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Abstract
Machine learning surrogate models for quantum mechanical simulations have enabled the field to
efficiently and accurately study material and molecular systems. Developed models typically
rely on a substantial amount of data to make reliable predictions of the potential energy landscape
or careful active learning (AL) and uncertainty estimates. When starting with small datasets,
convergence of AL approaches is a major outstanding challenge which has limited most
demonstrations to online AL. In this work we demonstrate a∆-machine learning (ML) approach
that enables stable convergence in offline AL strategies by avoiding unphysical configurations with
initial datasets as little as a single data point. We demonstrate our framework’s capabilities on a
structural relaxation, transition state calculation, and molecular dynamics simulation, with the
number of first principle calculations being cut down anywhere from 70%–90%. The approach is
incorporated and developed alongside AMPtorch, an open-source ML potential package, along
with interactive Google Colab notebook examples.

1. Introduction

The last decade has seen a surge in machine learning (ML) applications to material science, physics, and
chemistry [1–7]. Characterizing a molecular system’s potential energy surface (PES) has been a crucial step
to the development of new catalysts and materials. Structure relaxation, molecular dynamics (MD), and
transition state calculations rely almost entirely on an accurate PES to serve their functions. Machine
learning potentials (MLPs) have demonstrated chemical accuracy at orders of magnitude faster computation
times than traditional ab-initiomethods including density functional theory (DFT) and coupled cluster
single double triple [8]. However, these demonstrations have generally required large datasets and careful
uncertainty estimates. More importantly, the models developed have struggled to generalize to new systems
and faced convergence issues when adding data, making the practicality of their day-to-day applications
challenging [5, 9–11]. The potential of active learning (AL) in molecular simulations has not been fully
realized due to convergence and implementation challenges.

The careful curation of training datasets for accurate molecular simulations has recently given way
to AL [12–15]. AL is the branch of ML concerned with systematically querying data points to be be part
of the training set [16]. The iterative process queries new data, trains a model, and repeats until a
model performance is achieved. AL methods are particularly useful when the cost of querying data is
substantial—as in the case of computing DFT. There are two main classes of strategies with relevance to
molecular simulations. In Online-AL, configurations are generated sequentially using a MLP and for each a
decision is made whether to accept the estimate, perhaps using an uncertainty estimate. In Offline-AL, a pool
of candidates is generated and a decision is made which of the pool to add to the training set.

Although there are many strategies available for both Online-AL and Offline-AL, both commonly assume
that all generated candidates are feasible to be queried and that adding data will not reduce accuracy on
previous training data. Both of these assumptions are difficult with MLP: DFT often fails to converge on
far-from-equilibrium structures, and many MLPs suffer if even a small number of configurations with large
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Figure 1. A traditional Behler–Parinello neural network (BPNN) trained to replicate the potential energy surface (PES) of a
Cu–Cu bond with (a) a dataset spanning the PES and (b) a limited dataset trained with and without a Morse prior. (c) The
minimum pair-wise distance of a structure relaxation carried out with a BPNNmodel, with and without the Morse prior. Relative
to the covalent radius of Cu, our model consistently predicts more physically-consistent configurations as compared to the more
unstable BPNN. Error bars represent the 95% confidence interval.

energies/forces are added to the training dataset [14]. These concerns are especially problematic when
dealing with little to no initial data. The most common approach to address these challenges is to carefully
monitor uncertainty in the AL process and prevent extrapolation to unphysical regions. This strategy is
relatively straightforward to implement in Online-AL: if the uncertainty estimate is below a threshold, accept
the prediction, otherwise run the DFT calculations. If the step size is small enough, the new configuration
should not be so different from configurations in the training set. However, in Offline-AL it is difficult to
ensure the queried configurations will converge with DFT and will not contaminate the dataset once added.
Instead of solving this problem, we show that it is possible to mostly fix the underlying issues leading to
unrealistic configurations.

