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Abstract:

This paper studies the dynamics of identity and status management within groups in collaborative settings.
We present an agent-based simulation model for group interaction rooted in social psychological theory. The
model integrates a�ect control theory with networked interaction structures and sequential behavior proto-
cols as they are o�en encountered in task groups. By expressing status hierarchy through network structure,
we build a bridge between expectation states theory and a�ect control theory, and are able to reproduce cen-
tral results from the expectation states research program in sociological social psychology. Furthermore, we
demonstrate how themodel can be applied to analyze specialized task groups or sub-cultural domains by com-
bining it with empirical data sources. As an example, we simulate groups of open-source so�ware developers
and analyze how cultural expectations influence the occupancy of high status positions in these groups.

Keywords: Agent Based Modeling, A�ect Control Theory, Expectation States Theory, Networks, Online Collab-
oration

Introduction

1.1 The study of groups is one place where the fields of psychology and sociology most apparently intersect, as
individual-level information processing interacts with the dynamics of a social system. In this work, we follow
the common definition of a group referring to "a bounded collection of interacting individuals" exhibiting func-
tional, cognitive (we would add, a�ective), and structural interdependencies (Lindenberg 1997, 2015). While in
themiddle of the twentieth century small-group researchwas an integrated research field, it subsequently frag-
mented intomultiple specialized domains such as the study of networks, social exchange, group collaboration,
collective decision making, and many others (Burke 2006). These subfields di�er in the degree to which they
focus on one or more of these interdependencies.

1.2 However, some research questions are best tackled by an integrated approach that examines how these inter-
dependencies are intertwined. In this vein, the present work sets out to understand how role identities and
their culturally shaped a�ective connotations influence the cultural acceptance of those who occupy impor-
tant positions in task groups. To this end, we built an integrative computational model called ACTING (A�ect
Control Theory based simulations of Interaction inNetworkedGroups) that can realistically simulate task group
interactions. ACTING takes into account all threeof the aforementionedgroup interdependencies because each
influences task groups. Task groups are goal-oriented and o�en follow protocols or procedural rules to reach a
shared goal (functional interdependence). They rely on shared group identities and a shared understanding of
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appropriate role-based identities and behaviors (cognitive-a�ective interdependence). Finally, workplace in-
teractions in a task group o�en occur against the backdrop of explicit organizational hierarchies that determine
who gets to interact with whom (structural interdependence).

1.3 In the last two decades, agent-based modeling (ABM) has been developed as a fruitful knowledge-integrating
approach to sociological theory building and testing, in particular for understanding how macroscopic social
e�ects arise from simple mechanisms operating at the individual level. ABM, therefore, naturally lends itself
as a methodological framework to study emergent properties of groups, such as the emergence of cultural ac-
ceptance or rejection of status hierarchies in task groups. ABMs of group dynamics, particularly from computa-
tional organizational theories (Cohen et al. 1972; Prietula &Carley 1994; Decker 1996), havemodeled functional,
cognitive-a�ective, and structural interdependencies predominantly from an information processing perspec-
tive. Although these theories have increasingly emphasized the importance of cultural knowledge and norma-
tiveexpectations (Carley&Hill 2001), theencodingof this knowledgeandexpectationshasprimarilybeeneither
as agent rules dependent largely on the researcher’s knowledge and specific to a particular task domain, or as
simulated knowledge of what and whom each agent knows. Consequently, with the present work we are ad-
dressing a gap in the organizational modeling literature, namely finding a tractable yet principled approach for
modeling cultural dynamics. We are also addressing a gap in the groupprocesses literature, namely incorporat-
ing identity maintenance processes into formal models of task groups. Existing models have either simulated
agent’s role-identities (Heise 2013) but ignored the network structures and associated status hierarchies they
operate in; or they have focused on the formation of status hierarchies and the associated network structures
(Mark et al. 2009), but have ignored role identities entirely or focusedonbroad categories such as female versus
male workers which are modeled as categorical variables.

1.4 Building on Heise’s (2013) work, we propose a more general framework for modeling task groups where cul-
tural knowledge is encoded as sentiments collected from empirical surveys. Agents in our model orient them-
selves with respect to the sentiments they have about concepts and behaviors, forming expectations about
who should do what with whom as they engage in networked and interdependent activities. While the func-
tional interdependence of task groups will o�en be highly task-specific, we believe that a generalized model
that captures the interplay of functional, cognitive-a�ective and structural interdependence is feasible. The
social psychological concept of identity is key to this endeavor. On the one hand, identities are focal concepts
organizing an individual’s goals, values, and relationships across di�erent domains of daily life; on the other
hand, identities are tied to structural positions in organizations and society.

1.5 In this work, we thus extend Heise’s (2013) Group Simulator, which employs amodel of identity based on a�ect
control theory, into a more general agent basedmodel that can simulate complex task groups. The extensions
include three major contributions. First, we allow for the simulation of interactions within networked group
structures. In particular, this enables us tomodel and investigate the alignment of a group’s role identities with
its organizational structure which is implemented as a directed graphG = (V,E) , where the vertices V are a
set of agents and the edgesE are a set of directed behavior pathways. This extension is important because the
ability to manage expectations is heavily influenced by the group’s organizational structure. Furthermore, net-
works can be connected to status hierarchies that are present in the group, allowing us to investigate the func-
tioning of role hierarchies within a variety of formal group structures. Note that this work grew out of an e�ort
to model digital task-groups that collaborate online. In these settings, we repeatedly encountered interaction
structures that were restricted to specific network topologies (Zöller et al. 2020). Moreover, we found that the
possible actions of group members were o�en restricted to a discrete set of behaviors, owing to the technical
design of the platform on which the interactions took place. Therefore, we introduced our second innovation
to Heise’s (2013) model, the possibility to restrict the action space to a discrete set of behaviors. This feature is
also helpful when one wants to compare simulation results to empirical data for which a discrete annotation
scheme was employed such as Bales’s (1950) interaction process analysis categories. Finally, task group be-
havior o�en follows a protocol. By protocol, we mean a task structure where the completion of certain tasks
requires sequential actions from group members with di�erent skillsets at di�erent levels of authority. This is
the case not only in computer-mediated collaboration on platforms, but also in bureaucratic organizations that
enforce legal or other formal prescriptions of business processes. Consequently, certain actions necessarily fol-
low others or are only possible as a response to other actions. Thus, we added a third extension that allows the
user to define behavior protocols in our model, which govern sequences of actions in the simulated groups.

1.6 The article is organized as follows. First, we describe the theoretical basis, starting with a brief outline of rele-
vant work about the interplay between social networks and role behavior in task groups followed by a review
of A�ect Control Theory. Next, we describe our ACTINGmodel, following the established ODD protocol for ABM
description (Grimm et al. 2020). We then turn to a series of simulation experiments aimed at understanding
the network functionality of the model in the context of several stylized ideal types of network structures. We
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investigate how di�erent network structures influence the a�ective dynamics of identitymanagement of inter-
dependent group members. Furthermore, we demonstrate how the model reproduces well-known empirical
findings about cultural expectations and status dynamics in small groups (Ridgeway & Bourg 2004; Ridgeway
2019). We then demonstrate how our framework can be used to model complex task groups that exhibit func-
tional, cognitive-a�ective, and structural interdependencies, or what Merton (1957) called role-sets, i.e "the
complement of role-relationships in which persons are involved by virtue of occupying a particular social sta-
tus". The last methodological step is an application of the model to di�erent empirically realistic interaction
structures extracted from the GitHub social graph, to show how simulations help illuminate the identity dy-
namics and associated status positions that occur in various types of organized collaboration.

Background

2.1 Sociality and cognition are inextricably linked (Donald 1991; Dunbar 2009). Groups provide arenas for social
learning and skills transmission (Hobaiter et al. 2014). Learning to join andwork in groups is critical for children
todevelopa theory ofmindanda senseof agency (Piaget 1977; Corsaro&Molinari 2005). The social networks of
social animals (the patterns of relations between groupmembers) influence behaviors related to reproduction,
cooperation, conflict, and tool use (Kappeler 1999; Connor et al. 2001; Hobaiter et al. 2014). In humans, they
influence patterns of reciprocation (Cook & Emerson 1978), perceptions of risk (Molm et al. 1999), and group
solidarity (Markovsky & Lawler 1994). Finally, groups are where dominance relations are sustained and repro-
duced (Fararo & Skvoretz 1986; Skvoretz et al. 1996; Mark et al. 2009).

Status dynamics in task groups

2.2 Because task groups are important in the allocation of social goods (Bales & Slater 1955; Berger et al. 1972), they
have long been the focus of scholars interested in the reproduction of status inequality. By status, we mean
both ascribed (e.g., gender and race) and achieved (e.g., a post-secondary degree) characteristics that confer
prestige across multiple group settings. Merton (1957, p.110) observed that status and roles serve to connect
culturally defined expectations with the patterned conduct and relationships that make up a social structure.
He focused on the reproduction of status inwork settings through the enactment of role sets. Role sets describe
role identities such as doctors, nurses and interns that not only imply a set of attributes such as good or potent
but also a set of logical relations such as directing and reporting.

