
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Reinforcement learning decoders for fault-tolerant
quantum computation
To cite this article: Ryan Sweke et al 2021 Mach. Learn.: Sci. Technol. 2 025005

View the article online for updates and enhancements.

You may also like
Error suppression via complementary
gauge choices in Reed-Muller codes
Christopher Chamberland and Tomas
Jochym-O’Connor

-

Simulating the performance of a distance-
3 surface code in a linear ion trap
Colin J Trout, Muyuan Li, Mauricio
Gutiérrez et al.

-

Neural network decoder for topological
color codes with circuit level noise
P Baireuther, M D Caio, B Criger et al.

-

This content was downloaded from IP address 106.213.19.213 on 01/07/2023 at 06:42

https://doi.org/10.1088/2632-2153/abc609
/article/10.1088/2058-9565/aa7c4a
/article/10.1088/2058-9565/aa7c4a
/article/10.1088/1367-2630/aab341
/article/10.1088/1367-2630/aab341
/article/10.1088/1367-2630/aaf29e
/article/10.1088/1367-2630/aaf29e

Mach. Learn.: Sci. Technol. 2 (2021) 025005 https://doi.org/10.1088/2632-2153/abc609

OPEN ACCESS

RECEIVED

27 July 2020

REVISED

14 September 2020

ACCEPTED FOR PUBLICATION

29 October 2020

PUBLISHED

28 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Reinforcement learning decoders for fault-tolerant quantum
computation
Ryan Sweke1, Markus S Kesselring1, Evert P L van Nieuwenburg2 and Jens Eisert1,3

1 Dahlem Center for Complex Quantum Systems, Freie Universität Berlin, 14195 Berlin, Germany
2 Niels Bohr International Academy, University of Copenhagen, 2100 Copenhagen, Denmark
3 Department of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany

E-mail: rsweke@gmail.com

Keywords: quantum error correction, reinforcement learning, fault tolerant quantum computing

Abstract
Topological error correcting codes, and particularly the surface code, currently provide the most
feasible road-map towards large-scale fault-tolerant quantum computation. As such, obtaining fast
and flexible decoding algorithms for these codes, within the experimentally realistic and
challenging context of faulty syndrome measurements, without requiring any final read-out of the
physical qubits, is of critical importance. In this work, we show that the problem of decoding such
codes can be naturally reformulated as a process of repeated interactions between a decoding agent
and a code environment, to which the machinery of reinforcement learning can be applied to
obtain decoding agents. While in principle this framework can be instantiated with environments
modelling circuit level noise, we take a first step towards this goal by using deepQ learning to
obtain decoding agents for a variety of simplified phenomenological noise models, which yield
faulty syndrome measurements without including the propagation of errors which arise in full
circuit level noise models.

1. Introduction

In order to implement large scale quantum computations it is necessary to be able to store and manipulate
quantum information in a manner that is robust to the unavoidable errors introduced through interaction of
the physical qubits with a noisy environment. The known strategy for achieving such robustness is to encode
a single logical qubit into the state of many physical qubits, via a quantum error correcting code, from which
it is possible to actively diagnose and correct errors that may occur [1, 2]. While many quantum error
correcting codes exist, topological quantum codes [1–8], in which only local operations are required to
diagnose and correct errors, are of particular interest as a result of their experimental feasibility [9–15]. In
particular, the surface code has emerged as an especially promising candidate for large-scale fault-tolerant
quantum computation, due to the combination of its comparatively low overhead and locality requirements,
coupled with the availability of convenient strategies for the implementation of all required logical gates
[16, 17]. In fact, current road maps towards the realization of robust quantum computing have identified
surface code based approaches as the most feasible methodology for achieving this goal [18].

However, the known realistic topological quantum error correcting codes, including the surface code, are
not self-correcting, and are therefore not robust to natural thermal noise. For this reason one has to actively
diagnose and correct for errors, and as such, in any code-based strategy for fault-tolerant quantum
computation decoding algorithms play a critical role. At a high level, these algorithms take as input the
outcomes of syndrome measurements (which provide a diagnosis of errors that have occurred on the
physical qubits), and provide as output a suggestion of corrections for any errors that may have occurred
during the computation. In practice, these decoding algorithms have to be extremely fast—in particular, one
has to be able to decode faster than the rate at which errors occur. As such, the development of decoding
algorithms constitutes a serious bottleneck in the realization of fault-tolerant quantum computers and are
key to gaining an understanding of quantum computing in realistic regimes.

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-2153/abc609
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-2153/abc609&domain=pdf&date_stamp=2020-12-28
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6202-8864
https://orcid.org/0000-0003-0323-0031
mailto:rsweke@gmail.com

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

It is particularly important to note that in any physically realistic setting, the required syndrome
measurements are obtained via small quantum circuits, and are therefore also generically faulty. For this
reason, while the setting of perfect syndrome measurements provides a paradigmatic test-bed for the
development of decoding algorithms, any decoding algorithm which aims to be experimentally useful must
necessarily be capable of dealing with such faulty syndrome measurements. It is important to stress however
that the step from decoders for perfect syndromes to decoders for the full fault tolerant setting is significantly
challenging. Additionally, such algorithms should also be capable of dealing with experimentally relevant
noise models, as well as be fast enough to not present a bottleneck to the execution of computations, even as
the size of the system (i.e. the code distance) grows.

As of yet, it is precisely the development of decoders applicable to the fault-tolerant setting that
constitutes a particular challenge. However, due to the importance of decoding algorithms for fault-tolerant
quantum computation, several approaches have been developed, each of which tries to satisfy as many of the
experimentally required criteria as possible. Perhaps most prominent are algorithms based on
minimum-weight perfect matching subroutines [19], although alternative approaches based on techniques
such as the renormalization group [20] and locally operating cellular automata [21–23] have also been put
forward. These algorithms solve the problem in principle, and may indeed eventually be made fast enough
with the use of highly optimized hardware architectures [24] or parallelization techniques [19], however
currently their practical implementation remains difficult, and there is space for new ideas and methods.

Recently, techniques from machine learning have begun to find application in diverse areas of quantum
physics—such as in the efficient representation of many-body quantum states [25–27], the identification of
phase transitions [28–32], and the autonomous design of novel experimental set-ups [33, 34]—and in an
attempt to tackle the issue of fast decoding various neural-network based decoders have also been
proposed [35–48]. In particular, due to the simplicity of operations required for inference, and the ability to
exploit dedicated hardware, there are indications that neural network decoders using such special-purpose
chips may be able to offer sufficiently fast decoding times [45]. Additionally, while scalability remains an
issue due to the complexity of the required training phase, recent proposals offer techniques which may
mitigate this problem [42–44] to some extent, facilitating the training of decoders for codes with code
distance up to 64 [43]. Finally, different proposals have demonstrated flexibility with respect to the
underlying code and noise model [41, 42, 45–48]. In particular, while the majority of these neural network
based decoders focus only on the simplified setting of perfect syndrome measurements [35–44, 48], there
have already also been proposals capable of dealing with the circuit-level noise models [45–47]. It is
important to point out however that references [46, 47] consider the case of fault-tolerant quantum
memories, in which a final read-out of all physical qubits is available to the decoder, thereby rendering this
approach not directly applicable to the computational setting in which logical gates, as opposed to
measurements, follow decoding cycles. As such, despite the clear potential of machine learning based
approaches and the diversity of proposed decoding algorithms, some of which already address the fully
fault-tolerant setting [45–47], there is as of yet no algorithm or technique which clearly satisfies all the
required experimental criteria—i.e. accuracy, scalability, and speed—and there remains room for
development, particularly within the desired fully fault-tolerant computational setting.

Simultaneously, the last few years have also seen impressive advances in the development of deep
reinforcement learning algorithms, which have allowed for the training of neural network based agents
capable of obtaining super-human performance in challenging domains such as Atari [49–52], Chess [53]
and Go [54, 55]. These techniques are particularly powerful in situations where it is necessary to learn
strategies for complex sequential decision making, involving consideration of the future effects of ones
actions. The decoding problem within the context of fault-tolerant quantum computation is precisely such a
problem. Given the significant challenges involved in the development of fast decoders for the fully
fault-tolerant setting and the clear parallels between decoding and the domains in which reinforcement
learning techniques have excelled, it is natural to ask both the extent to which these techniques can be applied
to the decoding problem and the advantages that such an approach would offer over alternative methods.

In order to provide a framework for answering these questions, the primary contribution of this work is
to show that one can define a reinforcement learning environment—technically a finite Markov decision
process—which encodes the decoding problem, in the fault-tolerant computational setting. This conceptual
framework therefore provides a foundation for the application of deep reinforcement learning algorithms
and agents to the problem of decoder development. As previously discussed, ultimately one would like to
obtain decoders capable of dealing with circuit level noise, and the strength of the environment formulation
we provide is that, in principle, it can be instantiated with such a noise model. However, in this work we
provide only a step towards this goal, by using deepQ learning to obtain decoders for a simplified
phenomenological noise model which includes faulty syndrome measurements, but neglects the propagation
of errors which occur in a full circuit level noise model.

