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ABSTRACT

In this article, we present results on Toeplitz matrices with Oresme numbers components. First, the Toeplitz
matrices with Oresme numbers components are created and then the Frobenius(Euclidian), row and column
norms of these matrices are found. Furthermore lower and upper bounds are obtained for the spectral norms
of these matrices. In addition, the upper bounds for the Frobenius and spectral norms of the Kronecker and
Hadamard product matrices of the Toeplitz matrices with the Oresme numbers are calculated.
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1 INTRODUCTION

In recent years, many articles have been published on the norms of special matrices with the entry of special
cases of Horadam numbers. Solak [1] calculated the spectral norms of Toeplitz matrices with Fibonacci and Lucas
numbers. Akbulak and Bozkurt [2] obtained some special norms of Toeplitz matrices given with Fibonacci and
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Lucas numbers and lower and upper bounds for the spectral norm. Later, Shen [3] obtained some special norms
for Toeplitz matrices with k-Fibonacci and k-Lucas numbers components, and bounds for the spectral norms of
these matrices, lower and upper bounds for the spectral norms of Hadamard and Kronecker products of these
matrices. Eylem G. Karpuz [4] made a study on the norms of Toeplitz matrices whose elements are Pell numbers.
Similarly, Daşdemir [5] gave a few special norms of Toeplitz matrices such as Pell, Pell-Lucas and Modified Pell
numbers, and lower and upper bounds for spectral norm. Uygun, [6], obtained some special norms of Toeplitz
matrices with Jacobsthal and jacobsthal-Lucas numbers, lower and upper bounds for the spectral norm, and the
upper bound of the Frobenius norm of the Kronecker and Hadamard products of these matrices. Furthermore,
Uygun [7] present a parallel study of the k-jacobsthal and k-jacobsthal-lucas numbers.

Now, in the light of previous articles, we present some special norms of Toeplitz matrices with Oresme numbers
and this study in which we obtained the bounds of these norms.

A generalized Oresme sequence {Wn}n≥0 = {Wn (W0,W1)}n≥0 is defined by the second -order recurrence
relation

Wn = Wn−1 −
1

4
Wn−2 (1.1)

with the initial values W0 = c0,W1 = c1 not all being zero.

The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 4W−(n−1) − 4W−(n−2)

for n = 1, 2, 3, · · · . Therefore, recurrence equation (1.1) holds for all integer n.

The first few generalized Oresme numbers with positive subscript and negative subscript are given in the following
Table 1.

Table 1. A few generalized Oresme numbers

n Wn W−n

0 W0 W0

1 W1 4W0 − 4W1

2 W1 − 1
4
W0 12W0 − 16W1

3 3
4
W1 − 1

4
W0 32W0 − 48W1

4 1
2
W1 − 3

16
W0 80W0 − 128W1

5 5
16
W1 − 1

8
W0 192W0 − 320W1

6 3
16
W1 − 5

64
W0 448W0 − 768W1

7 7
64
W1 − 3

64
W0 1024W0 − 1792W1

8 1
16
W1 − 7

256
W0 2304W0 − 4096W1

9 9
256

W1 − 1
64
W0 5120W0 − 9216W1

10 5
256

W1 − 9
1024

W0 11264W0 − 20480W1

For more information on generalized Oresme numbers, see for example, Soykan [8].

Modified Oresme sequence {Gn}n≥0, Oresme-Lucas sequence {Hn}n≥0 and Oresme sequence {On}n≥0 are
defined respectively, by the second order recurrence relations;

Gn+2 = Gn+1 −
1

4
Gn, G0 = 0, G1 = 1, (1.2)

Hn+2 = Hn+1 −
1

4
Hn, H0 = 2, H1 = 1, (1.3)

On+2 = On+1 −
1

4
On O0 = 0, O1 =

1

2
. (1.4)
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The sequences {Gn}n≥0 , {Hn}n≥0 and {On}n≥0 can be extended to negative subscripts by defining

G−n = 4G−(n−1) − 4G−(n−2),

H−n = 4H−(n−1) − 4H−(n−2),

O−n = 4O−(n−1) − 4O−(n−2).

for n = 1, 2, 3, · · · respectively.

