
∂ ∂ ∂

+ − −
∂ ∂ ∂

j idx dx  

Note that 1 2 3, ,x x x y x z= = = . On the other hand, for the weak field case Bianchi identity can 

give the ordinary conservation law , 0T µ
ν µ = .   

Proof: 
 

2
; , , ,( )R R R R R o h Rµ µ µ λ µ λ µ µ

ν µ ν µ λµ ν λν µ ν µ ν µ= + Γ −Γ = + =  ,  

then ; ; ; , ,
1 1 10 ( )
2 2 2

R R R R R Rµ µ µ µ
ν ν µ ν µ ν ν µ νδ= − = − = − ,  

moreover field equation gives 

R Tγ= −  and , , , , , ,
1 1 1( ) ( )
2 2 2

R T T T T T Rµ µ µ µ µ
ν µ ν ν µ ν µ ν ν µ νγ δ γ γ= − = − = + ,  

hence , 0T µ
ν µ = .  

For the static case, using , , ,[( ) ] ( ) 0T p U U pµ µ µ
ν µ ν µ ν µρ δ= + + =  yields 0p

xν
∂

=
∂

, 

considering of 2
00( ) 16jjh h Gpπ∇ − = ,

 
it is verified that  

2 1
4jih∇ =

j ix x

∞ ∞∫ ∫
2 2 2

2
11 002 2 2[( ) ( )]

( ) ( ) ( )i j k h h
x x x
∂ ∂ ∂

+ − ∇ −
∂ ∂ ∂

j idx dx 0=  

That is to say, vh µ  worked out here is indeed reasonable approximate solution of field equation 

with 4 Gγ π= . 
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 And again, as a special case of spherical symmetry, namely 0
xν
ρ∂
=

∂
, since 0p

xν
∂

=
∂  we infer 

from (10) a very useful result 
p ρ= −   

which can be regarded as the form of pressure in weak field in the case of that ρ  is 

homogeneous. It is obviously too subjective to take pressure for zero in advance, in fact, by 
serious calculation we see that the pressure is negative where matter exists and the place where 
matter exists turns out to be so-called pseudo-vacuum (Gondolo and Fresse, 2003; Guth, 1981). 
This is a new important result which isn’t in agreement with traditional opinion.  
To sum up, we can conclude that in any coordinate system gravitational field equation is revised 
as 

                              
1 4
2

R Rg GTµν µν µνπ− =  ,                                (11) 

where 4 replaces previous 8− , obviously Eq. (11) preserves general covariance.  Of course, (1) 
and (5) satisfy Eq. (11) because both p and ρ  vanish outside source, Eq. (11) becomes 0Rµν = . 
   
4 Applications and tests of Eq. (11) in cosmology  
 

With l  as standard radial coordinate, in the co-moving coordinates Friedmann-Robertson-Walker 
metric is given by (Weinberg, 1972; Sawangwit and Shanks, 2005). 

                2 2 2 2 2 2 2 2 2
2

1( ) sin
1

ds dt a t dl l d l d
kl

θ θ ϕ⎡ ⎤= − + + +⎢ ⎥−⎣ ⎦
 

( )a t is expansion factor. 00 1g = − , 
2

11 2

( )
1
a tg

kl
=

−
, 2 2

22 ( )g a t l= , 2 2 2
33 ( ) sing a t l θ= , 

0( )gµν µ ν= ≠ , and substituting they into (11) yields 

 ( )2
24( ) ( )

3
Gda t k a tdt

π ρ+ = −                                (12)   

Consequently k must be negative, cosmos is so far proved infinite or open. And again, in virtue of

; ; ; ; ;( ) ( ) 2 ( ) 2 ( ) 0v
vT nU U U U U U Uαβ µ µ µ

β µ β µ β µ β= = = = = , it follows that 
3 3( ) 0d a pdaρ + =  and 

                                                   
1 0pd d
n n

ρ⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                                    (13) 

Here n represents the density of particle (galaxy) number. Since ρ  is assumed homogeneous, we 
may use the weak field condition p = −ρ , and substituting it into Eq. (13) yields 0dρ = , that is 
to say, 0p ρ= − =&&  or 

0p constρ ρ= − = = − ,                                    (14) 
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which is the most appropriate expression of energy conservation in infinite spacetime and 
indicates the singular point of big bang did not exist. In addition, (13) implies the mass of galaxy 
changing with cosmic expansion since nρ  stands for per particle mass. And further, the solution 

of Eq. (12), namely expanding factor, is given by  

 04( ) sin
3
Ga t A t π ρ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

.                                    (15)  

 Here A  is a positive constant. So far cosmic expansion and contraction are proved to be in 
circles. Note that（15）shows that the expansion of the present universe is decelerating but not 
accelerating this fact agrees to the newest conclusions (Dominik J, 1993). 
Now we compute the relation between distance and red-shift. May as well put 0( ) 1a t = , the 

light from a galaxy to us satisfies (Weinberg,1972) 
( )
11 z

a t
+ =  and 2 ( )

dadz
a t

= − .  