2.3 Bales and colleagues (Bales&Strodtbeck 1951; Bales 1953) found that groupswhosememberswerepresumably
initially equal in status, nevertheless exhibited inequalities in participation and influence. This empirical puzzle
was the launching point for the expectation states research program in social psychology (Berger et al. 1972;
Ridgeway 1991, 2019). The expectation states literature includes a variety of theories; but, central to them all
is the notion that goal oriented groups when they form confront an information problem - they do not know
who is competent. Groupmembers, thus, must infer competence from social cues such aswealth and prestige.
If a correlation exists between resources and nominal characteristics such as race or gender in the population,
even if this correlation is spurious, a self-reinforcing pattern of interaction can arise that associates competence
with the given characteristic (Ridgeway 1991). These di�erential expectations create a self-fulfilling prophecy
(Merton 1968) whereby higher-status groupmembers aremore influential and receive disproportionatelymore
positive evaluations and rewards.

2.4 Demonstrating how such an endogenous mechanism might operate and testing theoretical assumptions re-
garding this process has included pioneering simulation studies examining the formation of dominance hierar-
chies (Skvoretz et al. 1996;Grow&Flache2019), the exercise ofweakpower through social exclusion (Markovsky
et al. 1993), the attribution of status value to nominal characteristics (Mark et al. 2009; Lynn et al. 2009), and the
formation of trust and cooperation (Flache & Macy 2011). In all of these simulation studies, status hierarchies
havebeendefinedandquantified throughnetworkproperties. For example, Skvoretz et al. (1996) identify dom-
inance hierarchies by analyzing the directionality of ties. Similarly, Lynn et al. (2009) use in-degree centrality
of a deference network as the metric for status ranking. Centrality measures have a long-standing tradition as
useful metrics in sociological theory building (Friedkin 1991). Examples are Hubbell’s measure of sociometric
status (Hubbell 1965), Coleman’smeasure of power (Coleman 1973), and Burt’smeasure of prestige (Burt 1982).
Freeman (1978) identified three di�erent families of centrality that imply three competing theories of how cen-
trality might a�ect group processes. It is, therefore, important to note that while in most cases a useful metric
of group status can be defined in terms of network properties, the exact formwill always depend on the specific
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context and the meaning of ties and nodes in the network. A general review about network theory and small
groups can be found in (Katz et al. 2004).

2.5 In the simulation studies conductedaspart of the expectation statesprogramcitedabove, status characteristics
such as gender are typically operationalized as categorical variables that influence an individual’s opportuni-
ties to participate in group activities. Role identities such as CEO, supervisor, secretary or intern are not taken
into account. However, by jettisoning role identities, an important factor in the relationship between perceived
competence and status characteristics is lost. For example, gender scholars (Fiske & Stevens 1993; Rudman
1998; Moss-Racusin et al. 2010; Connor & Fiske 2018) have found that female leaders experience more scrutiny
because gender expectations and role expectations aremisaligned (the warmth versus competence dilemma).
Thus, they are at greater risk of being unable to leverage their present status in future group interactions (Ridge-
way & Smith-Lovin 1999).

2.6 In our present study, the focus is on how role expectations that are encoded in a�ective identities integrate
with explicit organizational hierarchies to influence the impressions group members have about one another.
Specifically, our focus is to distinguish between group settings where agents are likely to be able to manage
expectations given their role, traits, and structural position from settings where this is less likely. By examining
the interaction of these factors, we are able to re-integrate role performance as a determinant of statuswithin a
generative model using a parsimonious but flexible representation of task groups. To generate the role expec-
tations, we define task groups as role systems where each agent is assigned an identity. We assume that group
members seek to fulfill their role identities and behave accordingly, where role identity can be understood as
"internalized social positions and theirmeanings" (Owens et al. 2010). Because behaviors are o�en definitional
to role identities (e.g., teaching and teachers, sentencing and judges, programming and so�ware developers,
etc.), we compare situationswhere agents are able todrawonawidearrayof behaviors to a�irm their roles, and
situations where behaviors are circumscribed by the task or institutional domain. Essentially, we assume that
group members orient themselves with respect to a�ective meanings during group interactions. To develop
this claim, we briefly describe a�ect control theory as it applies to group interaction.

A�ect Control Theory

2.7 A�ect Control Theory (ACT) is a quantification of classic symbolic interactionist and cultural constructionist
ideas about social interaction as based on linguistic meanings of social objects. The theory conceptualizes cul-
ture as a collectively shared representation of identities, social behaviors, and modifiers such as personality
traits and emotional states (Heise 2007). These concepts are assumed to populate a three-dimensional a�ec-
tive space that spans the three base dimensions of evaluation (how good vs. bad is the person, behavior, or
modifier?), potency (how powerful vs. weak is it?), and activity (how active and noisy vs. passive and quiet?).
These dimensions, collectively referred to as EPA, have been shown in decades of research to structure the
semantic relations of social concepts in psycholinguistic rating studies, and are hypothesized to reflect cross-
cultural universals of socio-emotional behavior and experience (Osgood et al. 1975). The empirical basis of ACT
accordingly consists of databases of fundamental a�ective meanings (denoted F in subsequent equations) of
usually many hundred to a few thousand social concepts, assessed in population surveys which tend to show
considerable consensus about these meanings within linguistic communities (Ambrasat et al. 2014).

2.8 Descriptions of social reality require conceptual combinations. E.g., we expect a "cynical manager" or a "lazy
worker" to act di�erently than a "manager" or a "worker" as such, respectively. These so-called a�ective amal-
gamations can be modeled with weighted regression equations that take the fundamental a�ective meanings
of the constituent concepts as input and return an experientially quite accurate EPA vector as output (Averett
& Heise 1987). The regression weights come from vignette experiments where participants provide EPA ratings
of conceptual combinations. Similarly, ACT scholars have modeled the impressions resulting from specific be-
haviors such as "a manager scolding a worker" or "a worker ignoring a manager". Again, vignette experiments
provide the empirical basis for parameterizing regression equations that take EPA vectors for actor, behavior,
and object as input and return a vector for the transient impressions (denoted τ in subsequent equations) re-
sulting from the described social event as output (Gollob 1974).

2.9 In a given culture, role identities entail normative expectations of behavior. E.g., we would expect a manager
to train, supervise, or interview a worker but find it inappropriate if they demeaned, ridiculed, or discouraged
them. Mathematically, such expectations are modeled as deflection d = (F − τ)2, an inverse measure of the
degree to which transient impressions from a social event confirm the fundamental a�ective meanings of the
involved role identities (Heise 2007; Morgan et al. 2016). ACT is a control theory precisely because it assumes
that people aremotivated to keep deflection to aminimum; hence, intuitively aligning their social actions with
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the normative order of their culture. This fundamental principle is in line with a large body of work in social
psychology and cognitive science emphasizing the need to maximize cognitive and emotional coherence of
thought and action (Hoey et al. 2021; Powers 1973; Thagard 2001). Much empirical work in the ACT research
tradition has shown that the deflection-minimization principle predicts the perceived likelihood of verbally de-
scribed social events, actual verbal and nonverbal behavior in experiments, and even EEG parameters related
to expectation violation (e.g., Schauenburg et al. 2019; Schröder & Scholl 2009).

2.10 Because of ACT’s unique capacity to quantify the symbolic content of social cognitions and their behavioral
consequences, the theory lends itself asaconceptual andempiricalbasis for social simulation. INTERACT (Heise
2007, p.139) is a legacy program written in Java that allows one to model sequences of a dyadic interaction.
A more recent probabilistic implementation of ACT as a partially observable Markov decision process called
BayesACT (written inPython) hasbeenused to simulate thee�ects of uncertainty andmultiple role identities on
the emergence of social structure(Schröder et al. 2016). Most relevant for the present article is Group Simulator,
an agent-based model of small-group dynamics written in Netlogo, whose individual agents act according to
the a�ect-control principle ofminimizing deflection (Heise 2013). Heise’s simulation results yielded remarkable
agreement with empirical behavior distributions of jury deliberations from classical empirical studies of group
dynamics. In the present paper, we build on the Group Simulator to study the alignment of network structures
and role identities in work groups.

ACTINGModel

3.1 We name the agent-based model presented here ACTING (A�ect Control Theory based simulations of Interac-
tion in Networked Groups). The model was implemented in Python using the mesa library for ABM (Masad &
Kazil 2015), and the source code for the model and Jupyter notebooks with all simulations presented in this
article can be found at https://github.com/nikozoe/ACTING. Here, we present a shortened version of the
model description following the ODD (Overview, Design concepts, Details) protocol (Grimm et al. 2020). The
complete, detailed version, including all design principles and submodel descriptions is provided in the Sup-
plementary Material.

