
Machine Learning: Science and Technology

PAPER • OPEN ACCESS

Machine learning for analyzing and characterizing
InAsSb-based nBn photodetectors
To cite this article: Andreu Glasmann et al 2021 Mach. Learn.: Sci. Technol. 2 025006

 

View the article online for updates and enhancements.

You may also like
InAsSb photodiodes grown on GaAs
substrates for long-wavelength-infrared
gas-sensing applications
H Fujita, D Yasuda, H Geka et al.

-

Growth dynamics and compositional
structure in periodic InAsSb nanowire
arrays on Si (111) grown by selective area
molecular beam epitaxy
Daniel Ruhstorfer, Armin Lang, Sonja
Matich et al.

-

Investigation of surface leakage current in
MWIR HgCdTe and InAsSb barrier
detectors
M Kopytko, E Gomóka, K Michalczewski et
al.

-

This content was downloaded from IP address 106.213.19.213 on 01/07/2023 at 06:42

https://doi.org/10.1088/2632-2153/abcf89
https://iopscience.iop.org/article/10.1088/1361-6641/ac1a2a
https://iopscience.iop.org/article/10.1088/1361-6641/ac1a2a
https://iopscience.iop.org/article/10.1088/1361-6641/ac1a2a
https://iopscience.iop.org/article/10.1088/1361-6528/abcdca
https://iopscience.iop.org/article/10.1088/1361-6528/abcdca
https://iopscience.iop.org/article/10.1088/1361-6528/abcdca
https://iopscience.iop.org/article/10.1088/1361-6528/abcdca
https://iopscience.iop.org/article/10.1088/1361-6641/aae768
https://iopscience.iop.org/article/10.1088/1361-6641/aae768
https://iopscience.iop.org/article/10.1088/1361-6641/aae768


Mach. Learn.: Sci. Technol. 2 (2021) 025006 https://doi.org/10.1088/2632-2153/abcf89

OPEN ACCESS

RECEIVED

3 August 2020

REVISED

3 November 2020

ACCEPTED FOR PUBLICATION

1 December 2020

PUBLISHED

29 December 2020

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Machine learning for analyzing and characterizing InAsSb-based
nBn photodetectors
Andreu Glasmann1, Alexandros Kyrtsos1 and Enrico Bellotti1,2

1 Department of Electrical and Computer Engineering, Boston University, Boston MA 02215, United States of America
2 Division of Materials Science and Engineering, Boston University, Boston MA 02215, United States of America

E-mail: andreug@bu.edu

Keywords: capacitance, neural networks, infrared photodetectors, convolutional neural networks, barrier detectors, machine learning

Abstract
This paper discusses two cases of applying artificial neural networks to the capacitance–voltage
characteristics of InAsSb-based barrier infrared detectors. In the first case, we discuss a
methodology for training a fully-connected feedforward network to predict the capacitance of the
device as a function of the absorber, barrier, and contact doping densities, the barrier thickness,
and the applied voltage. We verify the model’s performance with physics-based justification of
trends observed in single parameter sweeps, partial dependence plots, and two examples of
gradient-based sensitivity analysis. The second case focuses on the development of a convolutional
neural network that addresses the inverse problem, where a capacitance–voltage profile is used to
predict the architectural properties of the device. The advantage of this approach is a more
comprehensive characterization of a device by capacitance–voltage profiling than may be possible
with other techniques. Finally, both approaches are material and device agnostic, and can be
applied to other semiconductor device characteristics.

1. Introduction

Recent advances in computing capabilities have led to an unprecedented rise in data generation and
availability. As such, there has been a need for rapid development of tools to aid researchers in identifying
trends hidden deep within high-dimensional datasets. Machine learning [1–3], a subset of artificial
intelligence concerned with studying techniques for building data-driven mathematical models, offers a set
of tools that are well-suited to address this need. In addition to computing hardware becoming more
powerful, improvements in machine learning algorithms and the development of user-friendly machine
learning frameworks has made these types of tools more accessible than ever.

Machine learning has gained renewed interest recently due to new neural network architectures achieving
state of the art performance in numerous disciplines for applications in image and speech recognition,
language processing, and data analysis. For instance, machine learning techniques have started to be
routinely used, or researched for use, in many diverse scientific and engineering fields, including
bioinformatics [4], materials science [5–7], and radiology [8, 9]. In this paper, we discuss machine learning
in the scope of semiconductor device development.

