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ABSTRACT 
 
Analyzing progression of diseases is vital to monitor patient's traversal over time through a disease. 
Clinical study settings present modeling challenges, as patients' disease trajectories are only 
partially observed, and patients' disease statuses are only assessed at clinic visit times. HIV disease 
is a continuum of progressive damage to the immune system from the time of infection to the 
manifestation of severe immunologic damage. We proposed a semi-Markov model and collected 
data at Yirgalem General Hospital. Our study found that for an HIV/AIDS patient the transition 
probability from a given state to the next worse state increases within the good states as time gets 
optimum and then decreases with increasing time during a follow up. In a specific state of the 
disease a patient will stay in that state with a non- zero probability in good states and a patient will 
transit to the next state either to the worst or to the good state with a non-zero probability. The 
probability of being in same state decreases over time.  With the good or alive states, the probability 
of being in a better state is non-zero, but less than the probability of being in worst states.  The 
survival probabilities are decreasing with increasing time. Therefore, we recommend that increased 
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clinical care for patients on ART services should be strengthen and patients need to regularly check 
their CD4 T cell count in the appropriate day based on physician order to timely know and monitor 
their disease status to improve the survival probability and to reduce mortality. 

 
 
Keywords: Immunology; HIV/AIDS; conditional probability; progression; Semi Markov. 
 

1. INTRODUCTION 
 
In the literature, most HIV/AIDS related studies 
focus on estimating HIV/AIDS epidemic, HIV 
infection, prevalence and incidence rates from a 
group of communities on hospital based data. 
Analyzing and presenting AIDS progression and 
estimating transition probability is vital for clinical 
care of patient's, for treatment management, 
decision making and monitoring patient traversal 
over time. It is also important to connect health 
state models with clinical care of patients by 
generating data on disease progression. This will 
enable physicians to administer and optimize the 
level of the therapies to patients. 
 
Disease progression describes a change in 
disease status over time as function of disease 
process and treatment effects. During the past 
decades, epidemiologists have shown interest on 
Markov models for describing disease 
transmissions and progressions. In medicine, 
decision-making processes are increasingly 
relying on modeling technique to quantify a 
decision based on quantitative evidence. Markov 
models are used to blend the available evidence 
by describing the disease trajectories and 
treatment progress, as well as associated factors 
such as the treatment's effects on a patient's 
quality of life and the costs of therapy.  
 
Disease progression models are represented by 
graphs. Nowadays, many different approaches 
have been developed to quantify the 
progression. Many diseases show different 
stages over time. These stages of diseases can 
be designated numerically to represent the 
disease process characterized as change of the 
status. This change can be described by 
mathematical expressions that best describe the 
evolution of the processes. The most preferable 
models used to express this evolution are 
transition probability models. 
 

Transition probabilities between states of disease 
severity are mainly inferred indirectly from cross-
sectional observations of prevalence of AIDS 
related data using the usual alive and death 
states but AIDS disease severities range beyond 
the two states (alive and death). In the literature, 

HIV/AIDS sicknesses are identified to four states, 
based on CD4 T cell counts of a patient and the 
final absorbing state (death) [1]. This paper uses 
these models to estimate the conditional 
probability of disease progression. We hope that 
this paper will help the consciousness of the 
importance of multi-state Markov models for 
HIV/AIDS disease progression. In this study, we 
define the states of the disease as a finite 
discrete state. 
 
Goshu and Dessie in [2] studied HIV/AIDS 
disease progression and define the states of the 
disease as finite discrete states.  Weltan in [3] 
described how states can be used from partially 
observed data and takes a Bayesian approach to 
estimate Markov transition rate and probability 
parameters. Semi-Markov and hidden semi-
Markov models for disease progression are dealt 
with numerous researchers during the past 
decades. Other studies on AIDS disease 
progressions included in many researchers [4-9] 
and [10]. Comprehensive introductions in semi-
Markov models are given by D'Amico et al. [11] 
while Levy [12] introduced the semi-Markovian 
process briefly. Semi-Markov models for disease 
progressions has been studied in recent decades 
by Goshu and Dessie [2] and Dessie [13]. 
 