3.2 The overall purpose of our model is to simulate task group interactions in order to understand and analyze the
interplay between role identities, role expectations, status hierarchies, and the group’s interaction structure.
Specifically, we are addressing the following question: Based on their role identities, which teammembers are
moreor less likely tooccupyhigh statuspositions? The formalizationofhowthee�ort tomaintain role identities
translates into role expectations and behaviors is guided by a�ect control theory (ACT). Thus, another purpose
of the model is to bridge the sociological theories of ACT and status characteristics. To consider our model
realistic enough for its purpose, we use patterns in behavior distributions and formation of status hierarchies.

3.3 Themodel is grounded in empirical data and it is adaptable to task groups that operate in specific subcultures.
For this purpose, a small survey has to be conducted to obtain ratings of central role identities and behaviors.
We demonstrate this process by modeling teams of open source so�ware developers, where the interaction
structures are derived from empirical observations (Zöller et al. 2020).

Entities, state variables, and scales

3.4 The model includes the following entities: agents which represent members of a task group, a group object
(optional) which represents the group identity, and the global environment which is either provided by the
GroupModel or by the ProtocolGroupModel. An overview about all entities and their state variables can be
found in Table 1.
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Variable name Variable type Meaning

GroupMember

F [real, real, real],
static

Fundamental identity consisting of three values in the dimensions
Evaluation, Potency, Activity (EPA)

T [real, real, real],
dynamic

Transient identity consisting of three values in the EPA dimensions

acting boolean, dy-
namic

True if the agent is acting at the current time step

Group

F [real, real, real],
static

Fundamental identity consisting of three values in the EPA dimen-
sions

T [real, real, real],
dynamic

Transient identity consisting of three values in the EPA dimensions

GroupModel

schedule object, dynamic Keeps track of the current time step, also keeps track of the agents
whose order is shu�led randomly at each step.

actor GroupMember,
dynamic

Reference to groupmember who gets to act at current time step

object GroupMember
or Group, dy-
namic

Reference to groupmember who is acted upon at current time step

action [real,real,real],
dynamic

Behavior at current time step consisting of three values in the EPA
dimensions

datacollector object, dynamic collects agent andmodel data for later retrieval

ProtocolGroupModel
If the task group is following a protocol, ProtocolGroupModel is instantiated instead of GroupModel from which it
inherits. That means all state variables listed under Group Model are also state variables of ProtocolGroupModel.

n_iterations int, dynamic Specifies the length in time steps of the current protocol part.
select_actor string, dynamic Optional, is interpreted as python code and overwrites the se-

lect_actor method from the GroupModel
code (string,string),

dynamic
Optional, is interpreted as python code. code[0] is executed before
the current protocol part; code[1] is executed a�er the current proto-
col part.

Parameters of GroupModel that become state variables of ProtocolGroupModel
reciprocity_rate float, static Probabilty for an action to be reciprocal
object_choice string, static Mechanism by which the object (agent who is acted upon) is chosen.

Options aremin event-tension,max deflection-reduction or random.
action_on_group Boolean, static Sets whether actions on the whole group are possible.
group_action_rate float, static Sets the propability for an action to be on the whole group. Only

makes sense if action_on_group is True.
network_structure Matrix with

entries 1 and 0,
static

Adjacencymatrix of a network graph that determines who can act on
whom

discrete_actions list of floats, dy-
namic

List of possible actions. Each action is parsed as a list of EPA values.

Table 1: Overview about the entities and their state variables in the ACTINGmodel to simulate task groups.

3.5 Groupmembers: All agents in themodel are initializedwith a fundamental identityF , which remains constant
during a simulation run, and an event-driven transient identity, τ , which changes through interactions with
other agents in the group. Both consist of 3-dimensional arrays [E,P,A] with values for evaluation, potency
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and activity. An agent’s deflection d = (F − τ)2 represents the a�ective dissonance an agent experiences
between their situational and their fundamental identity.

3.6 Group object: Lawler et al. (2000) find that emotions produced through the interactions of groupmembers are
attributed in part to relevant social units. The group identity consequently forms over time through repeated
and consistent interactions between its members. Depending on which kind of a group situation one wants to
model, it may or may not be sensible to include a group object. Therefore, our implementation of the model
makes the integration of a group object optional. In some of the simulations presented in this paper, it is in-
cluded while in others it is not, depending on the group setting and the focus of the research question. When
included, it is simulated as a pseudo agent that like the group members holds a fundamental and a transient
identity. The group object can be acted upon, but can not act itself.

3.7 Global environment: In our implementation, the global environment inherits from the Model class of the
Python package mesa (Masad & Kazil 2015). It is either constituted by the GroupModel or its extension Pro-
tocolGroupModel. GroupModel keeps track of the current time step, the order of agents at each time step, who
is acting on whom and also the data collection. Parameter settings of the global environment regulate which
actions are available (discrete_actions), how o�en actions are reciprocal (reciprocity_rate), how o�en an action
is performedon the groupobject (action_on_group) andwho can act onwhom (network_structure). If the simu-
lated task ismade up of a predescribed sequence of actions, the global environment is best represented by the
ProtocolGroupModel. ProtocolGroupModel lets the researcher define a protocol in which the global environ-
ment changes over time including all aforementioned parameters. Most importantly, this allows the researcher
to define di�erent sections of the protocol of di�erent length (n_iterations) for which only a discrete set of ac-
tions is available (discrete_actions) to the groupmembers. Further customizations options (select_actor, code)
make the ProtocolGroupModel very general and expressive, so that it can be adapted to specific work flows of
specialized task groups.

3.8 As for the spatial and temporal resolution and extent of the model: Each time step corresponds to an action
that is performed by one of the group members. The model does not represent physical space, but instead it
represents EPA space in which fundamental and transient identities of agents are located as well as behaviors.

Process overview and scheduling

3.9 Themost important process, which is repeated every time step, is an action being performed by one agent (ac-
tor) onanother agent (object). First theactor is determined. This is generally thegroupmemberwith thehighest
deflection unless the action is probablistically determined to be reciprocal. Next, the object and behavior are
determined according to the chosen object selection criterion and ACT principles (see Equation 5). Finally, the
action is performed, the resulting changes to the transient identities of all involved agents are applied and the
resulting deflection is calculated. There is a chance that the action is directed towards the whole group deter-
mined by themodel parameter group_action_rate. In this case, all groupmembers except the actor experience
the action as if they had been the object.

Design concepts

3.10 The most important design concepts of the model are principles, objectives and interaction which we present
here in some detail. For additional design concepts, see the Supplementary Material.

Basic principles

3.11 Themodel, modifying and extending Heise’s (2013) Group Simulator, conceptualizes a small group as a "team"
in which individuals are committed to helping each other maintain their identities. The formalization of how
this e�ort to maintain role identities translates in role expectations and behaviors is guided by A�ect Control
Theory, a mathematically specified theory of symbolic interaction (Heise 2007).

3.12 An event in ACT consists of an actor A that directs a behavior B towards an object O. A�er an event, the transient
impressions of the actor, object and behavior are changed according to empirically parameterized impression
formation equations:

τT = (Ae Ap Aa Be Bp Ba Oe Op Oa) (1)

tT = ( 1 Ae Ap Aa ... Be ... Oe ... AeBe ... AeOe ... BeOe ... AeBeOe ... AaBaOa ) (2)
τ aft = M t (3)
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where τ is a vector that holds the EPA representations of the transient impressions of actor A, behavior B and
object O which as the result of an event becomes τ aft respectively. The vector t is calculated from τ and con-
tains not only the transients of A, B andObut also all possible products of their E, P andA components up to first
order in A, B andO.M is amatrix with prediction coe�icients thatwere estimated through a regression analysis
of survey data. In these studies, participants rate the evaluation, potency, and activity of concepts both out-
of-context (e.g, the worker) and when combined as vignettes triples (e.g., the worker questions the boss). The
equations predict how the E, P, and A values of each event element change as a result from being combined
with the other elements based on the out-of-context ratings. The coe�icients used in our simulations are the
same as those used in Heise’s (2013) study, and were originally obtained from a 1978 survey of North Carolina
undergraduates.

Objectives

3.13 The agents’ objective is to choose the action that will most confirm their own fundamental identity and the
fundamental identities of others. In this regard, the model follows the ACT principle stating that people seek
to verify cultural knowledge about the social order (Heise 2007). Formally, this means that agents choose their
behavior in order to minimize event deflectionD which is defined as

D = (F − τ aft)
2, FT = (Ae Ap Aa Be Bp Ba Oe Op Oa) (4)

where F is a vector that holds the fundamental identities of actor, behavior, and object person, which remain
constant. If the actor and object have been determined, the minimization conditions for deflection

∂D

∂Bi
=
∂(F − M t)2

∂Bi

!
= 0 , i = e, p, a (5)

can be solved for the optimal behavior Bwhich may then be calculated fromM , F and the transients τ before
the event.