The semiconductor industry has been using machine learning to address topics in modeling,
manufacturing, and recently, design. For example, artificial neural networks (ANNs) have shown to be useful
as a method of creating compact models for circuit simulators [10–13]. ANNs can reproduce device
characteristics over wider ranges of operating conditions where analytic equations may no longer be valid.
From another perspective, ANNs could also be used to create a statistically representative compact model for
a batch of fabricated devices that have been characterized over temperature, voltage, and frequency, creating
a more realistic representation of the product in the circuit simulation. In either case, once trained, ANNs are
faster to evaluate than a numerical approach, and can offer higher accuracy and superior generalization than
a look-up table.
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Figure 1. Diagram illustrating a neural network used in this work that predicts a device’s capacitance based on architectural and
operational variables.

Another compelling example in the semiconductor industry is the application of machine learning to
manufacturing. By maintaining logs of each fabrication cycle, facilities can generate vast amounts of data
each year. This data can be leveraged using machine learning techniques to improve models used for fault
detection, predictive maintenance, correlating processing parameters to yield, and develop advanced
metrology techniques [14–18]. A notable example is the use of machine learning to aid in wafer fault
detection [19, 20]. By monitoring the progress of a wafer through a series of processing steps, a trained
convolutional neural network can prevent accruing additional cost by using pattern recognition to find
defects on the wafer, identifying the faulty process, and preventing the wafer from continuing through the
fabrication line. The neural network can have higher detection accuracy than a human technician, and also
offer insight into ways to improve the fabrication line by analyzing the features that led the network to its
prediction.

A widely encountered challenge in device development is understanding how each design parameter
affects performance. It quickly becomes difficult to understand parameter-performance correlations as the
number of free parameters increases. There has been recent progress in using approaches based on machine
learning to address this problem [21]. However, these techniques have yet to be applied to infrared
photodetectors, where the device architecture and material are extensively engineered to meet performance
requirements in demanding applications.

As is the case in many areas of engineering, research regarding infrared sensor design and fabrication is
predominantly driven by finding ways to reduce cost while simultaneously improving performance and
adding new capabilities. The barrier detector design [22–24] has achieved success for midwave-infrared
sensing in this aspect by allowing the detector to reach background-limited performance at higher operating
temperatures, reducing the cooling requirements for the imaging system. Realization of these types of
innovative designs requires sufficient theoretical knowledge of the device operation, often through
physics-based analytical or numerical modeling. There has been much effort in modeling barrier infrared
detectors in recent years [25, 26], and as a result, the methodology and materials models are now relatively
mature. As modeling capabilities and computing hardware continue to improve, we are able to more
efficiently study complex device designs. Machine learning offers tools to both ameliorate analysis of the data
to make definitive conclusions, and construct physics-based surrogate models for complex device
phenomena. It is the aim of this work to demonstrate a methodology for applying machine learning to
simulation results to create models for studying, analyzing, and optimizing device characteristics. To this
end, we look at two approaches of applying neural networks to the capacitance–voltage (C–V) characteristics
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Figure 2. The proposed convolutional neural network design for predicting device properties from capacitance–voltage
characteristics.

of InAsSb-based nBn photodetectors. To our knowledge, this is the first report of applying neural networks
to this type of device and its C–V characteristics.

While capacitance is not a common figure of merit when discussing infrared photodetector performance,
it is a common technique for characterizing semiconductor materials [27]. Moreover, it has been
shown [28–30] that the C–V characteristics for barrier-style devices can elucidate more about the underlying
materials. The C–V profile can be used to extract information about the doping density in all three critical
device layers, the absorber, barrier, and contact, as well as the thickness of the barrier. To this end, this paper
covers two approaches for applying neural networks to C–V characteristics.

First, we show that an ANN can be trained to accurately predict the capacitance based on a subset of the
device’s architectural parameters. In this case, we include the doping densities of the absorber, barrier, and
contact layers, the thickness of the barrier layer, and the applied voltage as input features for the model. Once
trained, the model is used as an analysis tool to understand the role of each feature in shaping the C–V
characteristics.

Second, inspired by recent developments in image recognition, we address the inverse problem by using a
convolutional neural network to create an enhanced characterization tool for C–V analysis. The
convolutional network is used in place of conventional analytic techniques, and may be applied to other
devices and cases where analytical models are not valid. In this paper, we train a convolutional neural
network to predict the doping densities of the absorber, barrier, and contact layers, and the thickness of the
barrier layer and show excellent generalization over a wide range of values for each parameter.

This manuscript is organized as follows: section 2 introduces the neural networks studied in this work,
and discusses the C–V characteristics of barrier infrared detectors; section 3 presents the methodology used
for data acquisition and training the networks; section 4 presents the results; section 5 concludes the article.