Nowadays, Markov models are frequently used 
to assess disease progression. The parameters 
in Markov model can be estimated by observing 
the time it takes to stay in any state before 
making a transition to another state.  However, in 
clinical recorded data only shows the starting 
state and the end state some years later as [3] 
described.  

 
In medical sciences, researchers recognize a 
pattern of AIDS disease from the histories of 
disease markers and symptoms observed. 
Unrecognizing its past disease stages and future 
adverse events may increase the patient's risk of 
dying from the particular disease. Depending on 
the evaluation type, transition probabilities and 
type of treatment therapies should take into 
account the trend and the variability of the 
disease stages. It is necessary to assess the 
pattern of HIV/AIDS disease progression, the 
evaluation of disease stages and transition 
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probabilities of different follow-up times to 
improve quality of life of patients and reduce cost 
of therapies. Therefore, the main aim of this 
study is to apply appropriate statistical methods 
to monitor HIV/AIDS disease progression and 
exploiting the available complex information that 
enhance patients living and health conditions.  
 

2. STATISTICAL MODEL AND DATA 
 

2.1 Description of the HIV/AIDS Patient's 
Data 

 

The data for this study were obtained from 
Yirgalem General Hospital. Yirgalem General 
Hospital is located 300 km South of Addis Ababa 
at Yirgalem town of Sidama zone, the Southern 
Nation's Nationalities Peoples Region. There are 
HIV-exposed patients under the ART follow-up at 
the hospital between 2006 and 2015. We 
adopted a simple random sampling procedure to 
collect the data. The following sample size 
determination formula of Cochran [14] is used: 
 

 

 

where 2/aZ  is the value of a standardized 

normally distributed variable at which the upper 
area under the curve is  a/2, where a is 

significance level. For a= 0.05, 2/aZ =1.96. The 

term p represents proportion of death among 
HIV/AIDS patients. The value of P used here is 
obtained from the previous comparable study 
conducted by Goshu and Dessie (2013) on data 
taken from Felege-Hiwot Referral Hospital which 
is p = 0.134. The degree of precision d selected 
for this study is taken to be 0.03. With total 
number of N = 1570 HIV/AIDS patients at the 
Yirgalem General Hospital, the sample size for 
this study is estimated to be 375 patients. 
 

Referring to the [1] immunological classification 
of HIV/AIDS infected patients, we have five 
states, where the first four states are the good 
states (transient states) and the last state is bad 
state or death state or absorbing state. The 
states are defined as follows. 
 

SI:   CD4 T cells count 500 x 610 T cells/L 

SII:  350 x 610 T cells/L CD4 T cells count < 500 
x 610 T cells/L 

SIII: 200 x 610 T cells/L  CD4 T cells count < 

350 x 610 T cells /L 

SIV:  CD4 T cells count 200 x 
610 T cells/L 

D: Death. 
 
We assume the good states (state I, state II, 
state III and state IV) communicate with each 
other, and they also communicate with the 
absorbing state which is death. 
 

2.2 Homogeneous Semi-Markov Process 
 

A semi-Markov model is a statistical model with 
same structure as a Markov model except that 
the sojourn time distribution is flexible in semi-
Markov. These models are useful tools to predict 
the clinical progression of a disease [15]. It is 
used for computing the probability of a patient 
being in one of the possible stages of the 
disease for a certain time and the probability that 
the subject might survive for a time t. The most 
important property of semi-Markov processes is 
they enable to consider both the randomness in 
different states in which the infection can evolve 
and the randomness of the time spent in each 
state. 
 

A detailed theoretical description of the model is 
presented in 16. They have been applied in a 
number of scientific fields including, engineering 
applications (systems reliability), finance, 
insurance, actuarial and demographic sciences. 
Homogeneous semi-Markov process (HSMP) is 
defined based on two random variables running 
simultaneously. 
 