3.14 For the full mathematical form of B and its detailed derivation, see part IIMathematics of A�ect Control Control
theory in Heise’s book Expressive Order (Heise 2007).

Interaction

3.15 Actor and object selection: In each step of a simulation run, only one actor gets to act on one object which is
either another agent or, if applicable, the group object. When an actor and an object are determined and their
fundamental and transient identities are known, ACT provides a framework to calculate the optimal behavior
which follows cultural norms, preserves role identities, andminimizes a�ective dissonance to the greatest pos-
sible extent (see Objectives). However, ACT provides no clear guidance on how to select an actor or an object
in a group setting. This is not surprising since the ACT equations are derived from dyadic vignette experiments.
Realistically, who acts upon whom in task groups is o�en task specific. Nonetheless, we assume that a�ective
reasoning influences actor and object selection because it has an e�ect on the amount of a�ective dissonance
experienced within the group which agents seek to minimize as per a�ect control theory’s control principle.

3.16 In ourmodel, we followHeise (2013) and assume that the agentwho experiences themost deflectionwill be the
next to act. This means that a�ective dissonance is the only driving force in turn-taking, which in the absence
of task-specific information seems sensible. There are other options available in the model implementation
like for example random actor selection that might bemore accurate depending on the group and the task one
wants to model.

3.17 A�er an actor is determined, the object selection criterion regulates how the object that the actor will act upon
is chosen. One possible criterion isminimumevent tensionwhichwas also used in Heise’s (2013) study tomodel
juries. Theminimumevent tension criterionworks as follows: once the actor is set, for each object candidate the
optimal behavior is determined according to ACT. Subsequently, the action is carried out hypothetically and the
resulting a�er-event deflection is calculated, which involves only the fundamentals and the transients a�er the
event for the actor, object and behavior. Finally, the actual object is chosen so that this a�er-event deflection
is minimized.

3.18 Theminimumevent tension criterionhas the short-coming that it only considers the situational deflectionof the
actor, object andbehavior triplea�er the event. However, Heise points out himself in the article (Heise 2013) in-
troducinghis originalmodel that it aims at integratingGo�man’s (1959) suggestion that "a small groupoperates
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as a team in which individuals are committed to helping each other maintain their identities (faces)". Further-
more, Heise claims that "an individual motivated to action selects as object the group member who provides
an optimal basis for creating a tension-reducing action that will confirm the fundamental a�ective meanings
of actor and object". However, this tension reduction is not properly taken into account by theminimum event
tension criterion. We therefore introduce a di�erent object selection criterion that, in our opinion, adheres even
more closely to the control principle. We term the criterionmaximum deflection reduction, because it tries to
reduce overall a�ective deflection instead of only causing a minimally deflective event. It works as follows:
once the actor is set, for each object candidate the optimal behavior is determined based on ACT’s impression
change equations and subsequently the hypothetical a�er-event deflection is calculated. But this is now com-
pared to the overall deflection before the event fromwhich the a�er a�er-event deflection is subtracted. Object
andbehavior are then chosen such as tomaximize this di�erence, i.e. the deflection reduction. Thismeans that
both the transient identities and the overall deflection before and a�er the event are taken into account.

3.19 Action space: Past ACT models have assumed a continuous connotative action space along the dimensions
evaluation, potency and activity, where each point can be mapped to a denotative label, i.e. the name of a
behavior in natural language. In our model, the user can specify either a continuous action space, or define a
discrete and finite set of possible actions. A discrete action space can be helpful in at least three ways. First,
empirical data is o�en annotated using categorical taxonomies to describe the observed actions (Bales 1950).
Although other behaviors might be possible, it is sensible to restrict simulation behaviors to the empirical an-
notation scheme in order to increase comparability. Second, there is a binning problemwhenmapping back in
hindsight from connotative space to a categorical behavior set in denotative space because the volume that is
mapped to each behavior might vary. This in return can lead to biased behavior distributions. Third, in many
situations, agents simply only have a limited set of actions at their disposal. This might be due to institutional
procedures or limited capabilities that are not captured by role identities. An obvious examplewhere this is the
case is the digital sphere. Behaviors might simply be restricted by a graphical user interface or a limited set of
possible actions in an application. In our implementation, the action space is limited through passing a list of
allowed behaviors in the environment parameter discrete_actions.

3.20 Interaction structure: In the model, the default setting is that every agent can act on every other agent. But,
inmany real world situations, who can interact with whom is governed by institutional hierarchies or organiza-
tional procedures. Therefore, the user can impose restrictions onwho can interact with whom through passing
the model a network structure in the form of an adjacency matrix. This means that an agent can only act on
another agent if there exists a directed edge from the former to the latter in the network.

3.21 Protocols: Many task groups are structured by sequential protocols in which some actions necessarily have to
follow others in order to complete a task. To allow for a realistic simulation of these groups, we include the
possibility to parse such a protocol to the model in the form of a list in which each item represents one part of
the protocol. What behaviors are available and how many actions should be carried out is specified for each
step. Optionally, di�erent settings for model parameters can be parsed before the beginning of each part as
well as custompython code that should be executed before or a�er the protocol step. This flexibilitymakes the
model expressive and allows one to customize the simulations to specific tasks and work flows of interest.

Simulations

4.1 We describe here a series of simulation experiments conducted with the ACTING model. First, we replicate
Heise’s (2013) study simulating juries, which provides a baseline validation of our modified Group Simulator
model and allows us to appraise the e�ects of the added features on model behavior. Second, we systemati-
cally explore the impact of di�erent network topologies on a�ective dynamics of small groups according to the
model, demonstrating how the model can be used to study how structural and cognitive-a�ective interdepen-
dencies interact in small groups. Third, we show how the model systematically reproduces empirical findings
about status dynamics in groups following the expectation states research program in social psychology re-
viewed above. Lastly, we use the model to analyze interactions in teams of so�ware developers on GitHub,
based on a recent empirical study (Zöller et al. 2020), with the intention to show the practical usefulness and
domain-specific adaptability of the model.

Application: Jury deliberations

4.2 The purpose of this section is two-fold. On the one hand, we reproduce Heise’s (2013) legacy study in which he
simulated jury deliberations and compared the results to empirical data reported by Strodtbeck &Mann (1956).
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This serves as a sanity check for the basis of our model implementation. On the other hand, while reproduc-
ing these simulations, we explore two of the new features, examining how including these features influences
Heise’s originalmodel. First, we explore how including a discrete action space that restricts the behaviors avail-
able to the agents influences the model. Second, we explore how a new object selection criterion that aims at
maximum deflection reduction instead of only minimizing a�er-event deflection influences agent behavior.

4.3 Theempirical data set consists of annotated interpersonal actions in 29 jurydeliberations as reportedbyStrodt-
beck & Mann (1956). The actions were annotated in terms of Bales’s (1950) 12 Interaction Process Analysis (IPA)
categories which are shown in Table 2. The reported EPA values are taken from Heise’s (2013) study and are
based on a 1978 survey of North Carolina undergraduates (Smith-Lovin & Heise 2006).

No IPA Category Name Concepts E P A

1 Shows solidarity help, compliment, gratify 1.78 1.29 .21
2 Shows tension release josh, laugh with, cheer 1.48 .91 1.12
3 Agrees agree with, understand, accommodate 1.60 .78 .01
4 Gives suggestion encourage, cue, coach 1.28 1.18 .25
5 Gives opinion evaluate, analyze, entreat 0.88 1.48 0.46
6 Gives orientation inform, educate, explain 1.68 1.62 0.14
7 Asks for orientation quiz, question, ask about 0.50 0.62 0.45
8 Asks for opinion consult, prompt, query 0.48 0.74 0.16
9 Asks for suggestion entreat, ask, beseech 0.30 0.24 0.09
10 Disagrees disagree with, ignore, hinder 1.00 0.35 0.45
11 Shows tension fear, cajole, evade -0.89 -0.16 0.35
12 Shows antagonism argue with, deride, defy -0.82 0.71 1.32

Table 2: Bales’ Interaction Process Analysis categories and their corresponding survey values in the dimension
evaluation, potency and activities.

4.4 Weconductedall simulationswith theexactparametersusedbyHeise’s (2013). For convenience,webriefly state
the model parameters here. All simulations modeled groups of 12 agents, 8 holding the fundamental identity
of male juror F̃ = [0.8, 1.6,−0.5] and 4 the fundamental identity of a female juror F̃ = [1.2, 0.7, 0.0]. The
individual EPA values were based on the same 1978 survey as the IPA categories (Smith-Lovin & Heise 2006)
and the conjoint identities of male and female juror were obtained with amalgamation equations (Averett &
Heise 1987), which model how EPA connotations combine in conceptual combinations of nouns (here: juror)
and adjectives (here: female). A group object initiatedwith the average fundamental and transient identities of
all groupmembers was included. Parameters for individuality and initial tension were set to 1.0, the action-on-
group rate was set to 0.4 and the reciprocity rate was set to 0.8. For the rationale of these parameter settings,
please refer toHeise (2013). All results shownherewere averagedover 500 simulations, which ran for 1000 steps
each.