2. Background

2.1. Neural networks: multilayer perceptron
Machine learning provides many algorithms for creating predictive models from data. One approach, and
the one we adopt in this work, are neural networks. We briefly discuss a few of the basic concepts of neural
networks in this section.

The first type of network we present in this work is based on the multilayer perceptron model where
information is propagated through a set of fully-connected layers. This type of feedforward network
calculates a prediction vector, ŷ= {ŷ1, . . . , ŷk}, by performing a series of simple calculations on an input
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vector, x= {x1, . . . ,xp}. The vectors x and ŷ represent the input and output layers respectively, and elements
of x are referred to as features or predictors. The calculations that lead the input to the output take place in
the hidden layer. The hidden layer contains layers of fully-connected elements, or neurons. The number of
layers, and neurons in each layer, need to be optimized for the given problem. Consider two sequential layers
H1 and H2 with n andm neurons respectively. The value calculated by the jth neuron in H2 is given by

z2j = σ

(
n∑

i=1

w2
ijz

1
j + b2j

)
,

where w2
ij, b

2
j , and z1j denote the weight associated with the connection between the ith neuron in H1 and the

jth neuron in H2, the jth neuron’s bias, and the activated value from the ith neuron. The function, σ, is the
activation function for this neuron, and is a way to introduce non-linearity into the model. There are many
choices of activation functions, and more are researched to improve computational efficiency, stability,
convergence rate, and accuracy. In this work we will use hyperbolic tangent,

σ(z) =
ez − e−z

ez + e−z
,

and the exponential linear unit, or ELU, given by [31]

σ(z) =

{
z z> 0

e z − 1 z≤ 0.

As we increase the complexity of the model by adding more neurons and hidden layers, the output will
become an increasingly complex function of nested function evaluations.

The sets of weights and biases for each hidden layer are represented as matrices of free variables that are
optimized by an optimization algorithm during the learning process. During training, the network is exposed
to a set of N samples, X= {x1, . . . ,xN}T of known outputs, Y= {y1, . . . ,yN}T, referred to as the training
data. An important consideration when designing the network is the complexity of the model. If there are
too many weights and biases compared to N, the model may overfit the data, and will not generalize well to
unseen data. The weights and biases in the network are optimized to minimize a cost function J, expressed as

J(X;θ) =
1

N

N∑
i=1

L(yi, ŷi(X;θ)) . (1)

L is the loss function that is used to calculate the error in each prediction for every sample. θ is used to
denote the set of all hyperparameters used in the model, for instance, the weights, biases, learning rates, and
data processing. For regression, a common choice, and what we use here, is the mean squared error

L(y, ŷ) = 1

k

k∑
j=1

(
yj − ŷj

)2
.

Similarly to σ, there are several choices for J and L for other types of problems.
The recent reemergence of neural networks is due in part to improvements in optimization algorithms

for updating the weights and biases. For large-scale applications, the numbers of weights and biases can be
such that the task of optimizing hundreds of thousands of free parameters is non-trivial, either suffering
from issues with stability or being simply computationally prohibitive. One of the most popular, and a
particularly intuitive approach, is to use the method of steepest descent. The gradients of equation (1) with
respect to the weights and biases are calculated by repeatedly applying the chain rule—an approach called
backpropagation. These gradients are then used to update each weight and bias in the network in such a way
that the cost function is, ideally, reduced with every iteration.

2.2. Convolutional neural networks
Convolutional neural networks, or convnets, are frequently used for pattern recognition due to their ability
to identify relevant features in an image by learning the correspondence between neighboring pixels [32].
The key to the success of convnets is their use of learned sets of weights and biases, called filters, used to
perform convolutions over clusters of pixels [1]. The outputs of these convolutions are referred to as feature
maps. These maps can highlight pertinent information in the image; for example, feature maps have shown
to emphasize edges of objects with various orientations [3, 33, 34].
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Basic convolutional networks are based on the following design. The input, considering for example a
greyscale image, is simply a structured array of pixel intensity values. This array is passed to a series of
convolutional blocks. These blocks are composed of convolutional and pooling layers. The purpose of the
convolutional blocks is to extract the salient information from the image, which is then used by a final
fully-connected network in its prediction.

Consider the following example of a convolutional layer in the network. Let Iij denote the intensity of the
pixel located in row i and column j. Consider filter f, and assume it hasm rows and n columns. Then, the

resulting value for the feature map at this position, z fij, when the top-left of filter is aligned with pixel ij will be

z fij = σ

 m∑
q=0

n∑
r=0

(
w f

qrIi+q,j+m

)
+ b f

 .
The final feature map contains the outputs, zf for every position on the image that the filter is applied. Each
filter contains n×m weights and a single bias. Notice that now, unlike the multilayer perceptron model in
the previous subsection, we have decoupled the number of free parameters in the model from the
dimensionality of the preceding layer by sharing the weights and bias in each filter with every input. The
dimensions of the feature map are controlled by how the filter is stepped across the image and the
dimensions of the filter. The number of filters, the filter dimensions, and the way the filter is stepped across
the preceding layer are treated as hyperparameters that are typically determined empirically.