2

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

We note that since this work first appeared, a variety of similar reinforcement learning based approaches
to decoding have been proposed and studied [35–37]. However, the environments defined in these works are
designed specifically for noise models which yield perfect syndrome measurements, and therefore do not
provide a framework suitable for the development of decoders for the fault-tolerant computational setting.
Additionally, we stress that as deepQ learning is a relatively simple approach, and as we consider only a
simplified phenomenological noise model, the deepQ decoders we obtain in this work are not immediately
competitive, and cannot be fairly compared with alternative state-of-the-art decoders. However, the primary
contribution of this work is not the deepQ decoders themselves, but rather the reformulation of the
fault-tolerant decoding problem as a reinforcement learning environment, which can in principle be
straightforwardly instantiated with a circuit level noise model, and which therefore provides a solid
foundation for the future application of state-of-the-art RL agents and learning algorithms in this setting. As
the development of such agents is a highly active field of research, we hope that this work, and the
accompanying open source environment [56], facilitates and motivates the application of sophisticated RL
agents to scientific problems of immediate relevance.

We begin by providing an introductory overview of the surface code in section 2, before presenting a
description of the decoding problem for fault-tolerant quantum computation in section 3. After a brief
introduction to the formalism of reinforcement learning and q-functions in section 4 we are then able to
provide the conceptual reframing of decoding as a reinforcement learning problem in section 5, representing
one of the primary results of this work. In sections 6 and 7 we then present deepQ surface code decoders for
a variety of noise models, before finally in section 8 we discuss both the advantages and disadvantages of the
approach presented here, along with various potential strategies for building upon the results presented in
this work.

2. The surface code

We begin by providing a brief description of the surface code. The framework and methods presented in this
work are not restricted to the surface code however, and may be applied to any stabilizer code. The restriction
to the surface code is made both for simplicity of presentation and experimental relevance. We will focus on
presenting the essential elements of the surface code and refer to more complete treatments for details
[1, 17, 57].

We will consider d× d lattices with a physical data qubit on each vertex v, as illustrated in figure 1 for

d= 5. The collective state of all qubits on the lattice is an element of the Hilbert spaceH= C2(d×d)
. We

associate stabilizer operators with each colored plaquette of the lattice. Stabilizers on blue (orange) plaquettes
are operators which apply Pauli X (Z) flips to all qubits on the vertices of the plaquette. Specifically, denoting
the set of all blue (orange) plaquettes as Bp (Op) we define the stabilizer Sp on plaquette p as,

Sp =
⊗
v∈p

σv where

{
σv = Xv if p ∈ Bp,

σv = Zv if p ∈ Op.
(1)

All stabilizers are mutually commuting and have eigenvalues±1. The surface codeHsc ⊂H is then defined
as the space consisting of all simultaneous+1 eigenstates of all stabilizers. This subspace is two dimensional,
i.e.Hsc ≃ C2, and hence can encode a single logical qubit. Logical operators are operators which preserve the
code space, and can therefore be used to manipulate the state of the logical qubit. Figure 1 shows logical X
(Z) operators, denoted XL (ZL), which are continuous strings of single vertex X (Z) operators connecting the
top and bottom (left and right) boundaries of the lattice.

To illustrate the motivation behind such an encoding, let us examine the consequences of a single qubit
Pauli flip on a physical data qubit. If we assume that the initial state vector |ψ⟩ ∈ Hsc is an element of the
code space, then the subsequent state vector |ψ ′⟩ ̸∈ Hsc will no longer be an element of the code space. In
particular, |ψ ′⟩ will be an eigenstate with eigenvalue−1 of at least one stabilizer. We say that |ψ ′⟩ violates
these stabilizers, as illustrated by red circles in figure 2(a). The syndrome of a state is a list of the outcomes of
a simultaneous measurement of all the stabilizers, each of which takes the value±1. Given that a single Pauli
flip occurred on a single physical data qubit, by analyzing the syndrome we may be able to identify and
correct this error, in the process conserving the logical qubit state. This process of decoding is discussed in the
next section.

In the terminology of stabilizer codes and quantum error correction, such a surface code on a d× d
lattice is a [[d2, 1, d]] code [57]. This means that d2 physical qubits are required to encode a single logical
qubit, with code distance d. Specifically, the distance of a stabilizer code is the weight of the minimal-weight
non-trivial logical operator—i.e. the minimal weight Pauli operator that both preserves the code subspace
and acts non-trivially within this code subspace. In particular, this quantity characterizes the error correcting

3

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 1. An overview of the 5× 5 surface code. (a) We consider square lattices, with a physical data qubit on each vertex. The
colored plaquettes indicate stabilizer operators as defined in equation (1). (b) Logical XL and ZL operators for the surface code are
given by continuous strings of single qubit X or Z operators connecting the top and bottom or left and right boundaries of the
code, respectively.

Figure 2. (a) Single qubit Pauli flips violate surrounding stabilizers. ((b)–(d)) Strings of Pauli flips only violate stabilizers at the
endpoint of the string. Multiple error configurations can give rise to the same syndrome. They can differ by stabilizers, as for
example in (c) and (d), or by logical operators, see (b) and (c).

capabilities of a given code: if a logical qubit is affected by the action of a Pauli operator, the weight of which
is less than half the code distance, then one can successfully recover from the error by applying the minimal
weight Pauli operator which returns the altered state to the code subspace.

3. The decoding problem

With the foundations from the previous section, we can now formulate a simple preliminary version of the
decoding problem.
Problem 1 (Decoding problem) Assume that at t= 0 one is given a state vector |ψ⟩= α|0L⟩+β|1L⟩

∈ Hsc. At some time t1 > 0 a syndrome measurement is performed which indicates that one or more stabilizers
are violated—i.e. some errors have occurred on physical data qubits. From the given syndrome, determine a set of
corrections which should be applied to the code lattice such that the subsequent state |ψ ′⟩ is equal to the initial
state |ψ⟩.

Before proceeding to discuss more subtle and technical versions of the decoding problem, let us examine
why even the above problem is indeed potentially difficult. The most important observation is that the map
from error configurations to syndromes is many-to-one, i.e. many different sets of errors can lead to the
same syndrome. As an example, consider the error configurations illustrated in figure 2((b)–(d)), all of
which lead to the same syndrome. If the probability of an error on a single physical data qubit is low, given
such a syndrome one might reasonably assume that the error shown in (c) occurred, as one error on a single
qubit is a more likely event than errors on multiple qubits. Given this reasoning, one might then suggest to

4

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 3. A typical decoding cycle is illustrated for the simplified faulty measurements scenario in which one imagines each time
step consisting of an initial physical error process generating errors on the data qubits, followed by a second measurement error
process which corrupts the true syndrome. The decoding algorithm then has access to a sequence of potentially faulty syndromes.

correct by applying an X flip on the physical data qubit in the third row and fourth column. If indeed the
error shown in (c) occurred, the post-correction state would be error-free, thus preserving the initial state.
However, if the error pattern shown in (d) occurred, this set of errors combined with the applied X flip
would implement a stabilizer. Since the original state was a simultaneous+1 eigenstate of all the stabilizers,
and stabilizers act trivially on logical states, the proposed correction indeed preserves the initial logical state.
Finally, if the error in (b) occurred, then the combination of the original error with the correction would
implement the logical XL operator. As a result, even though the post-correction state is back in the code
space, it will be in a different logical state. Thus, the information we were trying to preserve would have been
corrupted. From this simple example one can see that most often solving the decoding problem as stated
above involves deciding, given an inherently ambiguous syndrome and (possibly imperfect) knowledge of the
underlying error model, which error configuration most likely occurred. The mathematical structure
underlying the decoding problem is that of homology, which provides a concise representation of the
relationship between errors and syndromes [58]. In this language, a decoder determines the approximate
relative likelihood of different homology classes—equivalence classes of error patterns—of given error
configurations that are captured by the syndrome.

In addition to the inherent difficulty resulting from syndrome ambiguity, in experimental settings the
process of extracting the syndrome is itself subject to noise. That is to say, one must reasonably assume that
the syndrome itself may be faulty [59, 60]. In practice, each stabilizer may be associated with a physical
ancilla qubit. The syndrome value for that particular stabilizer is obtained by first executing a small quantum
circuit which entangles the ancilla with each of the physical data qubits on which the corresponding stabilizer
is supported. The syndrome value is then extracted via a measurement of the ancilla qubit. In order to fully
account for errors during the process of syndrome extraction one should therefore model this entire circuit,
in which errors can occur on both the data qubits and ancilla qubits at each time step. Moreover, errors on
the ancilla qubits can propagate onto the data qubits via the required entangling gates.