In this work, we demonstrate that stable convergence in Offline-AL with MLP is possible by adding
simple repulsive potentials and robust training procedures. This approach is implemented for the common
combination of Behler–Parinello MLP fingerprints with neural network atomic energy models [17]. We
show that a∆-ML approach with a base pairwise Morse potential and linear mixing rules is capable of
sufficiently capturing the repulsive interactions between atoms that lead to DFT errors. Since this Morse
potential is not responsible for capturing the full potential, the parameterization only needs to be done once
for each element. We demonstrate this approach for several types of calculations common in catalysis:
structure relaxations, MD, and transition state calculations. In each case, convergence with the addition of
training data is essentially impossible with the base potential and well behaved with the∆-ML approach. In
most cases this process allows for a reduction of 70%–90% in the number of DFT single-point evaluations
necessary. This process is further improved using standard neural network training approaches in the ML
community to reduce the impact of random initial weights on small datasets. All of these are demonstrated
in the open-source and accessible AMPtorch GitHub repository with Google Colab ASE examples [18, 19].

2. Methods

The ML community continues to make advancements in the optimization and implementation of neural
network-based models [20–22]. To leverage some of these approaches, we employ a Behler–Parinello neural
network (BPNN). BPNNs construct element-specific neural networks with the energy of the system the sum
of atomic energy contributions. Per-atom forces are directly obtained from the negative gradient of the
energy with respect to the atomic positions. We refer the readers to several reviews for a more detailed
discussion on the BPNN model [5, 6, 17]. Additionally, neural network-based models do not suffer the same
kernel selection and scalability challenges that can come with Gaussian processes (GP) and other Bayesian
models [23]. Training neural networks, however, can be an extremely challenging task we hope to address in
this work.

In the presence of an abundance of data, BPNN-like models have shown great success in replicating the
PES of various systems [4, 6, 24]. In the small data limit, however, neural network-based models are unable
to successfully characterize the energy surface, figure 1(b). More notably, model predictions are entirely
‘physics-free’, such that simple repulsive interactions are only ever learned by the model once enough data
has been provided. As a result, a considerable amount of time may be wasted learning simple, widely
understood characteristics of the PES. Hybrid physics-based ML models can provide an important path
forward to making reliable, physically-consistent discoveries in the sciences [25, 26]. To address this, we
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incorporate a∆-ML approach [27, 28] to learn the correction, ENN, between a simple Morse potential,
∆Emorse, and ab-initio level theory—namely, DFT,∆EDFT(x):

∆EDFT(x) = EDFT(x)− EDFT(xref)

∆Emorse(x) = Emorse(x)− Emorse(xref)

ENN(x) = ∆EDFT(x)−∆Emorse(x)

Emorse+NN(x) = ∆Emorse(x)+ EDFT(xref)+ ENN(x)

where EDFT(xref) and Emorse(xref) correspond to the reference energies necessary to correct for differences in
their absolute energies. Reference energies are computed from a same arbitrary structure, xref; the dataset’s
first structure was used in our applications. Per-element parameters of the Morse potential, De, re, and a, are
fitted to DFT data a priori. A more detailed description of the fitting procedure is included in the (SI). By
leveraging the Morse potential as the backbone to the model, the ML component is allowed to learn the
remaining functional form while still capturing physics-based repulsive interactions previously missed.
Additionally, learning a correction can allow the neural network to learn a much smoother function than the
underlying PES, improving training stability and convergence.

We illustrate the benefits of this simple Morse potential by running a structure relaxation of carbon on
copper (C/Cu) with our model trained on a single image (figure 1(c)). The minimum pair-wise distances of
the resulting trajectory are compared to those not employing a Morse potential. Our model consistently
predicts configurations above the covalent radius of copper, a good indication repulsive forces are being
captured. On the other hand, a traditional BPNN shows wide variations while on average predicting
configurations well below the more stable covalent radius.