Therefore recurrence Equ. (1.2), Equ. (1.3) and Equ. (1.4) hold for all integer n.

Next, we present the first few values of the modified Oresme, Oresme-Lucas and Oresme numbers with positive
and negative subscripts:

Table 2. The first few values of the special second-order numbers with positive and negative subscripts

n 0 1 2 3 4 5 6 7 8 9 10 11

Gn 0 1 1 3
4

1
2

5
16

3
16

7
64

1
16

9
256

5
256

11
1024

G−n .... −4 −16 −48 −128 −320 −768 −1792 −4096 −9216 −20480 −45056
Hn 2 1 1

2
1
4

1
8

1
16

1
32

1
64

1
128

1
256

1
512

1
1024

H−n .... 4 8 16 32 64 128 256 512 1024 2048 4096
On 0 1

2
1
2

3
8

1
4

5
32

3
32

7
128

1
32

9
512

5
512

11
2048

O−n .... −2 −8 −24 −64 −160 −384 −896 −2048 −4608 −10240 −22528

Characteristic equation of generalized Oresme sequence {Wn}n≥0 is given as the quadratic equation

x2 − x+
1

4
= 0,

whose roots are α, β and

α = β =
1

2
.

Binet’s formula of Generalized Oresme sequence is given as

Wn =

(
nW1 −

1

2
(n− 1)W0

)(
1

2

)n−1

.

Binet’s formulas of modified Oresme, Oresme-Lucas and Oresme numbers are

Gn = nαn−1 =
n

2n−1
,

Hn = 2αn =
1

2n−1
,

On = nαn =
n

2n
,

and Binet’s formulas of modified Oresme, Oresme-Lucas and Oresme numbers at the negative index are

G−n = −4nGn = −n× 2n+1,

H−n = 4nHn = 2n+1,

O−n = −4nOn = −n× 2n.
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2 PRELIMINARIES

A matrix T = [tij ] ∈Mn (C) is called a Toeplitz matrix if it is of the form tij = ti−j for

Tn =


t0 t−1 t−2 · · · t1−n

t1 t0 t−1 · · · t2−n

t2 t1 t0 · · · t3−n

...
...

...
. . .

...
tn−1 tn−2 tn−3 · · · t0

 .

Now, we give some preliminaries related to our study. Let A = (aij) be an m×n matrix. The `p norm of the matrix
A is defined by

‖A‖p = (

m∑
i=1

n∑
j=1

|aij |p)
1
p (1 ≤ p <∞).

If p =∞, then ‖A‖∞ = limp→∞ ‖A‖p = maxi,j |aij | .

The well-known Frobenius (Euclidean) and spectral norms of the matrix A are defined respectively by

‖A‖F = (

m∑
i=1

n∑
j=1

|aij |2)
1
2

and
‖A‖2 =

√
max
1≤i≤n

|λi| (2.1)

where the numbers λi are the eigenvalues of matrix AHA and the matrix AH is the conjugate transpose of the
matrix A. The following inequality between the Frobenius and spectral norms of A holds.

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F . (2.2)

It follows that
‖A‖2 ≤ ‖A‖F ≤

√
n ‖A‖2 .

In literature, there are other types of norms of matrices. The maximum column sum matrix norm of n × n matrix
A = (aij) is

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | (2.3)

and the maximum row sum matrix norm is

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | . (2.4)

The maximum column lenght norm c1 (.) and maximum row lenght norm r1 (.) of on matrix of order m × n are
defined as follows

c1 (A) ≡ max
1≤j≤n

(
m∑
i=1

|aij |2
) 1

2

= max
1≤j≤n

∥∥[aij ]
m
i=1

∥∥
F

(2.5)

and

r1 (A) ≡ max
1≤i≤m

(
n∑

j=1

|aij |2
) 1

2

= max
1≤i≤m

∥∥∥[aij ]
n
j=1

∥∥∥
F

(2.6)

respectively.
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For any A,B ∈ Mmn (C), the Hadamard product of A = (aij) and B = (bij) is entrywise product and defined by
A ◦B = (aijbij) and have the following properties

‖A ◦B‖2 ≤ r1 (A) c1 (B) , (2.7)

and
‖A ◦B‖2 ≤ ‖A‖2 ‖B‖2 . (2.8)

In addition,
‖A ◦B‖F ≤ ‖A‖F ‖B‖F . (2.9)

Let A ∈Mmn (C), and B ∈Mmn (C) be given, then the Kronecker product of A,B is defined by

‖A⊗B‖ =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB


and have the following properties

‖A⊗B‖2 = ‖A‖2 ‖B‖2 , (2.10)

‖A⊗B‖F = ‖A‖F ‖B‖F .