Some aspects of the additional difficulties arising from the use of faulty syndrome extraction circuits can
be modeled by imagining each time step as consisting of two distinct error processes [60], as illustrated in
figure 3. In the first error process, an error occurs on each data qubit with some probability. One then
imagines extracting the perfect syndrome before a second error process occurs, in which with a given
probability an error occurs on each stabilizer measurement outcome. While this phenomenological model
provides faulty syndromes, it lacks the propagation of errors during syndrome extraction, and is therefore
only an intermediate step between perfect syndromes and the fully fault-tolerant setting. In particular, given
that single syndrome measurements are no longer reliable, decoding in this setting typically requires
providing a set of sequential syndrome measurements, and it should be clear at this point that by including
the requirement of faulty syndromes, the nature of the decoding problem changes substantially.

Finally, in the context of surface code based fault-tolerant quantum computing, all logical gates are
implemented either via protocols which also involve an inherent decoding procedure or do not spread errors.

5

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 4. An illustration of the signals passed between an agent and the environment through the duration of a sequential turn
based episode.

To be specific, it is sufficient for universal quantum computing to be able to implement both Clifford and T
gates [61, 62]. In contemporary proposals for surface code based quantum computing [16, 17], protocols
are known for implementing Clifford gates either by tracking, via code deformation [63] or via lattice
surgery [64, 65]. Code deformation and lattice surgery requires several decoding cycles. Non-Clifford gates,
such as the T gate, can be performed fault-tolerantly via gate teleportation using magic states. High quality
magic states can be obtained via magic state distillation, which requires only Clifford gates and faulty magic
states [62]. As such the goal of decoding idling logical qubits within a quantum computation should be to
suppress errors to the extent that any of the above procedures can succeed with high probability. Therefore,
we can relax the requirement that the decoding process should return the post-error state to the initial state
in the code space. In section 5 we discuss a proxy criterion for decoding success within this framework.

4. Reinforcement learning and q-functions

In this section we shift focus and introduce some of the fundamental concepts of reinforcement learning and
q-functions, which will be essential to our rephrasing of the decoding problem in section 5. Again, we will
keep the discussion brief and refer to reference [66] for a more complete treatment. A generic reinforcement
learning problem considers an agent interacting with an environment, as is illustrated in figure 4. The agent
can act on and observe parts of the environment, and is tasked with achieving a problem-specific goal by
performing a sequence of actions. We typically consider discrete problems, in which at each time step t the
environment can be described by a state St ∈ S , where S is referred to as the state space. Given a state of the
environment, the agent can then choose to perform an action At ∈ A, whereA is referred to as the action
space. As a result of the agents chosen action, the environment then updates accordingly, entering a new state
St+ 1 and providing feedback to the agent on its choice of action in the form of a scalar reward Rt+ 1. We will
restrict ourselves here to episodic environments, for which there exist a set of terminal states Sterminal ⊂ S . In
such episodic settings, in addition to a scalar reward, the agent also receives a Boolean signal Tt+ 1, indicating
whether St+1 ∈ Sterminal—i.e. whether or not it is ‘game over’.

In general, the agent’s choice of action, the resulting state of the environment and the returned reward
can all be stochastic. In the case of finite state and action spaces, the environment can then be formalized via
a classical finite Markov decision process (FMDP) governed by the transition probabilities

p(s ′, r|s,a) := pr(St = s ′,Rt = r|St−1 = s,At−1 = a). (2)

To formalize the decision making process of the agent, we define an agent’s policy π, in essence the agent’s
strategy, as a mapping from states to probabilities of specific actions—i.e. π(a|s) is the probability that agent
chooses At = a, given that the environment is in state St = s. For FMDP’s we then define the value of a state s
under policy π as,

vπ(s) = Eπ[Gt|St = s] = Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣St = s
]

(3)

∀St ∈ S . The term Gt is the discounted return (discounted cumulative reward), with discount factor
0≤ γ≤ 1, and is the quantity that the agent is tasked with optimizing. In episodic settings the infinite sum
terminates whenever state St+ k+ 1 is a terminal state—i.e. St+k+1 ∈ Sterminal. We call v the state-value

6

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

function, providing the expected discounted cumulative reward the agent would obtain when following
policy π from state s. It is an important conceptual point to note that by using the metric of the discounted
cumulative reward the value of any given state depends not only on the immediate reward obtained by
following a specific policy from that state, but includes future expected rewards. Hence strategies which
involve some element of successful future planning may lead to higher state values. As such, we see that the
value of a state with respect to a given policy reflects accurately the ability of an agent to achieve its long-term
goals when following that policy from that state.

Similarly to the state-value function, we can define the action-value function (referred to as the
q-function) for policy π via

qπ(s,a) = Eπ[Gt|St = s,At = a]

= Eπ

[∞∑
k=0

γkRt+k+1

∣∣∣St = s,At = a
]
. (4)

Clearly, the q-function with respect to a given policy is conceptually similar to the state-value function,
differing only in that it provides the value for state-action pairs. Importantly, value functions allow us to
place an order over policies, i.e. π > π ′ ⇐⇒ vπ(s)> vπ ′(s) ∀s ∈ S . This in turn allows us to define an
optimal policy π*, for which

q∗(s,a) = E
[
Rt+1 + γmax

a ′
q∗(St+1,a

′)
∣∣St = s,At = a

]
. (5)

Note that given the optimal q-function it is easy to obtain the optimal strategy. In a given state s simply
choose the action a= argmaxa ′ [q∗(s,a ′)].

Given this framework, there are many different approaches and methodologies that can be used to learn
optimal policies. We will focus here on q-learning, the goal of which is to find or approximate q*(s, a). This is
generically done via iterative q-learning, in which the agent starts with an arbitrary q-function and then
iteratively refines it on the basis of experience gained from interaction with the environment. In particular, in
order to generate such experience, the agent uses a policy derived from its q-function (possibly in addition to
other explorative policies) to choose actions. This q-function is then periodically updated using equation (5),
for which q*(s, a) is a stationary solution [66].

The above describes concisely the elements of q-learning, however it does not address the general
impracticality of storing this q-function. In most real world applications, the number of valid state-action
pairs can be impractically large (e.g. consider the number of possible chess configurations). It is precisely to
address this problem, and in effect to render q-learning applicable in practice, that deepQ learning was
introduced [49–51]. In particular, in deepQ learning we parameterize q by a neural network, and use
equation (5) to construct the cost function from which the network weights can be updated via a stochastic
gradient descent method. The learning of the q-function is hence done by training a neural network in an
online supervised manner, the training instances for which are generated by having the agent explore the
environment. Specifically, we let the agent interact with the environment via an ε-greedy exploration policy,
in the process generating experience-tuples of the form

[St,At,Rt+1,St+1,Tt+1]. (6)

The set of these tuples then provides an experience memory, from which we can periodically sample a
training-batch. Given such a batch of training instances, the q-network is then updated via the cost function

C= ypred − ytrue (7)

= q(St,At)−
[
Rt+1 + γmax

a ′
q(St+1,a

′)
]
, (8)

which, by comparison with equation (5), will be minimized by the optimal policy q*. Unfortunately, despite
the simplicity of this idea, in practice a variety of tricks—such as separate active and target q-networks,
double-q learning and dueling networks—are required to achieve stable q-learning. We refer to the relevant
references [49–52], or to the associated code repository [56], for details.

7

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 5. An illustration of the various steps occurring within a single episode. (a) In an initial step, a faulty syndrome volume is
extracted from a state initially in the code space. This faulty syndrome volume is combined with an initially empty action history
and passed to the agent as the initial state. Given an input state, the agent must decide on an action, which it passes to the
environment. If the action is a Pauli flip which is not already in the action history (b), then the procedure illustrated in box
(c) occurs, if the agent requests a new syndrome or repeats an action (d), then the procedure illustrated in box (e) occurs. (c) The
chosen action is applied to the underlying quantum state. From this state the reward for the applied action is determined, while
simultaneously a referee decoder decides whether or not the episode is now over—i.e. whether the underlying quantum state is
now in a terminal state. Additionally, the applied action is appended to the action history, which is concatenated with the
non-updated syndrome volume and provided to the agent, in conjunction with the reward and terminal state indicator. (e) Once
again, the underlying quantum state is first updated, and from this updated state both a reward and terminal state indicator are
determined (not shown). However, the trivial or repeated action of the agent triggers a new round of faulty syndrome
measurements. After this new round of syndrome extraction, the new syndrome volume is combined with a reset action history
and provided to the agent, from which it can once again choose another move.

5. Decoding as a reinforcement learning problem

We now turn to describing the main topic of this work. Namely, we formulate the problem of decoding within
the context of fault-tolerant quantum computation as a reinforcement learning problem. The advantage of
this formulation is that it allows for all the methods and techniques of reinforcement learning to be brought
to bear on this problem, thereby providing a new toolbox for obtaining diverse decoding agents, a novel class
of decoding algorithms. For clarity, we will utilize the surface code to present all the required elements,
however the framework described here could be applied to any stabilizer quantum error correcting code.