While the number of free parameters associated with the convolutional layers is controlled by the filters,
the feature maps may still have high dimensionality. Recall that the output of the convolutional block will be
given to a fully-connected network. Since the number of free parameters associated with each set of
fully-connected layers is directly proportional to the number of inputs, it can be useful to further reduce the
dimension of each layer in the convolutional block. One common approach is to use pooling. Pooling
involves calculating an aggregate assumption about a cluster of pixels, usually by finding the average,
minimum, or maximum value. The size and stride of the pooling operation are again hyperparameters that
must be chosen, but are both commonly fixed at two in order to reduce the dimensionality in half.

While we limited this brief discussion of convnets to images, the pattern recognition ability can be
applied to any type of structured data where information can be found in localized clusters of points. For this
reason, convnets are continued to be researched for applications in signal processing. A few compelling
examples include using convnets to formulate diagnoses based off of medical signals, such as
echocardiograms [35, 36] and electroencephalograms [37]. Following similar logic, a semiconductor device’s
electrical characteristics, such as current–voltage or C–V, are representative of the underlying device
structure and material quality. It is the goal of this paper to introduce a methodology based on convolutional
neural networks to predict device-related parameters from C–V characteristics.

2.3. Capacitance–voltage characteristics
Capacitance–voltage profiling is a common approach to measure the doping density of a semiconducting
layer within a device [27, 38]. The capacitance of a barrier detector can be approximated as a series
capacitance from three regions of the device, or [28, 29, 39]

1

C
=

1

Cj,A
+

1

CB
+

1

Cj,C
, (2)

where Cj,A and Cj,C are the junction capacitances due to the absorber-barrier and contact-barrier interfaces,
and CB is a parallel plate capacitance when the barrier layer is fully depleted given by

CB =
ϵ0ϵr
tB

, (3)

where tB, ϵr, and ε0 are the thickness of the barrier layer, relative dielectric constant, and vacuum permittivity.
Usually, assumptions are made regarding equation (2) to characterize the barrier detector. For the structure
considered in this work, an n-type absorber, N-type barrier, and nth type contact, when a reverse bias is
applied, equation (2) can be simplified to a series capacitance of Cj,A and Cj,B, since Cj,C will be a relatively
large accumulation capacitance. Under this assumption, it is possible to extract the absorber doping density
through the conventional technique from metal-oxide-semiconductor theory by analyzing 1/C2 [27, 39].

A more complete solution for equation (2) can be obtained by considering the three semiconducting
layers and applying Poisson’s equation to the two interfaces with appropriate boundary conditions [29, 40].
This approach, however, can be challenging to implement due to requiring a numerical approach to solve the
resulting transcendental equation. An alternative is to use a drift-diffusion model to solve a set of coupled
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Figure 3. (a) Learning curves showing the mean squared error of the capacitance predicted by the neural network for the training
and validation sets during training. Predicted versus expected capacitance for the (b) training and (c) validation sets respectively.
The blue lines have unity slope and zero intercept for reference. (d) Predicted versus expected capacitance for a test dataset that
contains values of Nd,A, Nd,B, Nd,C, and tB that are not present in the training or validation sets.

Table 1. A summary of the device architecture used when performing drift-diffusion simulations to calculate capacitance–voltage
characteristics.

Layer Material Composition, x
Eg(T= 150K)
(eV) Thickness (µm) Doping (cm−3)

Substrate GaSb — 0.778 0.5 —
Absorber InAs1− xSbx 0.09 0.321 3 n-type 1014–1017

Barrier AlAs1− xSbx 0.9 1.696 0.1–0.3 N-type 1015–1017

Contact InAs1− xSbx 0.09 0.321 0.1 n-type 1015–1017

equations. Drift-diffusion alleviates many of the constraints imposed by the analytical approach, but the
added computational complexity and need for advanced materials models can also be a hinderance. In this
paper, we apply machine learning to this problem in two ways. First, by using drift-diffusion simulation
results, we train a neural network to create a surrogate model for the C–V relationship that contains the
added physical accuracy of drift-diffusion, while being quickly evaluated like analytical models, facilitating
rapid analysis of the characteristics. This approach creates a model that can be easily used to study these types
of complex problems, and can deepen our comprehension of performance-parameter correlations in
multidimensional spaces. Second, we suggest a solution to the inverse case where a more complete
characterization of the device is possible by training a convolutional neural network to analyze its C–V
profile.