The fitting of MLPs is an important process in our AL framework, as they are responsible for generating
candidates for training data. A poorly fit MLP may generate unfeasible candidates that DFT can not converge
upon. This is especially true when working without a physics-based potential. Working within a small data
regime allows us to leverage quasi-Newton optimizers, namely limited-memory Broyden–Fletcher–
Goldfarb–Shanno (LBFGS). LBFGS and other second-order optimizers provide us with improved
convergence of our model training over standard first-order methods such as stochastic gradient descent
(SGD) and Adam. This advantage, however, is only really feasible in the small data limit where the
computational cost of such methods can be afforded. Additionally, we incorporate a cosine annealing
learning rate scheduler with warm restarts [29] to aid in the convergence of the Offline-AL framework. A
more detailed comparison can be found in the supplementary information (which is available online at
stacks.iop.org/MLST/2/025007/mmedia).

Similar to previous works [12, 13], our Online-AL framework begins with little to no data and must
identify the right points to query and improve the model over the course of a molecular simulation
(figure 2). Rather than relying on kernel-based models, our Online-AL framework utilizes the proposed
physics-coupled BPNN. We incorporate bootstrap-ensembling, or bagging, in order to quantify our model’s
uncertainty. Bagging involves training multiple, randomly initialized, independent models with training sets
randomly sampled, with replacement, from an original dataset [30]. Predictions and uncertainty estimations
are then calculated from the ensemble statistics.

An Offline-AL can offer model and computational advantages over Online-AL frameworks. Rather than
making query decisions in a dynamic process, we present a method to select from a pool of generated
candidates. Prior works have incorporated Offline-AL to various extents. Sivaraman et al [31] used AL to
downselect from an existing hafnium dioxide ab initioMD simulation to train a GP model. Novikov et al
[32] used AL and moment tensor potentials to run atomistic simulations. We show, however, that a standard
neural network is unable to follow a similar framework without careful modifications. Rossi et al [33] used
an ensemble of neural networks to estimate uncertainty along an atomistic simulation. Having begun from
an extensively sampled training dataset, their need for retraining was avoided, a problem we address for
neural networks in the small data regime. While the use of AL has shown incredible success in training
models with fractions of the dataset, it assumes such datasets exist to begin with. We propose a framework to
enable accurate atomistic simulations beginning with as little as a single data point. We accomplish this by
iteratively running an ML-driven molecular simulation. After each iteration, a querying strategy samples
from the generated trajectory. Queried points are then evaluated with DFT, added to an original dataset, and
the ML model retrained (figure 2). The process is repeated until a defined convergence criteria is met.
Despite the ML model resulting in inaccurate simulations early on, diverse, informative configurations are
generated to train the ML model. In dealing with a pool of query candidates, the framework allows us to
explore alternative querying strategies other than uncertainty estimates of Online-AL [16]. The reliance on
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Figure 2. Online and Offline active learning frameworks to accelerate molecular simulations. Left: Online-AL. At each time step,
our ML model makes a prediction of the energy and forces and assesses the uncertainty of its estimate. If confident, the ML results
are used to take a step in the molecular simulation. Otherwise, a DFT call is made, added to a database, and the model retrained.
Right: Proposed Offline-AL. (a) An initial training dataset is used to train the ML model; (b) the trained ML model runs the
atomistic simulation of interest; (c) termination if converged, otherwise, the generated data is stored as a pool of potential
candidates; (d) a query strategy identifies what points to be added to the training set; (e) ab-initio calculations are performed on
selected candidates; (f) queried points are added to the training set. Repeat until convergence is reached.

Table 1. Comparison of different offline active learning batching scenarios on the structural relaxation of C/Cu(100). At each iteration, a
varying number of queries are randomly made from the generated relaxation. A tradeoff in performance and the number of samples per
iteration is observed for a fixed total number of DFT calls= 20. All models trained here incorporated the proposed Morse prior.

Batching scenario

Iterations Samples per iteration Energy MAE (eV) Structure MAE (Å)

20 1 0.0063 0.0037
10 2 0.0069 0.0063
5 4 0.0080 0.0067

uncertainty estimates can pose more fundamental questions surrounding energy conservation from a
retrained potential [32] and how trustworthy a model’s estimates really are [34].