In order to present such a reformulation it is necessary to define the state space S , action spaceA and
terminal state subset Sterminal ⊂ S , as well as the stochastic process via which the environment generates the
tuple [St+1,Rt+1,Tt+1], when acted upon with action At . As discussed in section 3, within the context of
fault-tolerant quantum computation, the goal of the decoding problem is to continuously suppress errors on
a logical qubit, to the extent that future logical operations involving this logical qubit can succeed with high
probability. As such, the fundamental idea is to define all the required elements in such a way that allows for
decoding agents to learn to continuously correct errors by performing single qubit Pauli flips on the
underlying physical qubits of a given code, remaining ‘alive’ as long as future logical operations can succeed
with high probability, and being rewarded whenever all errors have been successfully corrected. In particular,
given some initial logical state |ψ0⟩ ∈ Hsc, the goal of the agent is to suppress errors for as long as possible,
such that future logical operations can succeed with high probability.

To provide a framework for achieving this, we consider environments consisting of the following three
elements: A hidden state, an error model and a referee decoder. At the beginning of any time step t, the
hidden state of the environment Shidden,t, will be a list of all the single qubit Pauli flips which have been
applied to physical data qubits through the course of the episode, either via errors or as corrections. Given
both the hidden state Shidden,t and the initial logical state |ψ0⟩, the current underlying state |ψt⟩ of all the
physical data qubits could be obtained by applying all the Pauli operations listed in Shidden,t to |ψ0⟩. Note that
because we are particularly interested in only the difference between the current state |ψt⟩ and the initial
logical state |ψ0⟩, and because we consider only Pauli noise and corrections, we are able to utilise the simple
and efficient hidden state description provided here.

In addition to the hidden state, the error model of the environment defines the physical process via which
faulty syndrome volumes—i.e. a list of violated stabilizers from multiple sequential syndrome

8

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

measurements—are generated from the hidden state of the environment. In section 7 we utilize the two-stage
error model involving separated physical and measurement errors, as described in figure 3, however we wish
to emphasise that in principle a circuit model for syndrome extraction could also be simulated.

Finally, a referee decoder is included to act as a proxy for future logical operations, as such providing a
mechanism for the determination of terminal states. This referee decoder should be a decoder which, given a
single perfect syndrome, suggests corrections which always move the current state back into the code space,
and which may fail by inadvertently suggesting corrections which perform a logical operation. In particular,
at any stage, the ability of the referee decoder to decode a perfect syndrome generated from the current
hidden state of the environment will be used as a proxy for the success of future logical operations, and an
indicator of whether or not the current state is a terminal state.

Given these fundamental elements of the environment we define the action spaceA to consist of all Pauli
X and Z flips on single physical data qubits, along with a special Request New Syndrome action. Note that
Pauli Y flips can be implemented via X and Z flips. Additionally, while it might seem natural to include
multiple-qubit operations in the action space, in practice the size of the action space has a strong influence
on the complexity of the training procedure. As such, we restrict the agent to single qubit operations and in
practice all single qubit corrections suggested between successive syndrome measurements would be
accumulated, either to be tracked through the computation, or applied simultaneously as multi-qubit
operations, as illustrated in figure 6.

Finally, we have all the ingredients necessary to describe the rules, illustrated in figure 5, via which the
environment generates the tuple [St+1 = {Ssv,t+1,ht+1},Rt+1,Tt+1] when acted upon with action At . In
particular, given an environment with hidden state Shidden,t, depending on the action At one of two
procedures, illustrated in figures 5(c) and (e), respectively, will be utilized to generate the tuple
[St+1,Rt+1,Tt+1].

5.1. Non-repeated Pauli flips
If, as shown in figure 5(c), the action At chosen by the agent is any Pauli flip that is not already an element of
the action history list ht , then the environment responds as follows:

(a) The hidden state of the environment Shidden,t+1 is obtained by appending At to Shidden,t. In essence, the
agent’s chosen correction is applied to the underlying state |ψt⟩, yielding state |ψt+1⟩.

(b) We set Ssv,t+1 = Ssv,t, therefore providing the agent an opportunity to provide more corrections in
response to the current syndrome volume. In addition, the updated action history ht+ 1 is obtained by
appending to At to ht . The output state is then St+1 = {Ssv,t+1,ht+1}.

(c) If |ψt+1⟩ is equal to the initial logical state |ψ0⟩—i.e. if all errors have been corrected at this stage without
implementing a logical operation—then Rt+ 1 = 1, otherwise Rt+ 1 = 0. Technically, this can be determ-
ined by checking both that no stabilizers are violated by |ψt+1⟩, and that |ψt+1⟩ belongs to the same
homology class as |ψ0⟩.

(d) Finally, the referee decoder is given a perfect syndrome generated from |ψt+1⟩. If the referee decoder can
successfully decode this syndrome, then St+ 1 is not a terminal state and we set Tt+ 1 = 0. If the referee
decoder incorrectly decodes the given syndrome, then Tt+ 1 = 0 and the episode is over. Note that we
can evaluate the success or failure of the referee decoder by using the hidden state, which encodes the
underlying error configuration.

5.2. Request new syndrome or repeated Pauli flip
If on the other hand the agent requests a new syndrome, or chooses an action At ∈ ht—i.e. an action it has
already chosen since first seeing the syndrome volume Ssv,t—then the environment responds via the
following procedure, as illustrated in figure 5(e).

(a) If the action At is a Pauli flip already in ht , i.e. if for some reason the agent is choosing to repeat an
action, then this chosen correction is applied to the underlying state by appending At to Shidden,t. We
denote this new hidden state as S ′

hidden,t+1. In this case, the reward Rt+ 1 and terminal state indicator
Tt+ 1 are determined from S ′

hidden,t+1 by the process described in section 5.1 for non-repeated Pauli flips.
(b) If action At is the request new syndrome action, then the hidden state is not updated, i.e. S ′

hidden,t+1 =
Shidden,t, and as such Rt+1 = Rt and Tt+1 = Tt.

(c) Now, a new syndrome volume Ssv,t+1 is generated, via the given error model, from the underlying hid-
den state S ′

hidden,t+1. In the process errors may occur on physical data qubits, and the final hidden state
Shidden,t+1 is obtained by applying these errors to the intermediate hidden state S ′

hidden,t+1.
(d) Finally, as a new syndrome volume has just been generated, the action history ht+ 1 is reset to an empty

list and the total state St+1 = {Ssv,t+1,ht+1} is returned.

9

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 6. The procedure for decoding with a trained agent. (a) Given a faulty syndrome volume generated by some experiment,
this volume is concatenated with an empty action history to produce a suitable input state for the decoding agent. (b) The
decoding agent takes in the combined faulty syndrome volume and action history and chooses an action. This action is
simultaneously (c) added to a list of accumulated corrections and (d) used to update only the action history component of the
input state to the agent. This updated input state is then given to the agent and procedures ((b)–(d)) continue until the agent (e)
repeats an action or requests a new syndrome. (f) At this stage the corrections could be applied to the lattice state, although in
practice they would be tracked through the entire computation.

Given all the above elements, it is now possible to summarize a complete episode. In particular, every
episode starts with a resetting of the environment. Specifically, as shown in figure 5(a), given an initial logical
state |ψ0⟩ ∈ Hsc, represented by a hidden state Shidden,0 which is just an empty list, the request new syndrome
action is applied to the environment to obtain the initial tuple [S1 = {Ssv,1,h1},R1,T1]. Now, in any step t,
given [St,Rt,T1] the agent needs to decide on an action At , which is applied to the environment. Using the
rules described above the environment then generates the tuple [St+1,Rt,T1], and the process continues until
Tt+ 1 = 1, i.e. until St+1 ∈ Sterminal. From the construction above one can see that in order to maximise long
term discounted cumulative reward, a decoding agent needs to learn how to choose actions that suppress
errors, preserving as closely as possible the initial logical state |ψ0⟩. If however, the agent chooses incorrect
actions, then errors will accumulate and the referee decoder will no longer be able to correctly decode,
indicating the probable failure of subsequent logical gates involving the logical qubit.

At this stage we have all the ingredients required to obtain decoding agents through the application of a
variety of reinforcement learning algorithms. In section 6 we will present a detailed construction for a deepQ
agent, that allows us to apply deepQ learning and obtain decoding agents whose performance is shown in
section 7. Before proceeding however it is worthwhile to emphasize a few points.