3. Methods

In a previous work, we used Synopsys Sentaurus TCAD to simulate the C–V characteristics of InAsSb-based
nBn photodetectors [29, 41]. In the same work, we showed through a combination of analytical and
numerical modeling that we are able to reproduce measured C–V data of similar nBn devices. The detector
structure used to perform the simulations is summarized in table 1. Simulations were performed assuming a
temperature of 150 K, and with a frequency of 1 MHz. More details regarding the simulation methodology,
materials parameters, and analysis can be found in other works [29, 42].
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For this study we created a database of drift-diffusion computed capacitances for varied values of the
absorber doping density, Nd,A, barrier doping density, Nd,B, contact doping density, Nd,C, barrier thickness,
tB, and the applied voltage, Va. One prominent issue in creating data-driven models is how the the data is
sampled. The easiest approach is using a grid search over the parameters, where every permutation of set of
discrete values for each feature is sampled. However, while simple to implement, this causes the model to
only observe a small number of values for each feature. Furthermore, if we consider using N discrete values
for n features, the number of samples required is Nn, which quickly becomes infeasible for large values of N
to ensure adequate mapping of the parameter space. To address this issue, we opted for an approach using a
quasi-random sampling approach based on Halton sequences [43–45]. Quasi-random techniques offer
better coverage of the parameter space than gridded sampling, while preventing the possibility of clustering
by random sampling. In this instance, if we take N samples, there will be N different values for each
parameter that are more evenly distributed through the space. In this study, we used Halton sequences to
discretize Nd,A, Nd,B, Nd,C, and tB, while the values of Va were fixed at 101 evenly spaced points during each
simulation.

We used TensorFlow [46] as the framework for initializing, training, and evaluating the neural networks.
The first neural network considered in this work is a fully-connected feedforward network. The input layer is
comprised of five neurons for Nd,A, Nd,B, Nd,C, tB, and Va. The hidden layer contains four layers with ten
neurons each. We used hyperbolic tangent as the activation function for each neuron. The output layer is a
single neuron with a linear activation representing the predicted value of the capacitance, C. A summary of
the network architecture is shown in figure 1. Weights were initialized using Glorot initialization [47]. Biases
were initialized as zeros. The weights and biases were optimized using the Adam optimization algorithm [48].
The recommended values for the hyperparameters β1, β2, and ε of 0.9, 0.999, and 10−7 were verified to be
reasonable by monitoring the validation loss during a small grid search of different values for each. Prior to
training, we applied a Z-score normalization to the training inputs and labels to transform the sets to have
zero mean and unity standard deviation, and used the base-10 logarithmic values of Nd,A, Nd,B, and Nd,C.
For stability the initial learning rate was set to 10−4. The networks were trained using 128 quasi-random
samples of Nd,A within 1014–1017 cm−3, Nd,B within 1015–1017 cm−3, Nd,C within 1015–1017 cm−3, and tB
within 100–300 nm. To improve the quality of the model, we also include the 16 limiting cases—for example
Nd,A= 1014 cm−3, Nd,B= 1015 cm−3, Nd,C= 1017 cm−3, and tB = 100 nm—that make up the corners of
the four-dimensional hypercube, giving a total number of simulated cases of 144 with 14 544 individual
capactiances. The training and validation sets were constructed by splitting each simulated C–V curve in half,
taking every other voltage as training and every other adjacent voltage as validation.

The second considered case uses a convolutional neural network; a summary of the network architecture
is shown in figure 2. In this case, a C–V profile is used as the input layer, and is represented as a
one-dimensional array with 101 capacitances. The inputs were normalized prior to training using Z-score
normalization. The convolutional block is made up of two sets of convolutional layers each followed by
average pooling layers. Both of the convolutional layers have eight 5× 1 filters with ELU activations. The
pooling layers use a stride and step of two. We apply global average pooling to the output of the
convolutional block. The result is passed to a fully-connected network with three layers comprised of eight
neurons each, and ELU activations. The output is four neurons, representing the values of Nd,A, Nd,B, Nd,C,
and tB. The Adam algorithm with the default hyperparameters was also used for this network with an initial
learning rate of 10−4. Note, to better handle the orders of magnitude spanned by Nd,A, Nd,B, and Nd,C, we
used the base-10 logarithmic values, but use the true values when reporting the results. A Z-score
normalization was also applied to these training labels. A set of 768 quasi-random values of Nd,A, Nd,B,
Nd,C, tB, and the 16 values of the four-dimensional hypercube were using to simulate the C–V profiles to
create the training and validation sets, with 90% used for training and 10% for validation. Cases on the
corners of the parameter hypercube are weighted higher during training.