In the following theorem, we present some sum formulas of generalized Oresme numbers.

Theorem 2.1. For generalized Oresme numbers, we have following sum formulas:

(a) [8, Proposition 26. a] If 1
4

(x− 2)2 6= 0, i.e., x 6= 2, then

n∑
k=0

xkWk =
(x− 4)xn+1Wn + xn+1Wn−1 + 4W0 + 4 (W1 −W0)x

(x− 2)2
. (2.11)

(b) [8, Proposition 26. d] If (2x− 1)2 6= 0, i.e., x 6= 1
2
, then

n∑
k=0

xkW−k =
4xn+1W−n+1 + 4(x− 1)xn+1W−n +W0 − 4xW1

(2x− 1)2
.

(c) [9, Proposition 2.1. a] If 1
64

(x− 4)3 6= 0, i.e., x 6= 4, then

n∑
k=0

xkW 2
k =

∆

(x− 4)3

where
∆ = (x− 4)(x− 8)xn+1W 2

n + (x− 4)xn+1W 2
n−1 + 16(x− 4)W 2

0 − 16x(x− 4)(W0 −W1)2 − 2−2n+5(W0 −
2W1)2(22n − xn)x.

(d) [9, Proposition 2.1. d] If (4x− 1)3 6= 0, i.e., x 6= 1
4

then

n∑
k=0

xkW 2
−k =

∆

(4x− 1)3

where
∆ = 16(4x − 1)xn+1W 2

−n+1 + 8(2x − 1)(4x − 1)xn+1W 2
−n + (4x − 1)W 2

0 − 16(4x − 1)xW 2
1 + 8(W0 −

2W1)2(22nxn − 1)x.

If we set x = 1 in the last Theorem, we have the following corollary.
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Corollary 2.2. For generalized Oresme numbers, we have following sum formulas:

(a)
n∑

k=0

Wk = −3Wn +Wn−1 + 4W1. (2.12)

(b)
n∑

k=0

W−k = 4W−n+1 +W0 − 4W1. (2.13)

(c)
n∑

k=0

W 2
k = − 1

27
(21W 2

n − 3W 2
n−1 − 48W1(2W0 −W1)− 2−2n+5(W0 − 2W1)2(22n − 1)). (2.14)

(d)
n∑

k=0

W 2
−k =

1

27
(48W 2

−n+1 + 24W 2
−n + 3W 2

0 − 48W 2
1 + 8(W0 − 2W1)2(22n − 1)). (2.15)

3 MAIN RESULTS

In this paper, we use the notation A = T (W0,W1, · · · ,Wn−1) for the Toeplitz matrix with generalized Oresme
numbers, i.e.,

A =


W0 W−1 W−2 · · · W1−n

W1 W0 W−1 · · · W2−n

W2 W1 W0 · · · W3−n

...
...

...
. . .

...
Wn−1 Wn−2 Wn−3 · · · W0

 . (3.1)

For special cases, we get

A =


G0 G−1 G−2 · · · G1−n

G1 G0 G−1 · · · G2−n

G2 G1 G0 · · · G3−n

...
...

...
. . .

...
Gn−1 Gn−2 Gn−3 · · · G0

 =


0 −4 −16 · · · G1−n

1 0 −4 · · · G2−n

1 1 0 · · · G3−n

...
...

...
. . .

...
Gn−1 Gn−2 Gn−3 · · · 0

 (3.2)

for the Toeplitz matrix A = T (G0, G1, · · · , Gn−1) with modified Oresme numbers and

A =


H0 H−1 H−2 · · · H1−n

H1 H0 H−1 · · · H2−n

H2 H1 H0 · · · H3−n

...
...