Here z denotes red-shift. And writing 0
02

0

4
3

G q
H

π ρ
= , 0 0( )H t H= ，we infer from Eq. (12)  

1 2
0 0 0(1 )(1 )daH a H q z q

dt
−≡ = + + −  ， 2

0 0(1 )k H q= − + .  

Note that the subscript “0” refers to the present-day values. For the propagation of light line 

2 0ds = , then 
2( ) (1 )

dt dz dl
a t H kl

= − = −
−

，
0

Z dz
H

=∫ 20 1

la dl
kl−

∫ . al  denotes the galaxy’s 

invariant coordinate. In view of luminosity-distance (1 )Ld z= +
0

la

∫ 21
dl

kl−
, we work out 

a new relation between distance and re-shift 
 

2
0 0 0

0
0 0

( 1) 1 ( 1)( 1)1
1 1 1L

z q q z qzH d In
q q

+ + + + + −+
=

+ + +
                      (16) 

 
As 0z → , expanding the right hand side of (16) into power series with respect of z , (16) 
becomes  

2
2 30 0 0

0
1 3 2 1

2 6L
q q qH d z z z− − −

= + + + ⋅ ⋅ ⋅ ,  

which is the same result as that obtained via pure kinematics. The curved line in figure 1 (Dai zi 
Gao, 2005) is the image of (16) with 0 0.14q =  and 1 1

0 70H km s Mpc− −= ⋅ ⋅ . The situation 
described by the curved line agrees well with the recent data of observations. Note that recent 

observations give 0
0 2

0

4 0.1 0.05
23

Gq
H
π ρ Ω

= ≡ = ± . (Linder, 2003; Hamuy, 2003; Alcaniz, 2004 ) 



 

 
 No

, an

(a t

H

as 

whi
tim
equ

whi
The
 
And
look
of t
 

 An

0v

ote that the spo

nd the unit of

) 0t =  (at th

2
3

a G
a

π ρ
= =
&

ich agrees with
e. Writing a g

uivalent to a pro

                   

ich implies tha
e formula (18) 

d again, becau
ked as the rule
today, we find 

nd also dedu

0 0 0.4H r= =

ots in the figure

f Ld is Mpc N

he moment, t

2
3
Gctg tρ π⎛

⎜⎜
⎝

h observations 

galaxy’ mass 
oportional coef

                       

at galaxies can
defines how a 

use any point c
e of mass’s cha
that the increa

m∆

uce that the 
45mm a .  

British Journa

Fig. 1.

e 1 represent g

Next we calcu

 may as we

3
Gρ ⎞

⎟⎟
⎠

, in the ca

 0 =
tg

t
H

. Besides, we c
( )m t , taking 

fficient, immed

          1
3

1

( )
( )

m t
a t

=

n grow up with
galaxy mass c

can be thought
ange of any cel
se of the earth’

3
0

0 3
0

( 1[
( )

a tm
a t

+
=

expanding 

l of Mathematics

 
. The Recent H

galaxies. Dista

ulate “our” cos

ell take 0 ) t

ase that 0q take

1
0

0 0

g q
H q

−

=1.37

can also compu
account of ρ
diately it is con

2
3

2

( )
( )

m t
a t

=  ,      

hout mergers a
changes with ev

t the centre of 
estial body or 
’s mass in a ye

0
1) 1] ( ) 3m t− ≈

speed of th

s & Computer Sc

Hubble diagra

ance-Modulus 

smic age, nam

to today. Wri

es 0.14 “our” c

107 10 a× ,      

ute how a gala
const Nm= =

ncluded that  

                      

and consists w
volution of uni

universe’s exp
galaxy. And ap

ear is  

0 03 12.4H m =

he radius of 

cience, 1(3): 141-

 

am 

is equal to 5lg
mely the time 

iting 0( )H t H=

cosmic age is c

                       

axy’s mass cha
3( ) ( )m t a t , w

            

with recent obs
iverse.   

pansion，（18
pplying (18) to

1446 10 kg×      

f the earth 

 
 
 
 
 
 
 

-164, 2011 

150 

g 25Ld +  

from last 

0H , from

calculated 

   (17) 

anges with 
where N is 

  (18)  

servations. 