4. Results and discussion

4.1. Multilayer perceptron
4.1.1. Learning curve and network generalization
The learning curve for the first neural network is shown in figure 3(a). The network exhibits low validation
loss without overfitting, due to the network only containing 401 free variables and being trained with about
7000 samples. Figures 3(b) and (c) present prediction-expectation plots for the training and validation sets.
An ideal predicted-expected curve would be a line with unity slope. The quality of fit for the neural network
model is quite higher for both datasets, with R2 values near one. In this case, the validation set contains the
same values of Nd,A, Nd,B, Nd,C, and tB that are present in the training set given how the two sets were
constructed. The excellent performance of the network on the validation set confirms that the network is not
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Figure 4. Single parameter sweeps of (a) Nd,A, (b) Nd,B, (c) Nd,C , and (d) tB, while the other features are fixed, showing neural
network generalization to unseen values. All lines are neural network predictions for the capacitance. Markers indicate samples
from the test set, which contain values of Nd,A, Nd,B, Nd,C, and tB that were not used during training.
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Figure 5. Bivariate partial dependence of the capacitance computed as functions of the applied voltage along with (a) Nd,A,
(b) Nd,B, (c) Nd,C, and (d) tB. The partial dependence value C̄ is calculated by fixing Va and another feature, and averaging the
predicted capacitance for each combination of other features in a gridded feature-space. C̄ has units of nF cm−2.

overfitting the training data, and generalizes well to new voltage values. To confirm generalization to
unknown values of Nd,A, Nd,B, Nd,C, and tB another dataset was generated. The same predicted-expected
curves are shown in figure 3(d), and confirms the ability of the network to generalize well to unseen cases.

Figure 4 presents examples of predicted C–V profiles by the network through univariate parameter
sweeps. Note, the network was not trained using any of the exact cases of Nd,A, Nd,B, Nd,C, and tB shown in
figure 4. For each univariate sweep, the predicted C–V curve smoothly follows the expected trends for each
parameter, while matching the test data well. For example, in figure 4(a) Nd,A is varied between 1015 and
1017 cm−3. The network correctly captures the trend where a larger reverse bias applied to the contact layer is
required to expand the depletion region in the absorber for high doping densities, manifesting as a
capacitance that drops more slowly with voltage. Physically this is due to how the depletion region in the
absorbing layer expands with reverse bias; generally, a larger reverse bias is required to extend the depletion
region in highly doped semiconductors, and hence, the capacitance will drop at a lower rate with reverse bias.
The trained neural network accurately captures this behavior.

The barrier doping density, Nd,B, is varied in figure 4(b). The barrier doping density affects the C–V by
changing the flatband voltage where either the absorber (contact) layer changes from accumulation
(depletion) to depletion (accumulation) under forward (reverse) or reverse (forward) bias respectively. This
voltage is the point at which the capacitance starts to decrease with bias, and indicates that the absorber
(under reverse bias) or the contact layer (under forward bias) has a sufficiently large depletion region to
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Figure 6. The distribution of partial derivatives of the predicted capacitance, Ĉ, with respect to (a) Nd,A, (b) Nd,B, (c) Nd,C,
(d) tB. Solid red and dotted black denote the median and average of the distribution, and the shaded region is the interquartile
range.

dominate in equation (2). As the barrier doping density increases, the magnitude of the crossover voltage
should also increase, as noted in previous works [25, 29]. Again, the neural network accurately reproduces
the expected behavior.

The trend in figure 4(c) is the same as in (a), except for forward bias. Under forward bias the contact layer
depletes, and can limit the device capacitance. Unlike the absorber, however, the contact is only 100 nm thick,
and can fully deplete under forward bias when the doping density is low. When this happens, the capacitance
approaches a constant value. Once more, the network is able to reproduce both of these physical phenomena.

Finally, figure 4(d) varies the thickness of the barrier layer. The thickness of the barrier affects the
capacitance by increasing the dielectric width in a parallel plate capacitor, as in equation (3). The parallel
plate capacitance decreases as the barrier thickness increases, and further limits equation (2). Just like the
previous cases, the neural network is able to capture this trend with high fidelity.