   SX n :  NTn :                        (1) 

     

Where nX  has state space S= 

 mSSSS ...,,, 321  represents the state at the 

n
th
  transition. In the health care environment, the 

elements of S represent all the possible stages in 
which the disease may show level of seriousness 

and nT  with state space equal to N+ represents 

the time of the nth transition. In this way, we 
cannot only consider the randomness of the 
states but also the randomness of the time 
elapsed in each state as explained in Giuseppe 
et al. [15]. The kernel  ijQQ   associated with 

the process is defined as follows. 
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)(lim tQP ijtij  is the transition matrix of the 

embedded Markov chain in the process. 
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Furthermore, it is necessary to introduce the 
probability that the process will leave state i in 
time t as 




 
m

j
ijnnni tQiXtTTPtH

1
1 )()|()(

 
 

It is now possible to define the distribution 
function of the waiting time in each state i given 
that the state subsequently occupied is known, 
 

),|()( 11 jXiXtTTPtG nnnnij  
        (3)          

 

The related probabilities can be: 
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Now it is possible to define homogenous semi-

Markov process ),( ntZZ   representing the 

state occupied by the process. The transition 
probabilities are defined in the following way: 
 

 iZjZ tij  )0()( |                (5) 

 

These are obtained by means of the following 
evolution equations: 
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Where h represents the discretization step 
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If h= 1 the above evolution model can be 
rewritten as: 
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The long run proportion of time in state j is  
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conditional expected time and i expected time 

in state i.  
 

For solving the above evolution equation [17,20] 
proposed the following algorithm. Given m, T, P, 
and G, the algorithm numerically solves the 

linear systems for the unknown matrix  .  The 
variables involved are the following. 
 

m= number of states of the process.  
 

T = number of periods to be examined for the 
transient analysis.  
 

P = matrix of order m of the embedded Markov 
process. 
 

GT= square lower-triangular block matrix of order 
T+1 whose blocks are of order m. 
 

QT= represents the kernel of the Markov process.  
 

T = block vector of order T+1 the block of 
which are square matrices of order m. 
 

D
T 

= block vector of order T+1 the block of which 
are the diagonal square matrix of order m. 
 

VT= square lower-triangular block matrix of order 
T+1whose blocks are of order m. 
 

ST= block vector of order T+1 the block of which 
are the diagonal square matrix of order m. The 
diagonal element of each block at time t is given 

by 
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ttosfor 1  

)1()()()(  tstt V  

forend  

forend  
(d) Return the results 
 

Note: In the algorithm, the symbol   represents 
row column matrix product while  represents 
element by element product. 
 

3. RESULTS  
 

The primary aim of this study is to model the 
progression of HIV/AIDS and survival probability 
of a patient using semi-Markov models.  Semi-
Markov models explicitly define distributions of 
waiting times, giving an extension of continuous 
time and homogeneous Markov models based 
implicitly on exponential distributions. The data 
analyzed in this study were collected at Yirgalem 
General Hospital between September 2008 to 
August 2015, of fixed time points while the 
transition between the states of the diseased 
could occur at any time. Frequencies and 
estimated transition probabilities are summarized 
and displayed in Table 1. 
 
Each patient was followed throughout the study 
period on the change in the status of the disease 
while using ART. Among 365 patients, 69 
(18.904%) patients died. We observed a very 
high transition from state SII to state SI, which is 
240 transitions and followed by 183 transitions 
from state SIII to state SII. The transition 
probabilities and mean waiting times can be of 
interest also when data on transitions and 
sojourn times are available. Estimation of 
transition probabilities as discussed here follows 
the same lines after obtaining estimates for Q 
and for its variance. The solution for the 
transition probabilities at time t using the 
algorithm are obtained with m=5 states, T=204 
months, transition probability matrix P as given in 
transition frequency of Table 1. 
 

First, we plotted the Conditional probability that a 
patient will be in state i at time t months given 
that she/he is currently in state j is depicted in 
Fig. 1. Fig. 1(a) expresses the progression from 

state SI to state SII, state SII to state SIII and 
state SIII to state SIV of a specific HIV/AIDS 
patient in these states of the disease using 
exponential waiting time distribution. This is the 
transition within the good states. In this figure we 
observed a parabolic curve with optimal/peak 
(45, 0.158) from state SI to state SII, (24,0.054) 
state SII to state SIII and (48,0.158) state SIII to 
state SIV in the time probability axis. These 
peaks indicate there is a time at which a patient 
at highest risk of being to progress to the next 
worst state. Moreover, the transition probability 
from state SII to state SIII is the lowest as 
compared to the others. This result shows out 
that, within the good states, the transition 
probability from a given state to the next 
immediate worst state increases with time gets 
optimum at a time and then decreases with 
increasing time while considering the exponential 
waiting time distribution. 
 