We demonstrate the proposed framework on several common catalysis applications: structure
relaxations, transition-state calculations, and MD with system sizes between∼12 and 30 atoms. A random
sample query strategy is introduced in the Offline-AL schemes to demonstrate the effectiveness of even the
simplest of query strategies over Online-AL. More problem-specific query strategies are proposed for
structural relaxations and transition-state calculations, further improving the convergence. To show the
generality of this approach in small-data applications, we also use two common DFT packages: the Vienna
ab initio Simulation Package (VASP) and Quantum Espresso (QE) [35–37]. The use of QE allows for
interactive and open demonstrations of this approach. Several Google Colab notebooks have been included
in the supplementary information, allowing users to easily experiment and explore new systems with
AMPtorch and QE without needing to locally install and manage dependencies.

3. Results and discussion

A structural relaxation is performed for C/Cu(100) with cell size 2× 2× 3. An initial guess of 3 Å from the
surface is made for the adsorbate. Periodic boundary conditions are applied in the x and y directions and the
last slab layer is fixed from relaxations. The training dataset begins with a single initial structure.

Performance is measured by the final structure and energy mean-absolute-errors (MAEs). A random
sample query strategy selects configurations from the generated relaxations to be queried. We run the
Offline-AL framework under a variety of batching scenarios, terminating after N iterations, samplingM
configurations per iteration, for an arbitrary total of NM= 20 DFT calls. Results are summarized in table 1.

Under the above random query strategy, systematic termination of the Offline-AL loop is quite heuristic.
To address this, we incorporate alternative query and termination strategies—quasi-random and uncertainty
sampling. In quasi-random, at each iteration, in addition to a random configuration, the predicted relaxed
structure is also queried. Similarly, uncertainty sampling samples the k-most uncertain points in addition
to the relaxed structure. In both strategies, if the predicted relaxed structure’s max per-atom force, as
evaluated by DFT, is below the optimizer’s convergence criteria, the AL loop is terminated. Otherwise, the
configurations are added to the original dataset, and the framework cycles. In querying the model’s predicted
relaxed structure we are assured in our framework’s ability to accurately reach a local minima.
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Table 2. Summary of the various strategies’ performance on the structural relaxation of C/Cu(100). The effects of the Morse prior on the
convergence of both the offline and online active learning are also shown. The querying strategy employed by the Offline-AL framework
relies on a quasi-random strategy, additionally sampling and assessing convergence on the framework’s generated relaxed structure.

Framework (tolerance) MLP Energy MAE (eV) Structure MAE (Å) DFT calls

DFT — — — 51
Offline-AL (0.03 eVÅ−1) BPNN∆-ML 0.0039 0.0032 17
Offline-AL (0.05 eVÅ−1) BPNN∆-ML 0.0049 0.0059 15
Offline-AL (0.05 eVÅ−1) BPNN only does not converge
Online-AL (0.05 eVÅ−1) BPNN∆-ML 0.0073 0.0107 30
Online-AL (0.05 eVÅ−1) BPNN only 0.2884 0.0263 22

Table 3. Comparison of different offline active learning query strategies on the structural relaxation of C/Cu(100). All models trained
here incorporated the proposed Morse prior.

Query strategy Energy MAE (eV) Structure MAE (Å) DFT calls

Random 0.0063 0.0037 20
Quasi-random 0.0049 0.0059 15
Uncertainty sampling 0.0061 0.0050 19
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Figure 3. Offline-AL applications to structural relaxations and transition state calculations. (a) Evolution of the structural
relaxation of C on Cu(100) over a few cycles of the Offline-AL. (b) Relaxed structure and energy learning curves of the Offline-AL
framework, using the BPNN∆-ML model. (c) Convergence instability associated with not incorporating the Morse potential
prior in an Offline-AL context. (d) Evolution of the transition state calculation for the surface diffusion of O on Cu(100). Despite
the poor performance of the first iteration, the framework is able to recover and converge to an accurate prediction. (e) Learning
curve associated with the energy barrier of the oxygen diffusion example of (d). (f) Total number of DFT calls queried by the
Offline-AL under different querying strategies for the energy barrier associated with the diffusion of oxygen on copper. Error bars
represent the 95% confidence interval.