4.1.2. Partial dependence plots
One way to gain a global perspective on how each feature shapes the output is to generate partial dependence
plots [49–51]. Partial dependence can help the user in understanding the role of a feature in the prediction of
any black box function. Figure 5 shows bivariate partial dependence plots illustrating the average predicted
capacitance as functions of the applied voltage and other features. We computed partial dependence by using
the following approach. First, we create sets of discrete values for Nd,A, Nd,B, Nd,C, tB, and Va in ranges
1014–1017 cm−3, 1015–1017 cm−3, 1015–1017 cm−3, 100–300 nm, and−8 to 8 V respectively. Then, one value
of Va is fixed along with one value of the other feature we are investigating. For each combination of values of
the other features, along with this pair of fixed values, we compute the average predicted capacitance, C̄. This
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Figure 7. (a) An example of a C–V profile for reference when considering the relative feature sensitivity in (b). Curves in (b) were
computed using equation (4).

represents the partial dependence of the capacitance with respect to the fixed features by averaging the effect
from the others.

Using figure 5(a) as an example, we can observe how the capacitance is shaped by the absorber doping
density. Nd,A has little affect on the value of the forward bias capacitance, as shown by a constant value of C̄
with varied Nd,A. This is consistent with the previous discussion of figure 4; under forward bias the
absorber-barrier interface is under accumulation, and has a larger capacitance than either the parallel plate
capacitance determined by the barrier thickness, or the contact layer’s junction capacitance. On average, the
capacitance rapidly drops under reverse bias for low values of Nd,A, consistent with a low doped absorber
layer rapidly depleting.

Shown in figure 5(b), Nd,B broadens the C–V profile for large doping densities, consistent with how
Nd,B affects the crossover voltages for the absorber and contact layers. Similarly to figures 5(a) and (c) shows
that Nd,C only affects the C–V under forward bias, and that for low values of Nd,C the capacitance quickly
reaches a constant value, again consistent with the layer fully depleting. Figure 5(d) reveals more information
about the tB dependence of the C–V than figure 4(d). On average, tB is important over the full voltage range,
since tB can directly limit the total capacitance in equation (2) through CB.

4.1.3. Sensitivity analysis
The partial dependence plots in the previous section are useful for providing insight into the average value of
the prediction due to each feature. Another analysis that can be useful is to quantify how sensitive the output
is to changes in the features. With automatic differentiation we have direct access to the gradient of the
capacitance with respect to the inputs. Using a similar approach to the partial density plots, we create a set
comprised of every possible combination of features in the parameter-space, compute the gradients, and find
the interquartile range, median, and average values. The result is shown in figure 6, where for every voltage
we have computed a distribution of partial derivatives of the capacitance with respect to each of the features.
This enables both a qualitative and quantitative understanding of the extent of the effect that each has on the
capacitance. For example, as previously discussed, figure 6(a) shows that changes in Nd,A have little impact
on the capacitance under forward bias, and is most influential at low reverse bias. However, it also shows that
a incremental change of Nd,A by 1014 cm−3, the capacitance, on average, will rise by 0.2 nF cm−2 at
about−2 V.

Of course, we can also study a specific case, and look at the gradients to understand which parameter
should be changed to meet a design requirement. For example, depending on the application it may be
beneficial to reduce the capacitance under reverse bias to increase the speed of the device. Figure 7 shows an
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Table 2. A summary of the performance of a trained convolutional neural network used to predict Nd,A, Nd,B, Nd,C, and tB from a C–V
profile.

Feature Dataset Avg. % Err. Median % Err. R2

Nd,A Training −0.273 0.100 0.9931
Validation −0.123 0.941 0.9941

Nd,B Training −0.940 0.052 0.9815
Validation −5.830 −3.145 0.9797

Nd,C Training −0.650 −0.275 0.9838
Validation 3.303 3.510 0.9930

tB Training −0.015 −0.041 0.9982
Validation −0.055 −0.043 0.9991

example where we are considering the bias-dependence of the capacitance with values of 1015 cm−3,
1015 cm−3, 1017 cm−3, and 200 nm for Nd,A, Nd,B, Nd,C, and tB respectively. We directly compare the
impact by each feature by calculating a relative sensitivity given by

S∗i =
∂C

∂x
· x
C
, (4)

for x∈Nd, A, Nd,B, {Nd,C, tB}. The figure clearly shows that reducing Nd,A would have the largest effect in
achieving a lower capacitance, but also offers information on the other features as well.

4.2. Convolutional neural network
The previous discussion established neural networks as a robust tool for predicting and analyzing device
characteristics. In this section we consider the inverse case, where a convolutional neural network is trained
to characterize the device’s architectural properties. From this perspective, the neural network is used as an
enhanced metrology technique for extracting more information from the C–V characteristic.