First, it is important to note that the above agent-interaction framework is both code and error model
agnostic, provided one has access to a referee decoder, capable of decoding perfect syndromes. From this
perspective, one might view the framework presented here as a tool for leveraging perfect-syndrome
decoding algorithms, into decoding algorithms for the fully fault-tolerant setting. It is however important to
keep in mind that as the referee decoder needs to be run repeatedly during training, the time complexity of
the decoder (e.g. between O(d3) and O(d7) for minimum weight perfect matching, or almost linear in d for
union-find [67]) will strongly influence the complexity of the training procedure. Additionally, as mentioned
above, the agent will only accumulate reward provided it can learn to consistently correct any errors that
might occur on physical data qubits, without implementing logical operations. However, the agent is not
constrained to return the state back into the code space between successive syndrome measurements. In
particular, because typical reinforcement learning algorithms take into account not only immediate rewards,
but rather discounted cumulative rewards, the agent may learn strategies involving actions whose benefit
may not be immediate. For example, in the rare event of multiple measurement errors occurring within the
extraction of a syndrome volume, creating a highly ambiguous and difficult to decode input state, the agent
may choose to only partially decode before requesting a new syndrome volume, in which hopefully less
measurement errors will occur and the underlying error configuration may be less ambiguous. As such, the
decoding agents obtained via this framework may have access to truly novel decoding strategies, that are not
currently available to alternative decoding algorithms.

It is also useful to note that in practice various alternative design choices are possible, and that it is
possible to speed-up learning by utilizing various improvements. First of all, when choosing exploratory
actions, we can restrict the action space to a reduced set of potentially valid corrections. In particular, the
agent need only consider actions on vertices either involved in a violated stabilizer or adjacent to vertices
which have already been acted on. This restriction effectively increases the probability of the agent
discovering useful actions, and therefore the effectiveness of any exploration phase. Second, when generating
new syndrome volumes, we discard those cases in which the syndrome is trivial. In these cases, the agent does

10

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 7. Details of a deepQ decoding agent for a d× d code lattice. (a) A single faulty syndrome is embedded into a
(2d+ 1)×(2d+ 1) binary matrix, where by default all entries are initially set to 0. Entries indicate by orange (blue) circles are
then used to indicate violated Z (X) stabilizers on the corresponding plaquette. Entries indicated by black circles are set to+1 as a
way of differentiating different types of stabilizers. (b) Using the same embedding, the action history for Z (X) flips can be
encoded by indicating a previous flip on a specific vertex qubit via the entry corresponding to that vertex. (c) By stacking the
syndrome and action history slices, the total state St can be constructed in a form suitable for input to a convolutional neural
network. (d) To complete the deepQ network, we stack a feed forward neural network on top of the convolutional layers. In
particular, the final layer of this network has |A| activations, each of which encodes q(St , a) for an action a.

not need to act and hence no useful experience tuple would be generated. This allows any experience memory
required by the learning algorithm to consist of only useful memories. Finally, the structure of the reward
mechanism presented here is only one of many possible choices. In particular, while this natural reward
structure facilitated stable training and the obtaining of decoding agents whose performance is shown in
section 7, it is an interesting and open question to explore the effectiveness of alternative reward mechanisms.

Although we have now thoroughly addressed a framework to which reinforcement learning algorithms
could be applied to train an agent, we have not yet explicitly discussed the implementation of our q-function
based agent and how it may be used to decode within an experimental setting. As illustrated in figure 6, the
latter problem is straightforwardly addressed. Given a faulty syndrome volume from an experiment, we
initialize an empty action history list and combine this with the faulty syndrome volume as an initial input to
the decoding agent. The trained agent can then be asked directly for an initial correction, which is added to a
list of accumulated corrections. Simultaneously only the action history element of the previous input state is
updated. This updated input state, containing the original syndrome volume and the subsequently
performed corrections, is then given again to the agent as input. This process is iterated until the agent either
repeats a correction or requests a new syndrome volume.

6. A deepQ decoding agent

As discussed in the previous section, many different reinforcement learning algorithms could now be applied
within the framework presented here. However, in order to provide a concrete example and
proof-of-principle, we will specialize to deepQ learning, which has been previously utilized to obtain agents
capable of human-level control in domains such as Atari [49]. As mentioned briefly in section 4, a variety of
now standard tricks are required to get deepQ learning to work in practice, and we will not present these
details here, referring the reader to the relevant references [49–52] or associated code repository [56].
However, there are various details concerning the construction of the deepQ agent which may be useful for
applying alternative deep reinforcement learning algorithms within this framework, and as such we will
present these details in this section.

In particular, in section 5 we described how at the beginning of any time step t the agent is supplied with
the state St = {Ssv,t,ht}, where Ssv,t is a faulty syndrome volume, given as a list of violated stabilizers from
successive syndrome measurements, and ht is the action history list. In deepQ learning, and in many other
deep reinforcement learning algorithms, this state St needs to be provided as the input to a deep neural
network. For example, in the case of deepQ learning, the state St is the input to the deepQ network
parameterizing the q-function from which the agent is partially deriving its policy. As such, utilizing an
encoding of St , which allows for the use of appropriate neural networks, is important.

In figure 7 we have illustrated the encoding of St which was used to facilitate the use of deep convolutional
neural networks to parametrize the q-function. In particular, as shown in figure 7(a) and (b), we can embed
a d× d code lattice into a (2d+ 1)×(2d+ 1) binary matrix, where each entry corresponds to either a
plaquette, a vertex, or an edge of the lattice. As shown in figure 7 (a), we can then use a single such binary
matrix to encode each of the faulty syndromes, by using the entries corresponding to plaquettes to indicate
violated stabilizers, and the remaining entries to differentiate both blue and orange, and bulk and boundary
plaquettes. Similarly, as illustrated in figure 7(b) we can use two such binary matrices to encode the action

11

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure 8. ((a), (b)) Performance of all agents obtained during the iterative training procedure. Each agent was evaluated at
increasing error rates, until the average lifetime of the logical qubit actively decoded by the agent became less than the average
lifetime of a single faulty qubit. ((c), (d)) Results obtained by using the best performing decoding agent for each error rate.

history, by using one matrix to indicate the physical data qubits on which X flips have already been applied,
and the other binary matrix to indicate the data qubits on which Z flips have already been applied. As can be
seen in figure 7(c), the total state St can then be obtained by stacking the action history slices on top of the
faulty syndrome slices, effectively creating a multi-channel image suitable as input for a convolutional neural
network. In particular, the strength of this encoding is that any convolutional filter, such as the one indicated
in figure 7(c), then isolates all relevant information from some local patch of the lattice—in particular, the
violated stabilizers and their type, as well as the previously applied actions. Finally, the deepQ network we
utilize is completed by stacking a feed forward neural network on top of multiple convolutional layers. In
particular, the final layer of this network has |A| activations, each of which encodes q(St , a) for an action a.

7. Demonstration

As a demonstration, we have utilized deepQ learning within the framework presented in section 5, to obtain
deepQ decoding agents for both bit-flip and depolarizing noise, with faulty syndromes, for a d = 5 surface
code lattice. All the code used to obtain these agents is supplied in the corresponding DeepQ-Decoding code
repository [56], and as such we will provide only an overview of the details here. In particular, for a single
fixed set of hyper-parameters, we have exploited the original deepQ algorithm [49] with annealed ε-greedy
exploration, implemented via the keras-rl library [68] and incorporating doubleQ updates [51] and a
dueling network architecture [52]. In addition, we have made use of a custom training procedure, described
in appendix A, for sequentially iterating through increasing error rates, while simultaneously performing a
hyper-parameter grid search at each error-rate iteration. For both error models we utilized a convolutional
deepQ network, as illustrated in figure 7, consisting of three convolutional layers, followed by a single
feed-forward layer before the final output layer. Specifically, if we describe a single convolutional layer with a
three-tuple [n,w, s], where n is the number of filters, w is the filter width and s is the stride, and a single feed
forward layer via a two-tuple [n, d], where n is the number of neurons and d is the output drop-out rate, then
from input to output our deepQ networks had the base structure,

[[64,3,2], [32,2,1], [32,2,1], [512,0.2], [|A|,0]], (9)

where |A| is the size of the action space. Additional minor modifications as required for dueling
methodologies were also included [52]. All other additional hyper-parameters used to obtain each decoding
agent, along with histories of each training procedure, are provided in appendix B.

We considered both bit-flip and depolarizing noise models. For both of these error models we considered
the measurement of a single syndrome to consist of two separate error channels, as illustrated in figure 3. For

12

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

bit-flip noise, in the first error channel—the physical error channel—a Pauli X flip was applied to each
physical data qubit with probability pphys. For depolarising noise, the physical error channel acted by
applying to each physical data qubit, with probability pphys, either a Pauli X, Y or Z flip, with equal
probability. For both noise models, after the physical error channel, the true syndrome was calculated, after
which the second measurement error channel was applied, in which the value of each stabilizer measurement
was flipped with probability pmeas. For all simulations we set p := pphys = pmeas, and used a syndrome volume
depth of 5. Also, note that for bit-flip noise, as only X corrections were necessary, we had |A|= d2 + 1—i.e.
the agent could perform either the request new syndrome action or a single qubit X flip on any individual
physical data qubit. For depolarising noise, we restricted the agent to only X and Z flips (as Y errors can be
corrected via both an X flip and a Z flip), such that |A|= 2d2 + 1 rather than |A|= 3d2 + 1.