8）can be 
o the earth 

   (19) 

is today 



 
 
 
 
 
 
 

British Journal of Mathematics & Computer Science, 1(3): 141-164, 2011 

151 
 

By the way, from 0
0 0

4( ) sin 1
3
Ga t A t π ρ⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠

 we can decide constant 

0
0

41 sin
3
GA t π ρ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, and further we have the following relation of reshift Z and universe 

time t  

 0 0
0

1 4 41 sin sin
3 3( )
G Gz t t

a t
π ρ π ρ⎛ ⎞ ⎛ ⎞

+ = = ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

Here t  is the time at which photons was given out from the celestial body. The relation can be 
used to evaluate low limit of celestial body age.   
 
5 Exact interior solution of Eq. (11) and mechanism of celestial 
body’s expansion. 
 
In the case of static spherical symmetry, inside a celestial body (gravitational source), with l  as 
standard radial coordinate the exact interior solution of Eq. (11) is given by .  

2ds = −
1

2
( )exp C + ( ) 1el

l

lf l dl
l

ω −⎡ ⎤⎛ ⎞+⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫
2dt  

1( )1 G l
l
ω −

⎛ ⎞+ +⎜ ⎟
⎝ ⎠

2 2 2 2 2( sin )dl l d dθ θ ϕ+ +                               (20)
 

in which 2
0

( ) 4 ( )
l

l l l dlω π ρ≡ ∫ , 3
2( ) 4 ( ) ( )Gf l l p l l

l
π ω⎡ ⎤≡ +⎣ ⎦ , and ( )e el l r= . And constant 

2
2[1 ]

e

GMC In
l

= − , it makes sure 00g  is continual on the boundary of the celestial body. Note 

that as scalar = ( )= ( )l rρ ρ ρ% , = ( )= ( )p p l p r% , and outside gravitational source both p and ρ  

vanish, namely ( ) ( ) ( ) ( )=0l r p r p lρ ρ= = =% %  for er r> .  
In order to determine the interior form of (20) in background coordinates, Eq. (4) is naturally 

extended as inside source  
dl
dr

=
( )1 G l

l
ω

+  exp ' ' 'G dx dy dzρ
ξ

⎛ ⎞
−⎜ ⎟
⎝ ⎠

∫ .                (21) 

 Obvious under the transformation of Eq. (21), line element (20) turns into  

2ds = −
1

2
2

( )exp C + ( ) 1
le

l

lf l dl dt
l

ω −⎡ ⎤⎛ ⎞+ +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫  
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                          exp 2 ' ' 'G dx dy dzρ
ξ

⎛ ⎞
−⎜ ⎟
⎝ ⎠

∫ 2 2 2 2 2( sin )dr l d dθ θ ϕ+ + .        (22) 

Here ( )l l r=  is a specific function of r , which is determined by Eq. (21). Line element (22) is 
just the exact solution looked for and expressed in background coordinates , , ,r t θ ϕ .  Note that the 

solution of Eq. (21) satisfy the initial condition ( )0 0l = . In fact, because there is no acceleration 

tendency for every direction at the centre gravitational source, 00dg dr must be zero, and from 
(22) we have  

         00 000 dg dgdl
dr dr dl

= =
1 1

2
( ) ( )( ) 1 exp C + ( ) 1el

l

dl l lf l f l dl
dr l l

ω ω− −⎡ ⎤⎛ ⎞ ⎛ ⎞= + +⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

∫ ,  

which indicates ( ) 0f l =  at the centre, and so that ( )0 0l l= =  at the centre.  

And if 3

3
4 e

Mconst
r

ρ
π

= = , then we have 

  2
3

3' ' '
2 2e e

M Mdx dy dz r
r r

ρ
ξ

= −∫ ，
2 3

30
( ) 4 ( )

l

e

Ml l l dl l
r

ω π ρ= =∫ , the solution of Eq. (21) is 

easily given by 
3

2
3 31e

e e

r GM GMIn l l
GM r r

⎛ ⎞
+ + =⎜ ⎟⎜ ⎟

⎝ ⎠

2
3 5

3 3
1
406 e e

GM GMr r r
r r

⎡ ⎤⎛ ⎞
⎢ ⎥+ + + ⋅⋅⋅⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

3exp( )
2 e

GM
r

−         (23) 

Though ρ , generally speaking, isn’t constant, we may take its average value or piecewise 

integrate in practice for the convenience of calculation. For example, on the surface of Sun 
86.96 10er r= = × m, M = 301.99 10× kg, using (23) namely taking average value of ρ  we can 

work out the surface’s 8( ) 6.96 10el l r= = × m 1720− m, which is highly equal to Sun’s radius. 