In Fig. 1 (b) transition to the death states are 
computed. The estimated probability of dying 
before 204 months is 0.396 for a patient who is in 
the first stage, 0.404 for one who is in the second 
stage, 0.4298 for one who is in the third stage 
and 0.5057 for one who is in the fourth stage of 
the disease. The probability of dying will increase 
by 8.5 percent for a specific HIV/AIDS patient in 
state three compared to an HIV/AIDS patient in 
state one. Similarly, the probability of dying will 
increase by 27.7 percent for a specific HIV/AIDS 
patient in state four compared to an HIV/AIDS 
patient in state one. This can be interpreted as 
the probability that an HIV/AIDS patient with any 
one of the good states will be in death state is 
increasing with time.  
 
Moreover, a patient who is in the fourth state has 
the highest probability of dying after any given t 
months, while that of one who is in the first state 
is the lowest probability throughout the time. 
 
The conditional probability of a patient making 
changes in disease states given his/her current 
status is computed and displayed in Fig. 2. It 
shows the conditional probabilities of being in 
next state j after a month t given the starting 
state i.  

  

Table 1. The transition probability matrix computed from the progression data 
 

State I II III IV D 
I 171 (0.438462) 169 (0.433333) 32 (0.082051) 7 (0.017949) 11 (0.028205) 
II 240 (0.495868) 76 (0.157025) 132 (0.272727) 22 (0.045455) 14 (0.028926) 
III 59 (0.166667) 183 (0.516949) 52 (0.146893) 41 (0.115819) 19 (0.053672) 
IV 12 (0.079470) 30 (0.198675) 77 (0.509934) 7 (0.046358) 25 (0.165563) 
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Fig. 1a. Conditional probability that a patient will be in state  SIV,SIII,j,j SII after t Months given 

that she/he is currently in state  
 

 
 

Fig. 2. The conditional probability of patient making changes in disease states given his/her 
current status using exponential waiting time distribution 

 

 

The probability of a patient to stay in a given 
state for at least 24 months’ decreases with 
increasing time. For instance, the probability of 
staying in state one for 24 months is 0.545 for 
state one, 0.433 for state two, 0.321 for state 
three and 0.187 for state four. In good states an 
HIV/AIDS patient in a specific state of the 
disease will stay in that state with a non-zero 
probability. 

 
In Fig. 3 we computed the probability of staying 
in the same state. It is also interesting to find out 

that the conditional probability of staying in the 
same state until a given number of month 
decreases with increasing the time for both 
waiting time distributions. This shows patients 
change states with a non-zero probability after 
some time t given that he/she was at some state 
at time t initially. This result indicates that the 
probability of being in the same state for an 
HIV/AIDS patient in a specific state of the 
disease decreases over time. The results show 
that probability of being in a better state is non-
zero for good states, but less than the probability 
of being in the next worst states. 

 .SII,SIISI,i
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Fig. 3. The probability that a patient stays in some state of disease for at least t months 
through the study period 

 

4. DISCUSSION 
 
This study intended to model the progression of 
HIV/AIDS and survival probability of a patient 
using Semi-Markov Model. Accordingly, different 
probability plots produced from the observed 
data obtained from Yirgalem General Hospital 
during the follow-up year (between 2008 and 
2015 follow up period) in every six months at 
known and fixed time points. In figure 2 (a)) we 
observed a parabolic curve with optimal/peak 
points in the time probability axis plotted using 
the exponential waiting time distribution. These 
results also agree with the results of several 
authors [2,13,18] and [19]. A study conducted by 
Masala et al. [9] adopted a non-homogeneous 
semi-Markov model for estimating interval 
transition probabilities for HIV/AIDS disease 
progression. These probabilities are fundamental 
in order to perform predictions concerning the 
clinical evolution of patients.  Their findings 
suggested that a follow-up time is fundamental 
importance for the disease process. This result 
suggests that timely follow up of their disease 
states will enable patients to actively monitor 
their survival and will help physicians to for early 
diagnosis and appropriate individual therapy. The 
results support the idea of Goshu and Dessie [2] 
and Dinberu et al. [19]. 
 