...
. . .

...
Hn−1 Hn−2 Hn−3 · · · H0

 =


2 4 8 · · · H1−n

1 2 4 · · · H2−n
1
2

1 2 · · · H3−n

...
...

...
. . .

...
Hn−1 Hn−2 Hn−3 · · · 2

 (3.3)

for the Toeplitz matrix A = T (H0, H1, · · · , Hn−1) with Oresme-Lucas numbers and

A =


O0 O−1 O−2 · · · O1−n

O1 O0 O−1 · · · O2−n

O2 O1 O0 · · · O3−n

...
...

...
. . .

...
On−1 On−2 On−3 · · · O0

 =


0 −2 −8 · · · O1−n
1
2

0 −2 · · · O2−n
1
2

1
2

0 · · · O3−n

...
...

...
. . .

...
On−1 On−2 On−3 · · · 0

 (3.4)
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for the Toeplitz matrix A = T (O0, O1, · · · , On−1) with Oresme numbers.

In the following theorem, we present the norm value of ‖A‖1 and ‖A‖∞ of the largest absolute column sum and
the largest absolute row sum of A.

Theorem 3.1. Let A = T (W0,W1, · · · ,Wn−1) be a Toeplitz matrix with generalized Oresme numbers then the
largest absolute column sum (1-norm) and the largest absolute row sum (∞-norm) of A are

‖A1‖ = ‖A‖∞ =

{
−4W−n+1 −W0 + 4W1 +W−n , if |W−k| ≥ |Wk| and W−k ≤ 0 , k ∈ N,−k ∈ N−
4W−n+1 +W0 − 4W1 −W−n , if |W−k| ≥ |Wk| and W−k ≥ 0 , k ∈ N,−k ∈ N−

where k = i− j : i, j = 0, 1, · · · , n− 1.

Proof. ConsiderA = T (W0,W1, · · · ,Wn−1) which is given as in (3.1). By the definitions of 1−norm and∞−norm
and Equ. (2.3) and Equ. (2.4) and Equ. (2.13), we conclude that

(i) If |W−k| ≥ |Wk| , k ∈ N and W−k ≤ 0, k ∈ N, then we get

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | = max {|a1j |+ |a2j |+ |a3j |+ · · ·+ |anj |} =

n∑
i=1

|ain|

= |a1n|+ |a2n|+ |a3n|+ · · ·+ |ann| =

n−1∑
k=0

|W−k|

= −
n−1∑
k=0

W−k = −(

n∑
k=0

W−k −W−n)

= −4W−n+1 −W0 + 4W1 +W−n

and if |W−k| ≥ |Wk| , k ∈ N and W−k ≥ 0, k ∈ N, then we obtain

‖A‖1 = max
1≤j≤n

n∑
i=1

|aij | = max {|a1j |+ |a2j |+ |a3j |+ · · ·+ |anj |} =

n∑
i=1

|ain|

= |a1n|+ |a2n|+ |a3n|+ · · ·+ |ann| =
n−1∑
k=0

|W−k|

=

n−1∑
k=0

W−k =

n∑
k=0

W−k −W−n

= 4W−n+1 +W0 − 4W1 −W−n.

(ii) If |W−k| ≥ |Wk| , k ∈ N and W−k ≤ 0, k ∈ N, then it follows that

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | = max {|ai1|+ |ai2|+ |ai3|+ · · ·+ |ain|} =

n∑
j=1

|a1j |

= |a11|+ |a12|+ |a13|+ · · ·+ |a1n|

= −
n−1∑
k=0

W−k = −(

n∑
k=0

W−k −W−n)

= −4W−n+1 −W0 + 4W1 +W−n

47
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and if |W−k| ≥ |Wk| , k ∈ N and W−k ≥ 0, k ∈ N, then we get

‖A‖∞ = max
1≤i≤n

n∑
j=1

|aij | = max {|ai1|+ |ai2|+ |ai3|+ · · ·+ |ain|} =

n∑
j=1

|a1j |

= |a11|+ |a12|+ |a13|+ · · ·+ |a1n|

=

n−1∑
k=0

W−k =

n∑
k=0

W−k −W−n

= 4W−n+1 +W0 − 4W1 −W−n.