The learning curve for training the convolutional neural network to predict Nd,A, Nd,B, Nd,C, and tB is
shown in figure 8, and the quality of the fit is summarized in table 2. Since the complexity of the model was
reduced to accommodate the limited number of training samples, the validation error follows the training
error without overfitting. The average and median errors in both the training and validation sets are low,
with R2 values are near unity for all cases. With more samples, and a more complex network, these errors
could be reduced further.

The performance for the convolutional network is shown in figure 9. Shown in figure 9(a), the absorber
doping density is accurately predicted for all cases within 1014–1017 cm−3, with a majority of cases falling
within 0.8 to 1.2× the expected value. While a 20% error in these outliers may seem high, to put it in
perspective this would indicate that a doping density of 1015 cm−3 would be either over- or underestimated
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Figure 9. Predicted versus expected curves for (a) Nd,A, (b) Nd,B, (c) Nd,C, (d) tB and the associated distribution of
predicted-expected ratios.

as 1.2× 1015 or 8× 1014 cm−3, which for these orders of magnitude is reasonable. Similar behaviors are seen
for Nd,B and Nd,C; all doping densities are correctly predicted within a factor of two of the expected values.
The thickness of the barrier layer very accurately predicted, with the worst case underestimating by about
25 nm; most cases are within 5–15 nm depending on the thickness of the layer. Nearly all of distributions
have medians near unity.

Figure 9 also provides insight into cases that are difficult to predict or obtain information about the
features. Cases of low Nd,C and high tB have wider distributions of predictions. For low Nd,C, the contact
layer quickly depletes and the capacitance is constant without any distinctive features, similar to what was
shown in figure 4(c). Similarly, a large value of tB causes the C–V to flatten has the parallel plate capacitance
from the barrier dominates, reducing the important of aspects of the profile, like shown in figure 4(d).

5. Conclusion

In this work, we introduced a methodology for applying machine learning to analyze and characterize
semiconductor devices based on their electrical characteristics. Specifically, we looked at two cases using
ANNs trained with C–V data obtained by drift-diffusion simulations of InAsSb barrier infrared detectors.
First, we created a simple model to predict the capacitance based on supplied values for the absorber, barrier,
and contact layer doping densities, and the barrier thickness. We demonstrated that this model provides a
high quality fit, generalizes well to unseen data, and reproduces the behavior expected when considering the
underlying device physics that determine the capacitance of the device. Moreover, we showed the usefulness
of this approach in analyzing the global parameter space associated with the prediction through partial
dependence plots. This approach was also shown to have potential use in helping with critical design
decisions by analyzing the capacitance’s sensitivity to each feature.

While capacitance is not typically the critical metric used when discussing photodetector parameters, it is
a useful diagnostic tool, and elucidates more about this particular type of infrared photodetector than other
competing designs. However, the methodology discussed here is agnostic of the characteristic, so while we
focused on the C–V relationship, the approach could be extended to other figures of merit and used to
optimize performance around different sets of features. For instance, a model could be created to include an
additional metric, such as dark current, and used to understand the tradeoff between lowering capacitance
and photodetector noise with the objective of meeting application-specific performance goals. Additional
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features could also be included to create a more comprehensive representation of the device for further
optimization. Finally, it is worth noting that the methodology introduced in this paper is agnostic of the
material or device under study, so a similar approach could be used to study other types of devices—such as
those that use strained superlattices as absorbing layers—their performance, and the role of their associated
design features. The key challenge in extending the methodology to other devices lies in the ability to
generate or acquire additional data.

The second contribution from this work was the demonstration of using a trained convolutional neural
network to analyze a barrier detector’s C–V characteristics to predict Nd,A, Nd,B, Nd,C, and tB. The model
provides value as a characterization tool by alleviating constraints imposed by other analysis approaches and
enabling the possibility of extracting additional diagnostic information from a measurement. The model was
shown to perform well over a wide range of absorber, barrier, and contact layer doping densities, and barrier
thicknesses. While this study was limited to a small number of device parameters, the complexity of the
model could be increased by simulating additional cases to encompass more details about a device, including
for example, the thickness and composition of each semiconducting layer. Of course, inclusion of additional
features may require a more complex network and acquisition of additional data, leading to a higher
computational cost in training the model to achieve a reasonable accuracy. Another opportunity would be to
train the model to characterize heterointerfaces and other semiconductor surface properties by
characterizing band offsets, defect energy levels, or trap densities. In the future, it could prove useful to
explore the feasibility of using data augmentation or synthetic data generated by the feedforward model, or
both, to improve model generalization and prediction accuracy.

The data that support the findings of this study may be made available upon reasonable request from the
authors.
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