And likewise, we can work out 6371 0.00038l km km= −  on Earth’s surface, and this almost 

equals Earth’s radius (6371km).  

So far, using the continuity of ( )l l r=  not only we can determine the constant 1C  but also 

can calculate the deflected angle of light line on the surface of Sun. For photon’s propagation 

outside Sun from (5) we have  

( )2 2 2 2 2 2 22 20 1 exp( ) sinGM GMds dt dr l d d
l r

θ θ ϕ⎛ ⎞= = − − + − + +⎜ ⎟
⎝ ⎠

 

 ( )
1

2 2 2 2 2 22 21 1 sinGM GMdt dl d d l
l l

θ θ ϕ
−

⎛ ⎞ ⎛ ⎞= − − + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.  
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Similar to former calculation, the deflected angle is given by
4 4 1.78''

( )e

MG MG
l l r

α = = = , 

which is more consistent with observational result (1.89 '' ) compared with former theoretical 

value 
4 4 1.75''

e

MG MG
r r

α = = = .  

On the other hand, the conserved law gives out  

( ) ( ) 13 22 ( )
2

dp G p l p l lG l
dl

ωρ π ω
−⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
.                    (24) 

On the boundary the gravity acceleration should be continual, according to (2), using (4), (5), (21), 
(22) we have 
 

1
00( )Γ

er r+=
1
00( )= Γ

er r−=
, that is, 11 00( )dgg

dr er r+=
11 00( )dgg

dr
=

er r−=
,   

 
it follows that 

              
21dl d GM

dr dl l
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ er r+=

1

2
( )exp C + ( ) 1

le

l

dl d lf l dl
dr dl l

ω −⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= +⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ er r−=  
 

And after simplifying further, it becomes  

3[4 ( )] 2 2 ( )e e e e el p l l GM M l G lπ ω ω+ − = − +                              (25) 

which is the boundary condition p must satisfy, and the condition determines p negative within 
celestial body.  

For general cases, inside source, gravitational field is still weak, which means ( )l l r r= ≈ , 
2 1GM

r
<<  , and from (25) the boundary pressure 3

3
4 e

Mp
r

ρ
π

≈ − = − , which is consistent 

with (10). Here ρ  denotes the average of matter density  
As an emphasis, we must point out that when (1) or (5) is applied to a mass point of the surface 

of the static source, it holds that 2 220 (1 )GMds dt
l

≥ = − − , which indicates that 
21 GM

l
−  of 

static source is nonnegative. 
  Next let us consider a small volume iV  of mass im  inside source, idV  denotes iV ’s change 

caused from the expansion of space-time, in view of Eq. (12) we have i i idm p dV= − ，hence  

      ( )
3

3

( )( ) ( )
( )

i i
i i i i i

i i

m dV da td d p p
V V a t

ρ ρ ρ= = − + = − + , which means that for arbitrary 

point it holds that  
3

3

( )
( )

p da t
t a t dt
ρ ρ∂ +
= − ⋅

∂
                                  (26) 
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 (26) determines how matter density changes locally. It is seen from (26) that when celestial 
bodies expand with cosmic expansion its density may be unchanging in the case of 0pρ + = .
So far, we deduce that bursts of celestial bodies and formation of earthquakes originate from 
unceasing accumulation of inside matter and change of distribution; and it is the negative 
pressure that gets matter in celestial body continuously product. 
 
6 Cracking of the problem of dark matter 
 

The negative pressure as important gravitational source is invisible , and it is the negative pressure 

that appears as the form of dark matter and leads to the phenomenon of missing mass, or say that 

so-called dark matter is just the negative pressure, this fact is showed as follows. 

Speaking generally, within a galaxy the metric field is weak field, and when a galaxy is treated as 
a celestial body of spherical symmetry, according to the discussion in section 3, within the galaxy 

( 0 er r≤ ≤ ) pressure 0p const= ≠ . And from (10) we infer 3
3
4 e

Mp const
rπ

= = − , and 

further we have 

 00
3ph G dx dy dzρ
ξ
+ ′ ′ ′= − =∫  

( )1 2 2 2
0 0 0

4 6 2
r r re

eG r r dr rdr rdr G pr G prπ ρ ρ ρ π π−− + − − +∫ ∫ ∫  

According to (2) the gravity acceleration (or gravitational field strength) within the galaxy is given 

by 

1 200
00 2 20

1 2 ( )2 2
2 2

rdh G Gm rg Gpr r dr Gpr
dr r r

ππ ρ π= −Γ = = + = +∫  

where 2

0
( ) 4

r
m r r drπ ρ≡ ∫ , and  g may be positive or negative since pressure is negative, 

and the negative g  indicates the direction of acceleration is towards centre. And according to (2) 

the corresponding round orbital speed Tv  satisfies  

                                       2 2 ( )2
2T

Gm rv gr Gpr
r

π= − = − −  ,                                      (27)    