Goshu and Dessie [2] in studied disease 
progression modeling using semi-Markov model 

from data collected from Felege-Hiwot referral 
hospital during 2005-2009. This finding are is in 
line with their studies in many ways. First, the 
pattern of disease progression is similar with our 
study in such a way that the probability of dying 
from an HIV/AIDS disease is 18.4 percent in the 
current cohort while it is about 13 percent in 
Goshu and Dessie [2]. Second, the conditional 
probability of moving to the next worse state has 
similar patterns with Goshu and Dessie [2] study. 
Third, we compute the conditional probability of 
being in next worst state after a month t given the 
starting state as similar with their studies. We 
see that there is similar pattern again while 
transiting into the next worst state. From this 
result, we observed that the probabilities are 
relatively higher for this study as compared to 
Goshu and Dessie [2]. This might be because of 
the increased access to modern therapies 
currently being investigated as compared with 
the time of their study. The results revealed that 
within the good states, the transition probability 
from a given state to the next worse state 
increases with time gets optimum at a time and 
then decreases with increasing time while 
considering exponential waiting time distribution. 
This might be because of the fact that patients 
will initially carefully follow their initial status and 
be able to effectively consider and consult their 
physicians follow up their ART this might 
decrease their probability to die and perhaps 
they might lose the follow up and this will intern 
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increase the probability of dying. The study 
conducted by Goshu as in Goshu and Dessie [2] 
has cited the probability that an HIV/AIDS patient 
with any one of the good states will be in death 
state is increasing with time. Moreover, a patient 
who is in the fourth state has the highest 
probability of dying after any given t months, 
while that of one who is in the first state is the 
lowest probability throughout the time as stated 
in Dessie [18]. This is because of the fact that as 
time in the follow up goes or increases the 
likelihood that the patient will survive decreases, 
as his/her CD4 cell counts decline over time 
because of the virus, affects the immunity of the 
patient and frequently enters to the next highest 
worst states and then to death. 
 
In general, this study suggests that, the survival 
probability of an HIV/AIDS patient depends on 
his/her current state of the disease thus lowering 
the CD4 counts will highly increase the survival 
probability and decrease the risk of transitioning 
from the worse health state or death state, which 
is similar with what was noted in Goshu and 
Dessie [2] an Dessie [13]. Thus, this finding 
suggests increased clinical care for patients on 
ART should be strengthened and patients need 
to regularly check their CD4 count in the 
appropriate day based on physician order to 
timely know their disease stage to improve 
survival probability and reduce mortality. 
 

5. CONCLUSIONS  
 
This study intended to model the progression of 
HIV/AIDS and survival probability of a patient in 
Yirgalem General Hospital during 2008-2015. 
The data analyzed in this study was collected at 
Yirgalem General Hospital during September 
2008 to August 2015 follow-up period in every six 
months at known and fixed time points but the 
transition between levels of the state space could 
occur at any time. The semi-Markov model is 
used to model the progression and the following 
conclusions are drawn from this study. 
 
For an HIV/AIDS patient, the transition probability 
from a given state to the next worse state 
increases within the good states as time gets 
optimum then decreases with increasing the time 
during a follow up. For a specific patient in the 
study the probability of dying increases as 
patient's state changes to the next higher states. 
This is because as the patients state increases to 
the next higher/ bad state the CD4 count of the 
subsequent patient decrease. Thus, the immunity 
of the patient also fails. The study found that for 

an HIV/AIDS patient in a specific state of the 
disease the patient will stay in that state with a 
non- zero probability in good states, further 
indicates that a patient will transit to the next 
state either to the worst or to the good state with 
a non-zero probability. Thus, an HIV/AIDS 
patient in a specific state of the disease the 
probability of being in the same state decreases 
over time. With the good or alive states, the 
results show that probability of being in a better 
state is non-zero but less than the probability of 
being in worst states. The survival probabilities 
are all decreasing with increasing time. Thus, we 
recommend that increased clinical care for 
patients on ART should be strengthened and 
patients need to regularly check their CD4 count 
in the appropriate day based on physician order 
to timely know their disease stage to improve 
survival probability and reduce mortality. 
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