4.5 We simulate six di�erent settings that we evaluate subsequently against the empirical data. Three object se-
lection criteria,minimum event deflection, random and the novelmaximum deflection reduction, are simulated
crossed with a continuous action space versus the newly introduced discrete action space. To compare the
simulated and empirical data, we calculate the behavior distributions in terms of IPA categories and compute
the correlations with empirical data, following Heise (2013). Note that in the case of a discrete action space, the
EPA labels of the IPA categories (Table 2), i.e. the annotation scheme of the empirical data, are passed as the
set of possible discrete actions. In the case of a continuous action space, an observed action is binned to the
IPA category to which it has the smallest euclidean distance.

4.6 Figure 1 (a) shows the IPA distributions for all observed behaviors and (b) the observed gender di�erences in
these distributions for all simulatedmodel settings and the empirical data respectively. Table 3 summarizes all
correlations between simulations and the empirical data set. First of all, we see that for all simulation settings
high correlations between simulated behavior distributions and empirical data are achieved 1. This is equally
true for the observed di�erences in behavior between male and female jurors. With a correlation of 0.96, the
best agreement between the simulation and empirical data is reached using a discrete action space in combi-
nation with the new object selection criterion of maximum deflection reduction.

4.7 A discrete action space increases the correlations with the empirical data for all object selection criterions. For
the di�erent object selection criteria, we cannot identify a clear "winner" in terms of correlations with the em-
pirical data. But regarding Figure 2, we see that for the newly introduced criterion of maximum deflection re-
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duction, the average level of deflection per agent is indeed notably lower than for the other criteria. There are
many factors that influence turn taking. O�en, these are task-related and dictated by a sequence of actions in
which a task necessarily has to be performed to be completed successfully. They might also depend on cul-
tural conventions or specific role configurations that are not captured in the formalization of ACT as presented
here. But if one assumes that agents have full understanding of the a�ective consequences of their actions
and choose their objects in a manner tominimize deflection in the group, thenmaximum deflection reduction
would be the adequate object selection criterion to implement.

Figure 1: The plot compares empirical data from jury trials with data generated by simulations with di�erent
settings. The highest correlation is obtained for a simulation with discrete behaviors and the object selection
criterion "max deflection-reduction".

Figure 2: Average agent’s deflection levels for di�erent simulation settings.

Simulation setting Correlations IPA distributions
simulations – empirical data
All behaviors Gender di�.

Min event-tension 0.87 0.85
Dis. min event-tension 0.93 0.90
Max defl.-reduction 0.88 0.85
Dis. max defl.-reduction 0.96 0.90
Random 0.88 0.89
Dis. random 0.94 0.9

Table 3: Correlation between behavior distributions obtained from empirical data and from simulations with
di�erent settings.
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Restricted group interaction structure: Toy network experiments

4.8 In many situations, a group’s interaction structure is restricted such that not every group member interacts
with every other. Instead, interaction occurs only along a specific network topology. There are a variety of
reasons why this can be the case: the interaction restrictionmight be by design via a top-down approach, arise
from organizational procedures, result from task-specific necessities, or emerge naturally from a given role-
identity structure. In real-world scenarios, several reasons might be overlapping and di�icult to disentangle
when observing interactions. To make the simulation of such groups feasible, we enable the user to model
these kinds of restrictions using a static network topology that defines which agent can interact with whom. At
a theoretical level, this enhanced model allows one to study the complex interactions between structural and
cognitive-a�ective interdependencies in groups.

4.9 In the following simulation experiments, we analyze how a restricted interaction structure influences the situa-
tional identities occupied by groupmembers, and the level of a�ective deflection they experience. To uncover
the basic e�ects of di�erent network topologies, we focus on the least complex group structures possiblewhich
still exhibits rich di�erences in their network properties. Thus, we simulate groups of only three agents. There
are in principle 13 di�erent connected and directed network topologies with three nodes, but we need each
node to have at least one outgoing edge which means that the agent at that position will have a possibility to
act on another agent. Of the remaining 7 topologies, we restrict the experiments to the four networks depicted
in Figure 3 because they let us investigate di�erent basic network properties we are interested in. a) is the fully
connected base line, b) implies no hierarchy but nodes di�er in terms of the number of incoming edges, c) im-
plies a clear hierarchy and d) exhibits transitivity, i.e. a cyclic flow of actions. The remaining three topologies
that we don’t analyze here are mere combinations of these basic properties.

4.10 In a task group setting, the topologies in Figure 3might be interpreted as follows: Network a) resembles an egal-
itarian team inwhich all groupmembers can act on one another. Network d) also corresponds to an egalitarian
group but is best interpreted as a task group inwhich the task requires circular iterative sequential actions from
the teammembers. In network b), agent 1 occupies a particular position, but it is somewhat ambiguous what
that means in terms of status hierarchy since the existing arrows are reciprocal. We could interpret the setting
as a formally egalitarian team in which agent 1 is more in demand, and thusmore stressed than the other team
members. Finally network c) provides a clear status hierarchy in which agent 1 is the leader who directs agents
2 and 3.

Figure 3: The 4 network typologies we are simulating.

4.11 To ensure that observed e�ects result from di�erent network topologies and not from the role-identity struc-
ture of the agents, we initialize all 3 agents in each simulation with the same typical fundamental identity of
a female2 with an EPA value of [1.78, 0.83, 0.84], but allow for random fluctuations in fundamental and initial
transient identities through setting the parameters for individuality and initial tension to 1.0. Furthermore,
we do not include a group object in this simulation, and in the subsequent toy network simulations for two
reasons. First, we are interested in the e�ects a restricted interaction structure and the related implicit status
hierarchy have on group dynamics. We, thus, do not want to blur the e�ects caused by the network topology
by compounding themwith actions on the group. Second, in the presence of a restricted interaction structure,
it seems implausible that an action on the group object would simply translate in e�ect to the equivalent of
a dyadic action on all group members in equal parts, particularly when the network structure implies a clear
status hierarchy.

4.12 Figure 4 shows the time series of transient identities, i.e the evaluation, potency and activity values of each
agent, and Figure 5 shows the deflection levels for each agent and for each of the 4 interaction structures intro-
duced in Figure 3. All results are averaged over 2000 simulation runs.

4.13 In all the plots, we see that a�er an initial relaxation phase the sentiments quickly approach a stable plateau.
This initial relaxation can be interpreted as the agents’ adjustment to the group situation and their negotiation
of their role identities in the group setting. In the symmetric network structures a) and d), we see that all agents
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have on average the same transient identities. This is, of course, what we expect since no agent holds a more
advantageous network position, and all agents are on average initializedwith the same fundamental identities.
We notice that the circular interactions in network d) do not have a noticeable e�ect (compared to the fully
connected network a), on either the transient identities or on the deflection levels of the agents. This finding
hinges on the fact that all agents hold the same fundamental role identities, and would otherwise be di�erent
if this was not the case.

4.14 In the simulations of the asymmetric network structures b and c, the average transient identities as well as the
average deflection levels di�er among the agents. This clearly indicates that the network topology influences
the a�ective dynamics of the group. In network b, agent 1 can interact with both of the other agents, but she
also gets to be acted upon more o�en than either agents 2 or 3. Being the object of an action more o�en di-
minishes the potency of an agent which in return causes higher levels of deflection. In network c, on the other
hand, actor 1 can act on both agents 2 and 3 while they can only act on each other. This results in higher E,P
and A values for agent 1 which are closer to her fundamental identity, and therefore results in less deflection.
Since network c is the only network that has a clear status hierarchy, we conclude that agents whose network
positions provide more opportunities to act are able to choose more identity-conforming actions resulting in
lower levels of deflection; this e�ect is particularly pronounced along the potency dimension.

Figure 4: Time series of the transient identities (E,P,A) averaged over 2000 simulation runs of a group of three
agents (1,2,3)with fundamental identity centeredon female (EPA = [1.78, 0.83, 0.84] ). a) - d) showsimulation
results for the di�erent network topologies depicted in Figure 3 that restrict possible interactions.

Figure 5: Time series averagedover 2000 simulation runs of the experienceddeflection levels in a groupof three
agents (1,2,3)with fundamental identity centeredon female (EPA = [1.78, 0.83, 0.84] ). a) - d) showsimulation
results for the di�erent network topologies depicted in Figure 3 that restrict possible interactions.