We compare the performance of this Offline-AL scheme and Online-AL with and without the∆-ML in
table 2. Offline-AL and Online-AL tolerances correspond to the max per-atom force termination criteria and
max force variance tolerated by the ensemble, respectively. Force termination criteria of 0.03 and 0.05 eVÅ−1

are compared to explore the tradeoff between accuracy and number of DFT calls. Online-AL was empirically
set to query a DFT call when the ensemble based force uncertainty reached above a threshold of 0.05 eVÅ−1.
The energy and structure MAE associated with the system’s initial structure is 2.82 eV and 0.15 Å,
respectively. Our best-performing framework, Offline-AL with∆-ML (0.03 eVÅ−1), reported average
energy and structure MAEs of 0.0039 eV and 0.0032 Å with 17 total DFT calls—a 66.7% reduction. Without
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Figure 4. Offline-AL demonstration to a 2ps MD simulation of CO on Cu(100). (a) Evolution of the MD trajectory over several
iterations of the active learning framework. We verify the effectiveness of our framework by randomly sampling configurations
and comparing DFT evaluated energy and forces with that of our model’s predictions. (b) Parity plots associated with the
DFT-evaluated configurations and our model’s predictions of the 6th iteration, demonstrating good agreement. Shading was
scaled logarithmically with darker shading corresponding to a higher density of points.

the inclusion of the Morse prior, a standard BPNN was unable to converge, generating configurations that
DFT was unable to evaluate in almost all our experiments. We compare several query strategies in table 3,
demonstrating similar success in all scenarios.

Next, we demonstrate an application to transition state calculations, specifically nudge-elastic-band
(NEB) methods [38, 39]. NEB calculations require defining the initial and final structures for the transition
state to be calculated. Machine-learning accelerated NEB calculations have typically relied on ab-initio
relaxed initial and final structures, a costly step of a NEB calculation [40]. In fixing the initial and final
structures, the ML objective is simplified to an interpolation problem. We demonstrate our framework’s
ability to accelerate the complete NEB calculation, including initial and final structure relaxations, to find the
surface diffusion energy barrier of oxygen on Cu(100). To illustrate our framework, we used five images to
build the NEB, including the initial and final states which have not been relaxed previously. The initial
training dataset includes only the unrelaxed initial and final structures.

The convergence evolution of our Offline-AL framework is illustrated in figure 3(d), approaching the
true energy barrier after a few iterations. Similarly, convergence was not achieved, with often failing DFT
evaluations, without the inclusion of the Morse prior. A simple random strategy is first employed. Here the
images are randomly sampled from generated NEBs and evaluated using DFT before being added to the
training data. Termination is achieved after a fixed number of iterations. Additionally, we compare the
efficiency of two more systematic querying and early stopping methodologies. An uncertainty sampling
strategy queries images with the highest uncertainty, which are then evaluated with DFT and added to the
training data. Termination is reached when the difference between the predicted energies from ML and DFT
at the saddle point are less than a tolerance. An additional strategy is also tailor-made for the NEBs, wherein
the highest energy point, along with the initial and final points, are sampled at each iteration. The loop is
terminated once the difference between the ML-predicted energies and DFT-evaluated energies of the three
points is less than a specified threshold. All three cases demonstrate a significant reduction in the number of
DFT calls required to construct the NEB as shown in (figure 3(f)).

ML surrogates to DFT are considerably favorable in the context of long time-scale simulations, namely
MD. Unlike structural relaxations, MD simulations are typically carried out on orders of magnitudes more
steps. Several works have addressed these challenges through GP-based Online-AL frameworks [12, 13].
We demonstrate that our proposed Offline-AL framework is capable of converging to an accurate MD
simulation. A 2ps MD simulation of CO on Cu(100) in a 300K NVT ensemble is used for our demonstration.
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Figure 5. Radial distribution function (RDF) of the ground truth DFT and our framework’s 6th iteration for the MD simulation
of CO/Cu(100). Demonstrating good consistency even before the allotted number of iterations.