From (27) it is seen that when ( )m r looks even on the verge of zero near the centre of the galaxy 
the speed v  can become high, too, and this explains so-called missing mass. Again, from (27) we 
get  

2 32 4 ( )Trv Gpr Gm rπ= − − , and if v  is a constant between 1r  and 2r , differentiating this 

equation and  using 2 2 2 1
1 2 13

1

( )( ) 3( ) 2
2 2 2T

e

Gm rGm r MGv r r r Gpr r
r r r

π≤ ≤ = − − = −   yield  
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2
2 1

1 2 12 3 3 2 2
1

( )9 3( ) 3
2 4 4 4

T

e e

v m rM Mr r r p r
Gr r r r r r

ρ
π π π π

≤ ≤ = − − = − +         (28)   

which is the condition a typical spiral galaxy with a halo satisfies.  
May as well set 1 2r nr=  ( 0 1n< < ), then 

2

1

2 2 3 1
2 1 23

3 ( )( ) ( ) 4 (1 )
r

r
e

M m rm r m r r dr n r
nr

π ρ= + = − +∫ , 

 and in consideration of 20 ( )m r M≤ ≤  we concluded that  

3 31
2 2

( )0
3 (1 ) e
nM m rr r
nM n

−
≤ ≤

−
                                  (29) 

which indicates it is impossible for 2r  to arrive at the galaxy’s edge er  in the case of 2 3n <
. Obviously, if ρ  begins to decrease from 2r  to er  both Tv  and g  begin to increase. Of course, 

it isn’t easy to observe the speed of the particles between 2r  and er  because near the edge er  
matter becomes virtually very thin. The curve in figure 2 describes the situation predicted by (27) 
and (29), and it is in conformity with recent observational results (Cayrel et al., 2001）.  
So far, we conclude that so-called dark matter is just the effect of the negative pressure, and the 

dark matter (Genzel et al., 2006; Li, 2008, Gaugh, 2008) puzzle has naturally been solved. Of 

course, so-called dark energy problem is also removed since cosmological constant is reconfirmed 

as zero and the concept of dark energy becomes unnecessary in the new amendment.  

 
 

Fig. 2. The velocity distribution diagram 
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7 Motion in centre field and galaxy formation 
 
Equation (14) indicates that not only space is expanding but also celestial bodies or galaxies 
themselves, that is, like a expanding balloon, the ink prints on it proportionally expand also. To 
illuminate galaxy formation clearer we investigate the motion in centre field. Let M  denote mass 
of centre body. Generally speaking，its gravitational field is weak, geodesic reduces to Newton’s 
law, for a object moving around the centre body we have  

 
2 2

2

4 r GM
T r
π

=  ,                                                        (30) 

where r  is the radius of round orbit, T  is revolution period. Noticing M  to be variable now and 
to satisfy (18) and using (30) we infer 
 

 ( )
2

31 ( ) ( )r r T T a t t a t r∆ = + ∆ + ∆ −  from t  to t t+ ∆ . And putting 0t∆ →  we have 

2
3

dr r dTv rH
dt T dt

≡ = + .                                      (31) 

where the final term is explained as perturbation and gravitational radiation. For instance, 

apply (31) to the motion round today’s Earth, for geostationary satellite, neglecting perturbation 

and gravitational radiation, namely taking 0 0dT = we find that its orbit radius will increase by 

0 2.7r∆ = mm in a year. And for the motion of Moon, observations show that its orbit radius 

increases by 0.38cm in a year today, then using (31) we conclude that the orbit period 0T  of 

Moon will slow by 0.0001s in a year today. When (31) is used to the edge of a spiral galaxy, it is 

concluded that the terminuses of spiral arms gradually stretch outward. Of course, other points 

near the terminuses continuously follow and form involutes. See the following figure 3.  