To evaluate the performance of our trained decoders we used the procedure described in figure 6, where
the agent selected actions via the final q-function in a purely greedy manner, with repeated actions or the
request of a new syndrome triggering new syndrome volumes. As referee decoders, we utilized fast
feed-forward neural network based homology class predictors, trained in a supervised manner, as per
references [38, 39]. All utilized referee decoders are included in the DeepQ repository [56]. In particular, the
referee decoder was used to check after every action of the agent whether or not a terminal state had been
reached, and the length of a single episode was reported as the number of individual syndromes seen by the
agent (i.e. the number of times the two-fold error channel was applied) before a terminal state was reached.
For each error rate, the average lifetime of the actively decoded logical qubit was determined by the average
episode length, over a number of episodes that guaranteed at least 106 syndromes were seen by the decoding
agent. This average logical qubit lifetime should be compared to the average lifetime of a single faulty qubit.

The final results are then shown in figure 8. In particular, figure 8((a), (b)) shows the performance of all
decoding agents obtained during the iterative training procedure (as described in appendix A), while
figure 8((c), (d)) shows the results obtained by the using the best performing decoding agent for each error
rate. For bit-flip (depolarising) noise we find that for approximately p< 1.3× 10−2 (p< 1.1× 10−2) there is
a decoding agent for which the average lifetime of the actively decoded d= 5 logical qubit is longer than the
average lifetime of a single faulty qubit.

While these results should not be interpreted as rigorous thresholds, and have been obtained using a
simplified phenomenological noise model, they can be seen as proof-of-principle demonstrations of the
framework. To this end, there are various points worth emphasising. First, both the neural network
architecture and reinforcement learning algorithm used here are comparatively simple with respect to the
current state-of-the-art [53–55, 69], and were chosen to allow for the execution of the required training
procedure with the available computational resources. As such, it is expected that utilization of either more
sophisticated neural network architectures or learning algorithms, coupled with the computational resources
required for implementing the required training procedures, could allow one to obtain significantly better
results. Furthermore, as discussed in reference [45], using dedicated hardware it is expected that the forward
pass time of various applicable neural network architectures (including the architecture used here) can be
brought below the time-scales necessary for near-term experiments. Finally, while we have used for these
experiments a simplified phenomenological noise model which captures only some aspects of the fully-fault
tolerant setting, it is important to emphasise that the environment can be straightforwardly instantiated with
a full circuit level noise model, and it is hoped that these results provide both motivation and the framework
for future development in this direction.

8. Conclusion

We have shown that the problem of decoding within the setting of fault-tolerant quantum computation can
be naturally reformulated as a reinforcement learning problem. More specifically, we have constructed an
agent-environment framework which provides a foundation for the use of diverse reinforcement learning
algorithms for the development of decoders for fault tolerant quantum computing. Moreover, we provided a
proof-of-principle demonstration, using a simplified phenomenological noise model, by training deepQ
decoding agents for the d= 5 surface code, for both bit-flip and depolarizing noise with faulty syndrome
measurements (albeit without propagation of errors). It is important to stress that this framework is both
code and error model agnostic, and hence can be directly used to train decoding agents, a novel class of
flexible decoding algorithms, for a wide variety of other experimentally relevant settings. Additionally, the
framework constructed here allows for the development of decoders which do not require final
measurements of physical qubits, and can therefore be used in the computational setting, where logical gates
follow decoding cycles. Finally, the recent use of more sophisticated reinforcement learning techniques and
neural network architectures to demonstrate super-human performance in complex domains such as Chess
and Go [53–55], strongly indicate that the initial results presented here could be successfully improved and

13

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

extended upon (given appropriate computational resources). In light of this, and given the rapid
development of dedicated special purpose hardware for the fast implementation of neural networks, it is our
hope that this framework provides the motivation and the foundation for future development.

To this end, there is a plethora of natural and interesting ways of extending these initial results. First and
foremost it would be of interest to explore the performance of alternative decoding agents, obtained via
different reinforcement learning algorithms, for a wider class of codes. Crucially, a key feature of this
approach is the ability to straight-forwardly tackle general error-models, even including models exhibiting
intricate correlations. Equally important is the consideration of techniques allowing for the scaling of neural
network decoders to larger code distances. In this work we have focused on the decoding of idling logical
qubits during quantum computation, encoded via surface code patches of fixed size. For such a setting recent
literature provides neural network architecture suggestions for scaling to larger code distances [43], although
an alternative method for future research could be found in the use of multiple communicating decoding
agents, simultaneously decoding on overlapping sub-lattices of the total code.

However, current surface code based approaches to large scale fault-tolerant quantum computing require
methods for decoding of irregularly shaped and constantly changing surface code patches, formed via lattice
surgery and code deformation [16, 17]. Hence, to provide a truly complete toolbox for fault-tolerant
quantum computing it is necessary to provide decoding algorithms which do not explicitly depend on the
underlying code lattice. For the case of decoding agents, this would require the development of methods
circumventing the requirement to retrain agents for different shape surface code patches. The
aforementioned approach of multiple communicating agents acting on fixed size sub-lattices could however
provide a promising approach to this problem.

Furthermore, the framework presented here relies on the availability of a referee decoder, with access to
the state of the underlying physical data qubits. As a result, the framework given here can not be used to train
decoding agents only on experimental data, and in practice one would be required to first estimate an error
model for the experimental setup. In order to remove this restriction it would be of interest to investigate
modifications to the framework given here, which require only experimentally generated syndromes. One
such modification would be to consider ‘single-shot’ episodes, which terminate as soon as the agent has
returned the current state into the code space.

Finally, due to the inherent design of the procedure via which these decoding agents are obtained, in
which discounted future performance is valued over immediate rewards, these agents have the potential to
learn decoding strategies not available to alternative decoding algorithms. It may therefore be insightful to
construct test-cases (i.e. specific error volumes) to infer the learned strategy, and use this information in the
design of model-tailored decoding algorithms. It is the hope that the present work constitutes a significant
step forward in the understanding of the applicability of notions of reinforcement learning—with its ability
to predict sophisticated situations that require an understanding of the impact of present actions into the
future—in quantum information science and in the quantum technologies.

Acknowledgments

The authors gratefully acknowledge helpful and insightful discussions with Daniel Litinski, Nicolas Delfosse,
Aleksander Kubica, Thomas Jochym-O’Connor, Paul Baireuther, James Wootton and Hendrik Poulsen
Nautrup. Two of us (J E and E vN) would like to thank Roger Melko, Titus Neupert and Simon Trebst for the
invitation to the workshop on ‘Machine Learning for QuantumMany-body Physics’ in Dresden in June
2018, where two ongoing research programs have been merged into the present collaboration. Additionally,
the authors would like to thank Jörg Behrmann for incredible technical support, without which this work
would not have been possible. RS acknowledges the financial support of the Alexander von Humboldt
foundation and the BMWi PlanQK project. MSK is supported by the DFG (CRC183, project B02). EvN is
supported by the Swiss National Science Foundation through grant P2EZP2-172185. JE is supported by DFG
(CRC 183, EI 519/14-1, and EI 519/7-1), the ERC (TAQ), the Templeton Foundation, and the BMBF
(Q.com). This work has also received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No. 817482 (PASQUANS).

Appendix A. Distributed iterative training with simultaneous hyper-parameter
optimization

In order to obtain optimal decoders for multiple error rates we implemented a custom iterated training
procedure, involving a hyper-parameter grid search at each error rate, as illustrated in figure A1. All code for

14

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure A1. Iterative training procedure, via a hyper-parameter grid search at each error rate. After training multiple decoding
agents at a given error rate, one for each point in the specified hyper-parameter grid, the results are sorted. The weights and
experience memory from the optimal decoding agent are then used as the initial weights and experience memory for a new round
of training procedures, again one for each point in the hyper-parameter grid, but at an increased error rate.

implementing this procedure on an HPC cluster can be found in the associated DeepQ-Decoding
repository [56].

In particular, this procedure involves the following steps:

(a) Choose an initial error rate p1, and fix the values for any hyper-parameters which should remain constant
throughout the entire training procedure.

(b) For all hyper-parameters not yet fixed, specify a list of values to be used for training—i.e. specify a hyper-
parameter grid over which one would like to search for an optimal hyper-parameter configuration.

(c) Train multiple decoding agents at the initial error rate, one for each hyper-parameter configuration in
the specified grid. Each agent is initialized with an empty experience memory and random initial neural
network weights. The training of all agents can be done simultaneously in a distributed manner.

(d) Given the results from all agents trained at p1, sort the results and store the neural network weights and
experience memory from the optimal decoding agent.

(e) Increase the error rate to p2. Once again, train multiple decoding agents, one for each hyper-parameter
configuration in the specified grid. However, this time all agents are initialized with the experience
memory and neural network weights from the optimal agent at p1.

(f) Iterate this procedure until a specified final error rate pn, or until the performance of the optimal agent
is worse than that of a single faulty qubit.