Beginning with a dataset containing only the initial structure, our framework cycles for several iterations,
randomly querying 50 configurations for a total of 500 DFT calls by the end of our experiment. Unlike
structural relaxations with a well defined target, MD simulations are more stochastic in nature and are
unlikely to follow an identical trajectory over multiple iterations. To demonstrate the effectiveness of our
framework, we verify the performance, at each iteration, by randomly sampling 400 configurations from our
ML predicted trajectory and validate their corresponding energy and force predictions with DFT. We
illustrate the iterative convergence of our framework in figure 4. Despite the upper limit of ten iterations, we
observe good agreement with DFT by iteration 6—a reduction of 85% in DFT calls. Additionally, we
demonstrate consistency in the radial distribution function of our framework’s generated simulation to that
of the original DFT simulation (figure 5). Although our demonstration takes place at a moderate 300 K, the
extremely limited data of our ML model results in highly perturbed configurations within the first few
iterations of the simulation. Without the presence of our proposed Morse prior these configurations are far
off equilibrium and often fail to converge by DFT. A similar demonstration under a more perturbed, higher
temperature system is included in the supplementary information, with comparable success as early as the
3rd iteration—a 92% reduction in DFT calls.

4. Conclusion

The development of accurate and reliable MLP has been a challenging task for the community. The careful
curation of datasets is especially difficult in trying to generalize to new systems. AL has provided promising
results in accelerating molecular simulations while minimizing risks of extrapolation. Neural-network based
models, however, have struggled with such demonstrations for their reliance on large amounts of data. As
deep learning research continues to make significant strides, understanding how to better incorporate
neural network-based MLPs into AL pipelines can help provide more accurate and robust models.

This manuscript presented a neural network-based Offline-AL framework to accelerate a variety of
molecular simulations beginning with extremely limited data. We introduced a physics-based prior, Morse
potential, into our model in a∆-ML manner, to capture basic repulsive interactions crucial in the
convergence of our framework. We demonstrate the framework’s ability to accurately converge simulations
including structural relaxations, MD simulations, and transition-state calculations. In each of these, the
proportion of reduced DFT calls were 71%, 75%, and 91%, respectively. The framework presented is
extremely flexible, allowing users to define their own querying strategies, termination criteria, and
incorporate their own, more complex molecular simulations as they wish to accelerate with AMPtorch.
Similar to other works, the nature of our AL framework introduces assumptions and limitations surrounding
the feasibility of DFT queries. While our framework helps in accelerating atomistic simulations, its
applicability is limited by the time it takes to query DFT points. Systems in which DFT calls may be infeasible
(10 000+ atoms or far-from-equilibrium) will fail under this and other AL strategies, leaving opportunities
for the development of robust models trained on large datasets [41]. At this time we make no guarantees that
the performance of the ML model will always improve when a queried data point is added to the dataset. Our
experiments recognize this as a particular issue in the small data regime but this was often mitigated in
our work by the presence of the Morse potential and more sophisticated learning rate schedulers, where
otherwise it would have failed. Future directions will explore more systematic querying strategies and
termination criteria to further accelerate the framework while being robust to larger, more complex systems
still compute-feasible under DFT. Additionally, exploring alternative model priors and adversarial training
techniques can help improve the performance, consistency, and generalizability of AL frameworks [42, 43].
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5. Calculation settings

Single-point DFT calculations were performed in Quantum Espresso (QE) [37] implemented in ASE [44];
using the PBE exchange-correlation functional [45]; a plane wave basis set with an energy-cutoff of 500 eV;
k-points of 4× 4× 1; and the pseudopotentials provided by Garrity et al [46]. The same settings were also
used for DFT calculations in fitting the Morse potential parameters. The following tools and settings were
used for our DFT calculations: VASP 5.4.4.18 [35, 36]; using the PBE exchange-correlation functional;
a plane wave basis set with an energy-cutoff of 400 eV; and k-points of 4× 4× 1. VASP was used for all
structure relaxation and MD examples and QE for the NEB examples. AMPtorch [18] was used for all ML
and AL components of the framework.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary
information files).
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