Expanding centre Gradually stretching out arm  
 

Fig. 3. Sketch map of formation and evolution of spiral arms  
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Eq. (31) means that separating speed from centre lies on v rH=  neglecting perturbation and 
radiation damp.  
It is important to realize that the spin of a system is the composition of orbit motion of many 
particles, spin and orbit motion do not have essential difference. And for celestial body’s 
expansion, lying on v rH= means its spin period not to change.   
Note that the existence of equation (31) doesn’t mean the destruction of conservation of angular 
momentum because mass M is connected with the factor ( )a t , which embodies the interaction 

among galaxies, the non-conservation of angular momentum of individual galaxy is admitted.  
Again, the fact that space, celestial bodies and galaxies simultaneously expand proportionally 
links the homogeneity of today’s universe in a large range with that of early universe in a small 
range, because the large range is just the amplification of early the small range. Background 
radiation has proven early universe to be homogeneous in quite small range.  Therefore our 
conclusion is in accordance with observations.  
The following figure 4 is the global picture of galaxy evolution and distribution under constρ =  

in different stages, the earlier, the smaller and the denser. Figure 5 is the picture of galaxies seen 

by today’s telescope, and the farer, the earlier and the evener. Naturally, the microwave 

background radiation measured today is the compositive effect of various photons emitted by 

innumerable remote galaxies, whose distances to us are unidentifiable, which comprised infinitely 

deep thin gas and can absorb any frequency photon and therefore possess black body character. 

 

            Earlier                            Early  Today 

 
 

Fig. 4. The global picture of galaxy evolution and distribution in different stages 
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               Background radiation source    

Galaxy Telescope 

 
Fig. 5. The actual picture of galaxies seen by today’s telescope 

 
Note that the horizon at moment 0t >  is now from (15)  

( ) ( )0 00 0

1( ) ( ) sin 4 3 sin 4 3
( )

t t

hd t a t dt t G dt t G
a t

π ρ π ρ≡ = = ∞∫ ∫  

So-called horizon puzzle or homogeneity puzzle does not exist in the present theory framework at 
all. Naturally, the microwave background radiation measured today is the compositive effect of 
various photons emitted by unnmberable galaxies remote, whose distances to us are 
unidentifiable，which comprised infinitely deep thin gas and could absorb any frequency photon 
and therefore possess black body feature. 

Note that the state that horizon vanishes is unobservable though ( ) 0hd t = for 0t = , because 

any observation needs a lag of time t∆  
 

8 Quantum process of continuous creation of matter in celestial 
bodies  

 
P ρ= −  tells us that the negative pressure in celestial bodies is actually a negative energy field, 
and p and ρ  excite with each other and generate simultaneously. Connecting with particle 
physics it is naturally deduced that in celestial bodies many particle-antiparticle pairs (including 
neutron and antineutron, proton and antiproton, electron and positron and so on) can ceaselessly 
produce and annihilate, the antiparticles lie in negative energy level（can’t be observed ）, the 
particles lie in positive energy level, and the absolute value of energy of particle and antiparticle is 
equal. Let t∆  denote the lifetime of a kind of particle-antiparticle pairs, namely the average time 
from production to annihilation, according to uncertain principle the range E∆  of energy satisfies  

                                                        
2

E
t

∆ ≥
∆
h

.                                                           (32) 

which shows that instantaneous energy of new particle may be very high. Note that not all of the 
particles annihilate as soon as they come into being, only those which don’t not have opportunity 
in the time t∆  to react with the surrounding particles or to collide and change their energy can 
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annihilate, once the reaction with other particles or the collision occur the annihilation no longer 
carry out, and in this case the negative energy field detains a negative energy antiparticle while the 
particle becomes constituents of matter. Therefore, the negative energy field is too a quantum field 
to consist of various negative energy antiparticles. Of course, an antiparticle of negative energy 
ε−  can be excited to positive energy ε  by a meson of energy 2ε  and becomes the antiparticle 

that can be observed. For no other reason than that many antiparticles lie in negative energy level 
and can’t be observed, we perceive that particles and antiparticles aren’t symmetrical. As a result 
of general relativity, equation (14) in section 4 exposes already that matter and antimatter are 
symmetrical. 
Obviously the negative pressure field provides energy source of star radiation, not only thermal 
nuclear reactions, therefore the mystery of solar neutrino doesn’t exist in the new theory 
framework. 
And considering of tunneling effect in quantum theory, many nuclear reactions are able to 
complete slowly in celestial bodies even if the temperature ( average kinetic energy of particles ) 
is low, which implies that in the case of low temperature elements can also compose. As for what 
kind of nuclear reaction is in evidence, this depends on temperature of celestial bodies. And as a 
result, the abundance of elements in a celestial is the effect of various nuclear reaction for long 
time.  