Expectation states theory

4.15 Here, we show that themodel reproduceswell-known theorizing and empirical findings about status dynamics
in groups. Expectation states theory (EST) o�ers an explanation for how status hierarchies form and are repro-
duced in taskgroups (for review, seeRidgeway&Smith-Lovin 1999). According toEST, theabsenceof knowledge
about their coworkers’ competence leads team members to take di�use status characteristics such as race or
gender as signifiers of ability, providing some groupmembers with bothmore opportunities to contribute, and
to have their contributionsmore favorably evaluated because groupmembers are inclined to believe that they
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are good. Given di�erences in opportunities, asymmetries in status and prestige can quickly follow. Gender re-
mains an important status characteristic that informs expectations about behavior. These expectations, in turn,
organize social relationsbetweenmenandwomen that result in system-level inequalities in access to resources
and opportunities, resulting in a wide range of economic and social disparities (Ridgeway & Bourg 2004). Sta-
tus structures in groups can be thought of as the building blocks of these macro-level structural inequalities.
For example, to the extent that status processesmake it less likely for women inwork groups to become and be
accepted as leaders, in the aggregatewewill observe thatmoremen thanwomenwill hold leadership positions
in organizations (Correll & Ridgeway 2006).

4.16 Our simulation experiment is driven by the hypothesis that the status-related group dynamics described in
the EST research program emerge from a�ect-control mechanisms in the interdependence of individual group
members. To develop this argument, we demonstrate in simulation that our implementation of a�ect control
theory in combinationwith networked interaction structures is capable of reproducing the structural gendered
inequality thatmen aremore culturally accepted in leadership positions thanwomen. To this end, we interpret
a�ective deflection in our simulations as ametric for howwell cultural expectations aremet. We interpret lower
average levels of deflection in a group as the group configuration adhering more closely to cultural norms.

4.17 The experimental setup is as follows: We simulate task groups of three agents with an interaction structure
corresponding to network c) from the previous section which exhibits a clear status hierarchy of one agent
in a leadership position and two agents with an equally subordinate status. We are interested in the inter-
play between status and gender in a setting when group members have no prior explicit knowledge about
the actual merit or competence of their team members. We model this by simulating mixed groups of simple
female (EPA = [1.78, 0.83, 0.84]) and male (EPA = [1.07, 2.01, 1.05]) identities without additional iden-
tity modifiers that mark competence (EPA values come from data collected from U.S. undergraduates in 2014:
http://research.franklin.uga.edu/act/usa-2015). We then systematically vary which identity is in the
leadership position and which gender constitutes the majority of the group. This results in 4 experiments with
di�erent setups: 1. A male leader with two female subordinate coworkers. 2. A female leader with one female
and male subordinate each. 3. A male leader with one female and male subordinate each, and 4. A female
leader with twomale subordinate coworkers.

4.18 Figure 6 shows the time series of transient identities; and Figure 7 shows the deflection levels for each agent
and for each of the 4 experimental settings. All results are averaged over 2000 simulation runs.

4.19 We observe that a male majority in the groups raises the overall level of deflection. This can be attributed to
the fact that cultural norms, expressed in the fundamental male identity EPA = [1.07, 2.01, 1.05], entail the
expectation of males to be particularly potent. Universally high potency is di�icult to meet in group settings
because role performance consists of performing the task while also confirming ones role identities. As subor-
dinates, male agents have few opportunities to do this because they are acted upon far more o�en than they
act, resulting in a loss of potency.

4.20 More importantly, we find that a female agent in the leadership position results in significantly higher levels of
deflection compared to a group with the same role composition, but with a male leader. This is exactly what
expectation states theory asserts. Since leadership is associated with potency and the male identity is cultur-
ally framed and thus perceived as being more potent than their female counterparts, male group leaders are
culturally more accepted than female leaders in the absence of additional competencemarkers. People gener-
ally try to perform their role identities in accordance with cultural expectations, which in turn explains at least
partially, why disparities remain betweenmen and women in executive and upper management positions.
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Figure 6: Time series of the transient identities (E,P,A) averaged over 2000 simulation runs of a mixed group of
three agents with either female (EPA = [1.78, 0.83, 0.84] ) or male EPA = [1.07, 2.01, 1.05] identity. a) - d)
show simulation results for the di�erent combinations of the identities and network positions.

Figure 7: Time series of the a�ective deflection averaged over 2000 simulation runs of a mixed group of three
agents with either female (EPA = [1.78, 0.83, 0.84] ) or male EPA = [1.07, 2.01, 1.05] identity. a) - d) show
simulation results for the di�erent combinations of the identities and network positions.

A Real-World Network Example: Online Collaboration on GitHub

5.1 In the preceding section, we demonstrated that network restrictions on a group’s interaction structure can in-
fluence transient identities and the amount of deflection experienced by agents in di�erent network positions.
Subsequently, we investigated the interplay between status encoded in a network structure and di�use status
characteristics such as gender that are implied by the agents’ role identities. In this section, we study the e�ect
of specific status characteristics, how they interact with more realistic networked interaction structures, and
what that means for a task group’s management of roles and cultural expectations. A specific status charac-
teristic indicates that a person, regardless of social group, has some instrumentality to the specific task goal at
hand.

5.2 As a real world example, we examine interaction structures found on GitHub, the world’s largest online plat-
form for social coding and collaborative so�ware development. The open source so�ware community is o�en
described as a skill-based meritocracy (Scacchi 2007; Eckhardt et al. 2014). Although there have been findings
of gendered behavior and gender bias (Terrell et al. 2017; Vedres & Vasarhelyi 2019) in open source projects as
well, the predominant value system in the community is meritocratic. Major motivational factors for develop-
ers to contribute to open source projects are the accumulation of reputational status and peer recognition they
receive in return, which leads to strong norms for giving credit to authors where credit is supposedly due. This
means that developers in leadership positions are presumably selected based on the quality of their contribu-
tions and their commitment to a project. Role assignments are of primary importance for programmers’ task
groups because perceptions of competence determine who assumes which role (Bianchi et al. 2012).

5.3 In the process of collaborative so�ware development on GitHub, a central interaction between developers is
the acceptance and rejection of pull requests (PRs). If a developer wants to contribute to a project, she usually
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forks it (i.e., creates a local copy of the code base), commits changes to it, and then sends a pull request to the
original project. These code changes are subsequently reviewed and discussed within the group. A developer
with the necessary administrative rights, o�en one of the maintainers, then either accepts or rejects the PR. If
it is accepted, the changes are merged into the project’s code base. This work flow is an example of a sequen-
tial protocol in which the goal of the task group can only be reached when certain actions are performed in a
given order. Zöller et al. (2020) found di�erent types of groups present on Github, categorized in terms of the
network topologies spanned by the history of a project’s accepted PRs. The di�erences in interaction topology
correspondedwith di�erences in productivity, popularity, resilience and language use. In order to shed light on
the interplay between topology of the interaction structure, status, role expectations and identitymanagement
in collaborative online so�ware development, we take two representative example networks (Figure 8) of the
most di�erent and clear-cut clusters of this study as the starting point for our analysis. Figure 8 a) shows an
example of a complex interaction topology that exhibits clustering, reciprocity, several high-status developers
who have the administrative rights to merge PRs, as well as several lower-status contributors who do not have
the right to merge PRs. Figure 8 b), in contrast, depicts a very clear-cut hierarchical interaction topology with a
single maintainer responsible for merging all of the PRs.

Figure 8: Examples of typical pull request interaction structures found on github as identified by Zöller et al.
(2020).

Formalization of the examples

5.4 In the example graphs depicted in Figure 8, the directed edges point from the developer who submits to the
developer who accepts the PR. But when submitting a PR, a developer does not necessarily know in advance
who is going to review it. Hence, to simulate the network structure, we reverse all edges because accepting a PR
iswithout a doubt a directed action towards the submitterwhile submitting a PR ismore accuratelymodeled as
an action on the whole group. Therefore, we include a group object in this simulation setup and allow actions
on the group.

5.5 Although the network structures at hand were derived from accepted PRs, we assume that the majority of ac-
tions are carriedout along the same topology. We, thus, feed the adjacencymatrices of the reversed graphs into
ourmodel as restrictions that govern both pull-requests and groupdiscussion. During the groupdiscussion, ac-
tions on the group object are possible in order to adress thewhole group. Note that we ignore any occuring self
loops 3.

5.6 In the simulation, we want to mimic the sequence of actions we observe in real Github repositories, i.e. the
sequence of submitting a PR, discussing it in the group and it being accepted or rejected by a maintainer. We,
therefore, enforce a cyclic protocol in the model that consists of the following sequential actions: 1. An agent
submits a PR which is interpreted as an action on the group. 2. The group discusses the PR. This is simulated
via a sequence of freely chosen actions that are performed along the network topology or on the group object.
The length of the sequence is determined randomly to be between 0 and 10 actions. 3. An agent with merge
rights who shares a link with the submitter (specified via the network topology), either accepts or rejects the
PR. The agent that actually gets to act is the one that experiences the most deflection among the candidates
that come into consideration.