Appendix B. Agent hyper-parameters and learning curves

We implemented the distributed iterative training procedure described in appendix A, for both bit-flip and
depolarising noise (all utilized code can be found in the DeepQ-Decoding repository [56]). In particular, the
initial error rate was set to p1 = pphys = pmeas = 1× 10−3, and incremented by 2× 10−3 in each iteration. As
described in section 7, from input to output the neural network architecture was as follows:

15

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Figure B2. Training histories for optimal depolarising noise agents. The x-axis shows the number of episodes, and the y-axis
shows the rolling average of the decoded qubit lifetime. Hyper-parameters for each agent are given in table B2.

Table B1. Training hyper-parameters.

Fixed hyper-parameters

Batch size 32
Rolling average length 1× 103

Stopping patience (in episodes) 1× 103

Maximum training steps 1× 106

Memory buffer size 5× 104

Syndrome volume depth 5
Discount factor γ 0.99

Variable hyper-parameters

Initial ε 1, 0.5, 0.25
Final ε 0.04, 0.02, 0.001
Number of exploration steps 1, 2×105

Learning rate (LR) 10, 5, 1, 0.5×10−5

Target network update frequency 2500, 5000

[[64,3,2], [32,2,1], [32,2,1], [512,0.2], [|A|,0]], (B1)

with additional modifications required for dueling methodologies [52] implemented automatically by
keras-rl [68]. Single convolutional layers have been described with a three-tuple [n,w, s], where n is the
number of filters, w is the filter width and s is the stride, and single feed forward layers via a two-tuple [n, d],
where n is the number of neurons and d is the output drop-out rate. All agents were trained via the original
deepQ algorithm [49], implemented via the keras-rl library [68], with annealed ε-greedy exploration,
doubleQ updates [51] and dueling networks [51]. Both the fixed hyper-parameters and variable
hyper-parameter grids utilized during the training procedure are specified in table. B1. Figures B2 and B3
then show the training history of the optimal decoding agent at each error rate, while the associated values
for the variable hyper-parameters are given in table B2.

16

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

Table B2.Hyper-parameters for optimal agents at each error rate, in the form [number of exploration steps, initial ε , final ε, learning
rate, target network update frequency].

Optimal hyper-parameters

Bitflip noise
0.001 [2× 105,1,0.02,1× 10−5,5000]
0.003 [2× 105,1,0.02,1× 10−5,5000]
0.005 [1× 105,0.25,0.001,1× 10−5,2500]
0.007 [1× 105,1,0.02,1× 10−5,5000]
0.009 [1× 105,0.5,0.04,1× 10−5,5000]
0.011 [2× 105,0.5,0.04,1× 10−5,2500]
0.013 [1× 105,0.5,0.001,1× 10−5,5000]
0.015 [2× 105,0.25,0.04,1× 10−5,2500]

Depolarising noise
0.001 [2× 105,1,0.001,5× 10−5,5000]
0.003 [1× 105,0.25,0.02,1× 10−5,5000]
0.005 [2× 105,0.5,0.001,1× 10−5,5000]
0.007 [1× 105,1,0.02,1× 10−5,5000]
0.009 [2× 105,1,0.02,1× 10−5,2500]
0.011 [2× 105,1,0.02,5× 10−6,2500]

Figure B3. Training histories for optimal bit-flip noise agents. The x-axis shows the number of episodes, and the y-axis shows the
rolling average of the decoded qubit lifetime. Hyper-parameters for each agent are given in table B2.

Data availability statement

The data that support the findings of this study are openly available at the following URL/DOI:
https://github.com/R-Sweke/DeepQ-Decoding.

ORCID iDs

Ryan Sweke https://orcid.org/0000-0002-6202-8864
Evert P L van Nieuwenburg https://orcid.org/0000-0003-0323-0031

17

https://github.com/R-Sweke/DeepQ-Decoding
https://orcid.org/0000-0002-6202-8864
https://orcid.org/0000-0002-6202-8864
https://orcid.org/0000-0003-0323-0031
https://orcid.org/0000-0003-0323-0031

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

References

[1] Terhal B M 2015 Quantum error correcton for quantum memories Rev. Mod. Phys. 87 307
[2] Campbell E T, Terhal B M and Vuillot C 2017 Roads towards fault-tolerant universal quantum computation Nature 549 172
[3] Kitaev A Y 2003 Fault-tolerant quantum computation by anyons Ann. Phys. 303 2
[4] Dennis E, Kitaev A, Landahl A and Preskill J 2002 Topological quantum memory J. Math. Phys. 43 4452
[5] Preskill J 2017 Topological quantum computation Lecture Notes on Quantum Computation (Berlin: Springer)
[6] Nayak C, Simon S H, Stern A, Freedman M and Sarma S D 2008 Non-Abelian anyons and topological quantum computation Rev.

Mod. Phys. 80 1083
[7] Pachos J K 2012 Introduction to Topological Quantum Computation (Cambridge: Cambridge University Press)
[8] Brown B J, Loss D, Pachos J K, Self C N and Wootton J R 2016 Quantum memories at finite temperature Rev. Mod. Phys. 88 045005
[9] Reed M D, DiCarlo L, Nigg S E, Sun L, Frunzio L, Girvin S M and Schoelkopf R J 2012 Realization of three-qubit quantum error

correction with superconducting circuits Nature 482 382
[10] Barends R et al 2014 Superconducting quantum circuits at the surface code threshold for fault tolerance Nature 508 500
[11] Nigg D, Müller M, Martinez E A, Schindler P, Hennrich M, Monz T, Martin-Delgado M A and Blatt R 2014 Quantum

computations on a topologically encoded qubit Science 345 302
[12] Córcoles A D, Magesan E, Srinivasan S J, Cross A W, Steffen M, Gambetta J M and Chow J M 2015 Demonstration of a quantum

error detection code using a square lattice of four superconducting qubits Nat. Comm. 6 6979
[13] Albrecht S M, Higginbotham A P, Madsen M, Kuemmeth F, Jespersen T S, Nygård J, Krogstrup P and Marcus C M 2016

Exponential protection of zero modes in Majorana islands Nature 531 206
[14] Takita M, Córcoles A D, Magesan E, Abdo B, Brink M, Cross A W, Chow J M and Gambetta J M 2016 Demonstration of

weight-four parity measurements in the surface code architecture Phys. Rev. Lett. 117 210505
[15] Linke N M, Gutierrez M, Landsman K A, Figgatt C, Debnath S, Brown K R and Monroe C 2017 Fault-tolerant quantum error

detection Sci. Adv. 3 e1701074
[16] Fowler A G and Gidney C 2018 Low overhead quantum computation using lattice surgery (arXiv: 1808.06709)
[17] Litinski D A game of surface codes: Large-scale quantum computing with lattice surgery 2018 (arXiv: 1808.02892)
[18] Acin A et al 2018 The European quantum technologies roadmap New J. Phys. 20 080201
[19] Fowler A G 2013 Minimum weight perfect matching of fault-tolerant topological quantum error correction in average o(1) parallel

time (arXiv: 1307.1740)
[20] Duclos-Cianci G and Poulin D 2010 Fast decoders for topological quantum codes Phys. Rev. Lett. 104 050504
[21] Herold M, Campbell E T, Eisert J and Kastoryano M J 2015 Cellular-automaton decoders for topological quantum memories Npj

Quant. Inf. 1 15010
[22] Herold M, Kastoryano M J, Campbell E T and Eisert J 2017 Cellular automaton decoders of topological quantum memories in the

fault tolerant setting New J. Phys. 19 063012
[23] Kubica A and Preskill J 2018 Cellular-automaton decoders with provable thresholds for topological codes (arXiv: 1809.10145)
[24] Das P, Pattison C A, Manne S, Carmean D, Svore K, Qureshi M and Delfosse N 2020 A scalable decoder micro-architecture for

fault-tolerant quantum computing (arXiv: 2001.06598)
[25] Carleo G and Troyer M 2017 Solving the quantum many-body problem with artificial neural networks Science 355 602
[26] Carleo G, Nomura Y and Imada M 2018 Constructing exact representations of quantum many-body systems with deep neural

networks (arXiv: 1802.09558)
[27] Gao X and Duan L-M 2017 Efficient representation of quantum many-body states with deep neural networks Nat. Commun. 8 662
[28] Van Nieuwenburg E P, Liu Y-H and Huber S D 2017 Learning phase transitions by confusion Nat. Phys. 13 435
[29] Huembeli P, Dauphin A and Wittek P 2018 Identifying quantum phase transitions with adversarial neural networks Phys. Rev. B

97 134109
[30] Carrasquilla J and Melko R G 2017 Machine learning phases of matter Nat. Phys. 13 431
[31] Broecker P, Assaad F F and Trebst S 2017 Quantum phase recognition via unsupervised machine learning (arXiv: 1707.00663)
[32] Schindler F, Regnault N and Neupert T 2017 Probing many-body localization with neural networks Phys. Rev. B 95 245134
[33] Melnikov A A, Nautrup H P, Krenn M, Dunjko V, Tiersch M, Zeilinger A and Briegel H J 2018 Active learning machine learns to

create new quantum experiments Proc. Natl. Acad. Sci. 201714936
[34] Fösel T, Tighineanu P, Weiss T and Marquardt F 2018 Reinforcement learning with neural networks for quantum feedback Phys.