For a celestial body of temperature T, we may as well treat all atoms in it as an open 

thermodynamic system, whose giant distribution function according to quantum statistics is   

                  
1

exp( )
k

i i
i

N Eρ α β
=

= −Ψ − −∑  

  Where iN  denotes the number of atoms of i-th kind element. And let im  denote its mass, the 

total energy 
1

k

i i
i

E N m
=

= ∑ ，then the average value of atom number of element of j -th kind 

reads 

1 2

1 2

0 1

0

0 1

... exp ( )
1 exp( )

... exp ( )

k

j

k

k

j i i i
N N N i

j j j jk
Nj

i i i
N N N i

N N m
N In m N

m
N m

ψ α β
α β

β
ψ α β

∞ ∞ ∞

∞
= =

∞ ∞ ∞
=

= =

⎡ ⎤
− − +⎢ ⎥

∂⎣ ⎦= = − − −
∂⎡ ⎤

− − +⎢ ⎥
⎣ ⎦

∑ ∑ ∑ ∑
∑

∑∑ ∑ ∑
 

         
1 1 1(1 )

exp( ) 1 exp 1

j jm

j jj j j
In e mm m

kT

α β

µβ α β
− −∂

= − = =
−∂ + −

−
            

Here iµ  amounts to the chemical potential of the group，T is the temperature of the 
celestial body, namely average kinetic energy of all atoms， k is Boltzmann constant. From 
above relation we have for arbitrary two elements A and B 
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2

2

exp 1

exp 1

B B

A

B A A

m c
N kT
N m c

kT

µ

µ

−
−

=
−

−
                              (33) 

（33）decides the abundance of elements in a celestial body. Observations of astronomy show 
that element abundance is different for different celestial, which is consistent with (33). 
Observations of astronomy show that the abundance of elements is in accordance seen from large 
scope, which implies both temperature and chemical potential are uniform seen from large scope. 
Observations of astronomy show that all elements in other body can be found out on the earth, 
which implies that the origin of various elements is the same, namely originate production and 
annihilatation of particle-antiparticle pairs. 
 
9 Conclusions 
 
Density and pressure of universe do not change all along (Massimiliano et al., 2001), big bang 
didn’t exist and matter in universe is produced continuously and slowly. With cosmic expansion 
celestial bodies and galaxies expand too, which is just the fundamental mechanism of celestial 
body and galaxy formation. The dark matter to appear as negative pressure is just the antimatter 
that lies in negative level, it cannot exist alone and must hide in the usual matter. 
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Appendices 
 
 A:  the deduction of (20) and (24)  
 
According to description of general relativity, in the case of static spherical symmetry, in standard 
coordinate system the form of invariant line element is written as  

( )2 2 2 2 2 2 2 2( ) ( sin )ds d B l dt A l dl l d dτ θ θ ϕ≡ − = − + + + , 

where l  is called standard radial coordinate, space-time coordinate 
0 1 2 3( , , , ) ( , , , )x x x x x t lµ θ ϕ= = . And 00 ( ),ttg g B l= = −  11 ( ),rrg g A l= =  

 2
22 ,g g lθθ= =  2 2

33 sin ,g g lϕϕ θ= =  the other components are equal to zero. From the 

definition of inverse Matrix we work out 00 1g
B

= − , 11 1g
A

= , 22
2

1g
l

= , 33
2 2

1
sin

g
l θ

= , 

the others are equal to zero. And form 
1 ( )
2

g ggg
x x x
σµ µνρ ρσ σν

µν ν µ σ

∂ ∂∂
Γ = + −

∂ ∂ ∂
, we work out 
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1
11

'
2
A
A

Γ =  0
01

' ,
2
B
B

Γ =  2
33 sin cosθ θΓ = − ,  3

23 cot ,θΓ =  1 2
33 sin ,l

A
θΓ = −  

2 3
12 13

1 ,
l

Γ = Γ =   1 11 233
22

1 sin ,
2

g lg
l A

θ∂
Γ = − = −

∂
 

/
1
00 ,

2
B
A

Γ = the others are zero, where 

' dAA
dl

=  ' dBB
dl

= .  And form ,,R σ σ τ σ τ σ
µν µσ ν µν σ µσ τν µν στ= Γ −Γ +Γ Γ −Γ Γ ,  we work 

out 00
'' ' ' ' '( )

2 4 '
B B A B BR

A A A B lA
= − + + − ,   

22
' ' 1( ) 1

2
l A BR
A A B A

= − + + − ,  2
33 22sinR Rθ= ,  11

'' ' ' ' '( )
2 4
B B A B AR
B B A B lA

= − + − , the 

others are zero.  On the other hand ( )T p U U pgµν µ ν µνρ= + + ,   1g U Uµν
µ ν = − ,   

3T g T pµν
µν ρ= = − ,  

 and for the case of static spherical symmetry ( ),p p l= ( ),lρ ρ= 0U B= − , 0iU = , then 

we work out 00 00
(3 )