5.7 To obtain the EPA labels of relevant concepts in the subculture of so�ware developers, we conducted a mini-
survey amongN = 17 proven Github users 4, in which participants rated concepts along all three dimensions
on a continuous scale ranging from−4.3 to+4.3. The resulting mean EPA values for these concepts are shown
in table 4.
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Concept E P A
mean std mean std mean std

developer 1.79 1.01 1.37 1.04 1.17 1.07
novice developer 0.70 0.88 -0.98 1.05 0.42 1.28

experienced developer 1.82 1.20 2.46 0.51 1.51 0.88
submit pull request 1.82 1.24 0.29 1.75 1.03 1.48
accept pull request 2.13 0.95 1.64 1.27 0.78 1.50
reject pull request -1.37 1.17 2.01 1.01 1.33 1.14

Table 4: Mean values and standard deviation of evaluation, potency and activity ratings for di�erent concepts
used in the simulations. Ratingswere obtained fromamini surveywithN = 17 participating Github users. The
standard deviations are in line with the variation that is to be expected formeasuring sentiments. WithN = 17
the estimated standard error for the mean values is 0.39 (E), 0.41 (P) and 0.44 (A) (Heise 2010)

5.8 To investigate the interplay between specific status characteristics that are encoded in role identities, network
positions that imply status, and cultural expectations that mediate between the two, we essentially run four
di�erent experiments for each network structure in Figure 8.

• All agents are initialized with the fundamental identity of "experienced developer".

• All agents are initialized with the fundamental identity of "novice developer".

• All agents who have higher status and can accept PRs ( i.e. who have an incoming edge in Figure 8) are
initialized with the fundamental identity of "experienced developer". All other agents are initialized with
the fundamental identity "novice developer".

• Agents are randomly initialized with either the identity "experienced developer" or "novice developer"
independent of their network position, but with the same numbers of experienced/novice developers as
in setup c).

5.9 For all four conditions, we set the action-on-group rate and reciprocity rate to zero to have as little overlap-
ping/distracting additional e�ects as possible. Furthermore, when initializing the model, fundamental identi-
ties are drawn from a clipped normal distribution with standard deviation (individuality) 1.0, centered on the
target fundamental. All results shown in the subsequent section are averaged over 5000 model runs for each
experimental setup.

Results

Figure 9: Simulation results for transient identities of a group organized in the star-shaped network structure
fromFigure 8 b) inferred fromGithub data. Evaluation, Potency and Activity trajectories are averaged over 5000
iterations for each network position and experiment. a) The group consists of experienced developers. b) The
group consists of novice developers. c) Experienced and novice developers are matched to the network posi-
tions. d) Same number of experienced and novice developers as in c), but assigned randomly to the network
positions.
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Figure 10: Simulation results for deflection experienced by a group organized in the star-shaped network struc-
ture from Figure 8 b) inferred from Github data. Deflection trajectories are averaged over 5000 iterations for
each network position and experiment. a) The group consists of experienced developers. b) The group consists
of novice developers. c) Experienced and novice developers are matched to the network positions. d) Same
number of experienced and novice developers as in c), but assigned randomly to the network positions.

Figure 11: Simulation results for transient identities of a group organized in the star-shaped network structure
fromFigure 8 a) inferred fromGithub data. Evaluation, Potency and Activity trajectories are averaged over 5000
iterations for each network position and experiment. a) The group consists of experienced developers. b) The
group consists of novice developers. c) Experienced and novice developers are matched to the network posi-
tions. d) Same number of experienced and novice developers as in c), but assigned randomly to the network
positions.

Figure 12: Simulation results for deflection experienced by a group organized in the star-shaped network struc-
ture from Figure 8 a) inferred from Github data. Deflection trajectories are averaged over 5000 iterations for
each network position and experiment. a) The group consists of experienced developers. b) The group consists
of novice developers. c) Experienced and novice developers are matched to the network positions. d) Same
number of experienced and novice developers as in c), but assigned randomly to the network positions.

5.10 Figure 9 shows the average transient identity profiles, and Figure 10 the average deflection of the agents at
di�erent network positions of the star-shaped topology for the simulations of the four experiments described
in the previous section. Similarly, Figure 11 shows the average transients, and Figure 12 the average deflection
for simulations of the complex network structure.

5.11 In the star shaped interaction topology, there is onlyoneprojectmaintainerwitha clearnetworkadvantage that
is higher in status and 8 contributors that have all the same symmetrical network positions with lower status.
We see fromFigure 9 a) and b) thatwhetherwe simulate a group of experienced developers or a group of novice
developers, in both cases the developer in the high status network position (agent 1) exhibits a higher value of
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potency. However, Figures 10 a) and b) reveal that, for experienced developers, this increase in potency leads to
less deflection while for novice developers it leads to more deflection. The reason for this is that an increased
potency aligns more closely with the potent fundamental identity of the experienced developer while it is not
role-confirming for the novice developer.

5.12 The simulation results suggest that experienceddevelopers experiencemoredeflection thannovicedevelopers
which holds true for both the star-shaped topology and the more complex interaction structure. In an ACT
simulation framework, this is generally the case for agentswithmore potent identities because they experience
a higher level of deflection when acted upon or when they are unable to perform role conforming behavior on
less potent agents. Therefore, to illuminate the interplay of role identities with network positions, we keep
the simulation settings as comparable as possible in experiments c) and d) and include the same number of
experienced and novice developers in the groups.

5.13 FromFigure 9 c) for the shar-shapednetwork and fromFigure 11 c) for the complex topology, we see thatmatch-
ing the status positions in the network with the role identities, i.e the experienced developers with the the high
status positions and the novice developers with the low status positions, leads to much higher potency for the
experienced developers compared to experiment a). For the complex network in Figure 11 c), we see an addi-
tional splitting of the transient identities, which is produced by the di�erent centralities of the node positions.
Unexpectedly, agent 1 exhibits lower potency than the other experienced developers in high status network
positions, even though no other agent can directly act on her. The reason for this finding is that agent 1 can
only directly act on agent 0 who is also an experienced developer. Because agents try through their actions not
only to confirm their own identity but also the identities of the others, agent 1 has to routinely compromise by
choosing actions that lead to lower potency and higher evaluation and activity values than would be the case
if agent 0 was inexperienced. The potency of agent 0, in return, is lowered as well because she is acted upon
regularly by agent 1. For both agents 0 and 1, this translates into slightly higher deflection values which can be
seen in Figure 12 c). This interplay is a nice example of the complex, non-linear dynamics that can quickly arise
in a�ective space whenmodeling complex role-identity and network cofigurations.

5.14 Compared to experiment d) in which the agents are randomly assigned to network positions, the matching in
experiment c) leads to a lower mean deflection in the group when averaged over the deflection of all agents.
This holds true for the star-shaped topology (Figure 10) and for the more complex interaction network (Figure
12) where the e�ect is even stronger due to the more balanced numbers of experienced and novice develop-
ers in the group. Comparing the two group cofigurations, lower average deflection levels in one group signify
that the assignment of role identities to network positions is culturally more accepted in this group than in the
other. Hence, the simulations confirm the repeated statements in the literature that meritocratic values in the
form of deference to experienced skilled individuals plays a strong role in the open source so�ware develop-
ment community. This result may seem trivial, since it might be considered common sense that experienced
developers are culturally more accepted in leadership positions than novice developers. However, our model
sheds light on how these cultural expectations arise. Specific (and di�use) status characteristics translate into
role identities that imply normative a�ectivemeanings. People then choose their actions according to cultural
norms, and in such a way as to perform their role identity to confirm its a�ective meaning, as well as to con-
firm the a�ective meanings of the role identities of their fellow team members. Furthermore, the simulations
demonstrate that a�ect control theory as a generic social theory in combination with networked interaction
structures and protocol sequences is capable of sensibly reproducing observations from specific occupational
fields such as so�ware development.