Rev. X 8 031084
[35] Domingo Colomer L, Skotiniotis M and Muñoz-Tapia R 2020 Reinforcement learning for optimal error correction of toric codes

Phys. Lett. 384 126353
[36] Andreasson P, Johansson J, Liljestrand S and Granath M 2019 Quantum error correction for the toric code using deep

reinforcement learning Quantum 3 183
[37] Fitzek D, Eliasson M, Kockum A F and Granath M 2020 Deep q-learning decoder for depolarizing noise on the toric code Phys.

Rev. Res. 2 023230
[38] Torlai G and Melko R G 2017 Neural decoder for topological codes Phys. Rev. Lett. 119 030501
[39] Varsamopoulos S, Criger B and Bertels K 2017 Decoding small surface codes with feedforward neural networks Quantum Sci.

Technol. 3 015004
[40] Krastanov S and Jiang L 2017 Deep neural network probabilistic decoder for stabilizer codes Sci. Rep. 7 11003
[41] Maskara N, Kubica A and Jochym-O’Connor T 2018 Advantages of versatile neural-network decoding for topological codes (arXiv:

1802.08680)
[42] Breuckmann N P and Ni X 2018 Scalable neural network decoders for higher dimensional quantum codes Quantum 2 68
[43] Ni X 2018 Neural network decoders for large-distance 2D toric codes (arXiv: 1809.06640)
[44] Varsamopoulos S, Bertels K and Almudever C G 2020 Decoding surface code with a distributed neural network–based decoder

Quantum Machine Intell. 2 1
[45] Chamberland C and Ronagh P 2018 Deep neural decoders for near term fault-tolerant experiments (arXiv: 1802.06441)
[46] Baireuther P, O’Brien T E, Tarasinski B and Beenakker C W 2018 Machine-learning-assisted correction of correlated qubit errors in

a topological code Quantum 2 48
[47] Baireuther P, Caio M, Criger B, Beenakker C and O’Brien T 2018 Neural network decoder for topological color codes with circuit

level noise (arXiv: 1804.02926)

18

https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1103/RevModPhys.88.045005
https://doi.org/10.1038/nature10786
https://doi.org/10.1038/nature10786
https://doi.org/10.1038/nature13171
https://doi.org/10.1038/nature13171
https://doi.org/10.1126/science.1253742
https://doi.org/10.1126/science.1253742
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/ncomms7979
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1103/PhysRevLett.117.210505
https://doi.org/10.1126/sciadv.1701074
https://doi.org/10.1126/sciadv.1701074
http://arxiv.org/abs/1808.06709
http://arxiv.org/abs/1808.02892
https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.1088/1367-2630/aad1ea
http://arxiv.org/abs/1307.1740
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1038/npjqi.2015.10
https://doi.org/10.1038/npjqi.2015.10
https://doi.org/10.1088/1367-2630/aa7099
https://doi.org/10.1088/1367-2630/aa7099
http://arxiv.org/abs/1809.10145
http://arxiv.org/abs/2001.06598
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
http://arxiv.org/abs/1802.09558
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1038/nphys4037
https://doi.org/10.1038/nphys4037
https://doi.org/10.1103/PhysRevB.97.134109
https://doi.org/10.1103/PhysRevB.97.134109
https://doi.org/10.1038/nphys4035
https://doi.org/10.1038/nphys4035
http://arxiv.org/abs/1707.00663
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1103/PhysRevB.95.245134
https://doi.org/10.1073/pnas.1714936115
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.1016/j.physleta.2020.126353
https://doi.org/10.1016/j.physleta.2020.126353
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.22331/q-2019-09-02-183
https://doi.org/10.1103/PhysRevResearch.2.023230
https://doi.org/10.1103/PhysRevResearch.2.023230
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1103/PhysRevLett.119.030501
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1088/2058-9565/aa955a
https://doi.org/10.1038/s41598-017-11266-1
https://doi.org/10.1038/s41598-017-11266-1
http://arxiv.org/abs/1802.08680
https://doi.org/10.22331/q-2018-05-24-68
https://doi.org/10.22331/q-2018-05-24-68
http://arxiv.org/abs/1809.06640
https://doi.org/10.1007/s42484-020-00015-9
https://doi.org/10.1007/s42484-020-00015-9
http://arxiv.org/abs/1802.06441
https://doi.org/10.22331/q-2018-01-29-48
https://doi.org/10.22331/q-2018-01-29-48
http://arxiv.org/abs/1804.02926

Mach. Learn.: Sci. Technol. 2 (2021) 025005 R Sweke et al

[48] Varsamopoulos S, Bertels K and Almudever C G 2019 Comparing neural network based decoders for the surface code IEEE Trans.
Comput. 69 300

[49] Mnih V et al 2015 Human-level control through deep reinforcement learning Nature 518 529
[50] Schaul T, Quan J, Antonoglou I and Silver D 2015 Prioritized experience replay (arXiv: 1511.05952)
[51] Van Hasselt H, Guez A and Silver D 2016 AAAI vol 2 Phoenix, AZ p 5
[52] Wang Z, Schaul T, Hessel M, Van Hasselt H, Lanctot M and De Freitas N 2015 Dueling network architectures for deep

reinforcement learning (arXiv: 1511.06581)
[53] Silver D et al 2017 Mastering chess and shogi by self-play with a general reinforcement learning algorithm (arXiv: 1712.01815)
[54] Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I et al 2016 Mastering the game

of go with deep neural networks and tree search Nature 529 484 EP
[55] Silver D et al 2017 Mastering the game of go without human knowledge Nature 550 354
[56] Sweke R, Kesselring M, Van Nieuwenburg E P and Eisert J 2018 Deepq-decoding (https://github.com/R-Sweke/DeepQ-Decoding)
[57] Gottesman D 1997 Stabilizer codes and quantum error correction PhD thesis California Institute of Technology
[58] Anwar H, Brown B J, Campbell E T and Browne D E 2014 Fast decoders for qudit topological codes New J. Phys. 16 063038
[59] Tomita Y and Svore K M 2014 Low-distance surface codes under realistic quantum noise Phys. Rev. A 90 062320
[60] Stephens A M 2014 Fault-tolerant thresholds for quantum error correction with the surface code Phys. Rev. A 89 022321
[61] Nebe G, Rains E M and Sloane N J 2001 The invariants of the Clifford groups Des. Codes Cryptogr. 24 99
[62] Bravyi S and Kitaev A 2005 Universal quantum computation with ideal Clifford gates and noisy ancillas Phys. Rev. A 71 022316
[63] Brown B J, Laubscher K, Kesselring M S and Wootton J R 2017 Poking holes and cutting corners to achieve Clifford gates with the

surface code Phys. Rev. X 7 021029
[64] Horsman C, Fowler A G, Devitt S and Meter R V 2012 Surface code quantum computing by lattice surgery New J. Phys. 14 123011
[65] Litinski D and von Oppen F 2018 Lattice surgery with a twist: simplifying Clifford gates of surface codes Quantum 2 62
[66] Sutton R, Barto A and Bach F 2018 Reinforcement Learning: An Introduction Adaptive Computation and Machine Learning

(Cambridge, MA: MIT Press)
[67] Delfosse N and Nickerson N H 2017 Almost-linear time decoding algorithm for topological codes (arXiv: 1709.06218)
[68] Plappert M 2016 Keras-rl (https://github.com/keras-rl/keras-rl)
[69] Mnih V, Badia A P, Mirza M, Graves A, Lillicrap T, Harley T, Silver D and Kavukcuoglu K 2016 Int. Conf. on Machine Learning

pp 1928–37

19

https://doi.org/10.1109/TC.2019.2948612
https://doi.org/10.1109/TC.2019.2948612
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1511.06581
http://arxiv.org/abs/1712.01815
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://github.com/R-Sweke/DeepQ-Decoding
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1088/1367-2630/16/6/063038
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.90.062320
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1103/PhysRevA.89.022321
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1023/A:1011233615437
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.1103/PhysRevX.7.021029
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.22331/q-2018-05-04-62
https://doi.org/10.22331/q-2018-05-04-62
http://arxiv.org/abs/1709.06218
https://github.com/keras-rl/keras-rl

	Reinforcement learning decoders for fault-tolerant quantum computation
	1. Introduction
	2. The surface code
	3. The decoding problem
	4. Reinforcement learning and q-functions
	5. Decoding as a reinforcement learning problem
	5.1. Non-repeated Pauli flips
	5.2. Request new syndrome or repeated Pauli flip

	6. A deepQ decoding agent
	7. Demonstration
	8. Conclusion
	Acknowledgments
	Appendix A. Distributed iterative training with simultaneous hyper-parameter optimization
	Appendix B. Agent hyper-parameters and learning curves
	References