2 2
T B pT g ρ+

− = , 2 2
33 33

( )sin
2 2
T pT g l ρθ −

− = ,

2

22 22
( )

2 2
T l pT g ρ −

− = , 11 11
( )

2 2
T A pT g ρ −

− =  the other corresponding components are 

zero. Field equation (11) is equivalent to 
14 ( )
2

R G T Tgµν µν µνπ= − , we get the following 

three independent equations: 

00

11

2
22

'' ' ' ' '( ) 2 ( 3 )
2 4 '

'' ' ' ' '( ) 2 ( )
2 4

' ' 1( ) 1 2 ( )
2

B B A B BR G p B
A A A B lA

B B A B AR G p A
B B A B lA
l A BR G p l
A A B A

π ρ

π ρ

π ρ

⎧ = − + + − = +⎪
⎪
⎪ = − + − = −⎨
⎪
⎪ = − + + − = −⎪⎩

 

And the other corresponding equations are identities. Then we have  

 00 11 22
2 2 2 2

1 1 ' 4
2 2
R R R A G

B A l l Al lA
π ρ+ + = − + − = ,    namely 

'
21 4l G l

A
π ρ⎛ ⎞ = +⎜ ⎟

⎝ ⎠
,  

and since (0)A  is limited, we infer 
1( )( ) 1 G lA l

l
ω −

⎛ ⎞= +⎜ ⎟
⎝ ⎠

, where 2
0

( ) 4 ( )
l

l l l dlω π ρ≡ ∫ . 

On the other hand, the conservation law ; 0Tν
µ ν =  gives 

' 2 'B p
B pρ
= −

+
, then from   
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1 2
22 2

( ) 2 '(1 ) ( ' )(1 ) (1 ) 1 2 ( )
2
l G l G p GR l G G p l

l p ll
ω ωω ω ω π ρ

ρ
−⎡ ⎤

= + − + − + + − = −⎢ ⎥+⎣ ⎦
, after 

being simplified  

 ( ) ( ) 13 22 ( )
2

dp G p l p l lG l
dl

ωρ π ω
−⎛ ⎞= + + +⎜ ⎟

⎝ ⎠
.  

And again, from ( ) 13 2' 2 ' 2 2 ( )
2

B p G l p l lG l
B p

ωπ ω
ρ

−⎛ ⎞= − = − + +⎜ ⎟+ ⎝ ⎠
, we obtain  

1

2
( )( ) exp C + ( ) 1

le

l

lB l f l dl
l

ω −⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫ ,  

Where 3
2( ) 4 ( ) ( )Gf l l p l l

l
π ω⎡ ⎤≡ +⎣ ⎦ , and constant 2

21
e

GMC In
l

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, it makes sure ( )B l  is 

continuous on the bound er  (surface of source). Note that the value of ( )el r on the bound is 
determined by (23). 
 

B: the deduction of luminosity distance ( )
0 2

1
1

al
L

dld Z
kl

= +
−

∫  ,  

At the moment t  proper distance of a galaxy is defined as 
0 2

( )
1

al
p

dld a t
kl

=
−

∫ . Let a 

telescope of area A  faces the galaxy. Within time etδ  the galaxy emitted n  photons of total 

energy enhν , and within time 0tδ  they arrive at the telescope. Spectrum radiate power of 

galaxy is defined as e

e

nhL
t
ν

δ
≡ . Power received by telescope is 0

2
0 04 ( )p

nh Ap
t d t
ν

δ π
= . 

Using 0
0

( )
( )

e ea t
a t
νν =  and 

0 0

( )1
( )
e

e

a t
t t a tδ δ
= , we have 

 
2 2

0
2 2 2 2 2

0 0 0 0 0 0

( ) ( )
4 ( ) ( ) 4 ( ) 4 ( ) ( )

e e e

p e p p

nh nh a t LAa tA Ap
t d t t a t d t a t d t
ν ν

δ π δ π π
= = = 。 

Vision luminosity received by telescope is defined as 
2

2 2
0 0

( )
4 ( ) ( )

e

p

La tpl
A a t d tπ

≡ = . We 

know that vision luminosity of light source in Euclidean space is 24
Ll
dπ

= ,  and generalizing 
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the definition to curve space, luminosity distance 0
0

( ) ( )
4 ( )L p

e

a tLd d t
l a tπ

≡ = . Using 

0( ) 1
( )e

a t Z
a t

= +  and putting 0( ) 1a t = , finally we obtain 

( )0 0 2
(1 ) ( ) 1

1
al

L p
dld Z d t Z

kl
= + = +

−
∫  
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