Summary and Discussion

6.1 In this work, we developed and implemented an agent-based model to simulate interactions in complex task
groups in constrained environments. To this end, we extended an existingmodel based on a�ect control theory
by Heise (2013) in three important ways. First, we allow the analyst to specify a network topology that restricts
possible action pathways in the group which can be used to model hierarchical role configurations. This ex-
tensionwasmotivated by observations in online task groupswhose interactions occurred solely along network
structures. Second, we allow the analyst to specify a discrete set of actions for agents to choose from, which
caters to the fact that inmanygroup situationsonly a limitednumberof behaviors are admissible, acceptable or
available. Third, we allow the analyst to specify sequences of actions that have to be carried out in order. These
protocols are o�en observed in task groups where the completion of a task requires several steps of role-based
division of labor.
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6.2 In a series of simulations, we found that network positions have an influence on agents’ experienced a�ective
deflection and their transient identities, particularly along thedimensionof potency. This findinghighlights the
interconnection between structural properties of groups and group members’ cognitive-a�ective representa-
tions of group interactions. By expressing status hierarchies in terms of node positions in a network topology
and interpreting deflection as a metric for cultural acceptance, we were able to build a bridge between expec-
tations states theory and a�ect control theory that can contribute to new theoretical developments in both
literatures. In particular, we succeeded at reproducing central results from the expectation states framework
(Ridgeway 2019) in simulations of groups whose actions were driven by the a�ect control principle. The simu-
lations of idealized, mixed-gender task groups suggested that, regardless of actual competence, men were on
average culturallymore accepted in leadership positions thanwomen,which in the simulations could be traced
back to the encoding of cultural norms in a�ective identity labels. Agents chose their behaviors in such a way
as to align themwith the cultural expectation from the group towards their role identity, but for female agents
in leadership positions the average deflection in the group was significantly higher compared to male agents
in leadership positions. This result suggests that in order to promote gender equality sustainably, the cultural
norms inwhich female identity is generally perceived to be less powerful andmore positive than themale iden-
tity would have to be adjusted. From a symbolic interactionist point of view, cultural meanings arise and are
consolidated through interactions. Consequently, by continuously promoting and normalizing female leader-
ship and by increasing its visibility, the perception of the normative female identity can possibly be changed in
the long-term future through changes in the cultural a�ective meanings of female identities.

6.3 As an example of a realistic complex task group, we modeled in a series of experiments groups consisting of
open source so�ware developers with their domain-specific work flows. We extracted network structures from
GitHub, the largest platform for open source so�ware development, and conducted a small survey among ver-
ified Github users in which we had the most important role identities and task related behaviors rated on af-
fective scales. This subculture and domain-specific data served as an empirical basis to parameterize the sim-
ulation model. The simulations showed that in these groups average deflection was significantly lower if high-
status network positions, signifying more responsibility and the power to accept or reject proposed changes
to the code base, were filled with experienced developers instead of novice developers. This result is in ac-
cordance with the presumedmeritocratic value system in the open source so�ware development community,
which is essential for the process of self-organization in groups that are not backed by a larger organization.

6.4 Webelieve that this is a good example for howourmodel canbe adapted and generalized to the study of groups
in other domains and subcultures which we think is a promising use case of the model for future research. An
adaptation process will generally consist of the following steps. First, onewill have to research the task domain
and its subculture of the groups of interest. This might include the identification of an organizational structure
that typically guides group interactions. Furthermore, this is likely to include the identification of important
role identities and behavior sequences that are characteristic or necessary for completing core tasks or con-
ducting other focal interaction protocols in the group. Second, one can then design a mini-survey to collect
a�ective ratings of these concepts. These empirical findings can subsequently be injected into the simulation
setup which can then be used to illuminate the a�ective group dynamics, generate hypotheses, or compare
di�erent role constellations. In this way, it is possible to systematically analyze the interplay between status
characteristics, role identities, and cultural norms and expectations.

6.5 There are several limitations in our model that we briefly want to discuss: The ACT equations are derived from
dyadic vignettes, but have not been tested empirically in group settings (Heise 2007). We assume that as long
as the actions in a group aremostly of a dyadic nature, ourmodel will be accurate, but corrections to the theory
and model implementation might be necessary in groups where the focus is on the collective aspects of the
group like joint behaviors by or on several agents or towards the group as a whole. In this context, the imple-
mentation of the group object should also be reviewed. We followed Heise (2013) in how we implemented the
group object as a pseudo-agent, but we have the impression that both ACT as a theory as well as its implemen-
tation in a simulation model would benefit from a rigorous empirical investigation about how to formalize the
group identity within an ACT framework.

6.6 Another consequence of the dyadic structure of ACT’s impresssion change equations is that the theory origi-
nally did not include propositions about the mechanisms that guide turn taking. Like Heise, we assumed for
themost part that taking the initiative to actwasguidedbydeflection levels andonly in the simulationofGithub
groups sometimes the actor was determined by other factors like the administrative rights encoded in the net-
work structure. Note that we tried to shed some light on the di�erences between possible object selection
criteria in the reproduction of the jury simulation experiments, but we did not find tremendous di�erences in
the agreement with the available empirical data set between the di�erent criteria. But the amount of available
empirical datawasboth limitedanddomain-specific. Whatwedid find, however,was that thenewly introduced
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object selection criterion of maximum deflection reduction did significantly reduce deflection in the group. In
any case, we believe that the mechanics of turn taking in groups and its interplay with ACT should be further
investigated. This includes the specific micro-interactions group members use to negotiate and signal who is
the next person to act. Our current model implementation, where each groupmember has full and consensual
information about each other groupmember’s state ofmind is clearly unrealistic given the bounded rationality
of the human brain. A more realistic assumption would be a social-comparison mechanism where the tension
experienced by a groupmember translates into nonverbal cues which are then recognized by other agents, but
it remains for future work to model such a mechanism. In addition, a group member’s ability to recognize and
understand a�ective group dynamics might vary and depend on each individual’s communication skills and
ability to empathize with others, which are related to the "collective intelligence" (Woolley et al. 2015) of the
group as a whole.

6.7 An interesting step in the direction of modeling individual di�erences not only in terms of agents’ observations
but also in terms of agents’ ability to manage several roles simultaneously is Bayesian a�ect control theory
(Schröder et al. 2016), which models dyadic interactions via partially observable Markov decision processes.
Observations might also play a role in turn taking. It is plausible to imagine group situations in which a group
membermight intervene and take the initiative a�er observing the actions of other groupmembers evenwhen
they have not been the target of any action themselves.

6.8 In addition, a�ect control theorists have started to model the interplay of identity maintenance processes and
other goals (Hoey, MacKinnon, and Schröder 2021); this work has important implications for modeling task
groups as group members frequently must balance between meeting immediate task goals, advancing their
own social status, and ensuring the group’smid to long-term functioning by supporting both the group’s collec-
tive identity and the identities of the group members. Successful identity performance is critical to leveraging
social capital at a later point in time, whichmeans that a�irming and seeking advancement are not necessarily
mutually exclusive. However, we believe that the two processes operate on di�erent time scales. While our
model is designed to simulate situational task group settings, an agent’s career advancement is an important
long-term strategic goal that is currently not taken into account. The amount of tensionbetween these di�erent
objectives is largely influenced by whether personal long-term goals align with the goals of the group. Future
groupmodels will ideally include a utility function that enables themodeling of several kinds of objectives and
time scales.

6.9 Most of the aforementioned limitations could be systematically addressed with a series of networked online
experiments thatmonitor group interactionprocesseswhile at the same time controlling the experimental con-
ditions. Combined with a survey among participants this would be a promising branch of future research that
could both advance theoretical aspects of group processes research, and at the same time provide an invalu-
able source of data to directly evaluate simulation models.

Model Documentation

The ACTINGmodel was implemented in Python 3.6 using theMesa library for ABM (Masad&Kazil 2015), and the
source code for the model and Jupyter notebooks with all simulations presented in this article can be found
at https://github.com/nikozoe/ACTING. The source code is also available through the CoMSES Computational
Model Libraryas: ACTING (A�ectControl Theorybasedsimulationof Interaction inNetworkedGroups)” (Version
1.0.0), https://www.comses.net/codebases/fe554877-a041-4fb4-91e5-8400ebec573c/releases/1.
0.0/.

Supplementary Material

A complete and detailedmodel description following the ODD protocol (Grimm et al. 2020) can be accessed at:
https://www.jasss.org/24/4/6/SI.pdf.

Notes
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1Note that while implementing the model in Python we discovered a bug in the implementation of the ob-
ject selection that was present in Heise’s original Netlogo version of group simulator. This bug by coincidence
slightly increased the correlation between experimental data andHeise’s simulation results (min-event-tension
+ continuous action spaceHeise 2013). A�er the fix, this correlation dropped from0.91 for all behaviors and0.92
for the gender di�erences to 0.87 and 0.85, respectively. We conjecture that Heise calibrated the other param-
eters, i.e. action-on-group rate and reciprocity rate such as to maximize this correlation, which would explain
the drop a�er the fix.

2For this example, the type of identity we model is not important because our goal here is to isolate the
e�ect that the network topology has on the agents’ transient identities and deflection levels.

3Self loops correspond to developers merging their own pull requests.
4While N=17 might seem small, note that we are measuring cultural consensus not variation. The error on

the mean sentiment is reduced by a factor of 1/
√
N∗ compared to an individual rating. Standard deviations

of 1.6 on Evaluation, 1.7 on Potency, and 1.8 on Activity are reasonable general estimates of error when a single
respondent is being employed to assess cultural sentiments (Heise 2010).
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