Thus, the proof is completed. �

Remark. In the statement of the theorem 3.1 the condion on Wn, W−n, n ∈ N is given to calculade ‖.‖1 and ‖.‖∞
norms of modified Oresme, Oresme-Lucas, Oresme numbers. The other cases can be handled similarly.

From the last Theorem 3.1, we have the following corollary which present norm values of ‖A‖1 and ‖A‖∞ of A
with modified Oresme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (set Wn = Gn with
G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1

2
, respectively).

Corollary 3.2.

(a) For A = T (G0,G1, · · · , Gn−1), the values of norms of Toeplitz matrices with modified Oresme numbers have
the following property:

‖A‖1 = ‖A‖∞ = −4G−n+1 +G−n + 4.

(b) For A = T (H0, H1, · · · , Hn−1) , the values of norms of Toeplitz matrices with Oresme-Lucas numbers have
the following property:

‖A‖1 = ‖A‖∞ = 4H−n+1 −H−n − 2.

(c) For A = T (O0, O1, · · · , On−1), the values of norms of Toeplitz matrices with Oresme numbers have the
following property:

‖A‖1 = ‖A‖∞ = −4O−n+1 +O−n + 2.

Next theorem presents the Frobenious (Euclidian) norm of a Toeplitz matrix A.

Theorem 3.3. Let A = T (W0,W1, · · · ,Wn−1) be a Toeplitz matrix with generalized Oresme numbers components,
then the Frobenious (Euclidian) norm of matrix A is

‖A‖F =
√

Ω1

where

Ω1 = 1
81

(96W 2
n−24W 2

−n−15W 2
n−1+240W 2

−n+1+(72(22n)+192(2−2n)−96)W 2
0 +(576−288(22n)−768(2−2n))W0W1+

(288(22n) + 768(2−2n)− 1056)W 2
1 ).

Proof. The matrix A is of the form

A =


W0 W−1 W−2 · · · W1−n

W1 W0 W−1 · · · W2−n

W2 W1 W0 · · · W3−n

...
...

...
. . .

...
Wn−1 Wn−2 Wn−3 · · · W0

 .

Then we have

‖A‖2F = nW 2
0 + (n− 1)W 2

−1 + (n− 2)W 2
−2 + (n− 3)W 2

−3 + · · ·+W 2
1−n

+(n− 1)W 2
1 + (n− 2)W 2

2 + (n− 3)W 2
3 + · · ·+W 2

n−1
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and so

‖A‖2F = (2− n)W 2
0 −

7

9

n−1∑
k=1

W 2
k +

1

9

n−1∑
k=1

W 2
k−1 +

16

9

n−1∑
k=1

W 2
−k+1

+
8

9

n−1∑
k=1

W 2
−k +

16

9

n−1∑
k=1

W1(2W0 −W1)

+
1

27

n−1∑
k=1

2−2k+5(W0 − 2W1)2(22k − 1)

+
1

9

n−1∑
k=1

W 2
0 −

16

9

n−1∑
k=1

W 2
1 +

8

27

n−1∑
k=1

(W0 − 2W1)2(22k − 1).

By using the equalities

16

9

n−1∑
k=1

W1(2W0 −W1) =
16

9
(n− 1)W1(2W0 −W1),

1

9

n−1∑
k=1

W 2
0 =

1

9
(n− 1)W 2

0 ,

−16

9

n−1∑
k=1

W 2
1 = −16

9
(n− 1)W 2

1 .

1

27

n−1∑
k=1

2−2k+5(W0 − 2W1)2(22k − 1) =
(W0 − 2W1)2

81
(3n25 + 27(2−2n − 1)),

8

27

n−1∑
k=1

(W0 − 2W1)2(22k − 1) =
8 (W0 − 2W1)2

81
(22n − 3n− 1),

we obtain

P =
16

9

n−1∑
k=1

W1(2W0 −W1) +
1

9

n−1∑
k=1

W 2
0 −

16

9

n−1∑
k=1

W 2
1

+
1

27

n−1∑
k=1

2−2k+5(W0 − 2W1)2(22k − 1) +
8

27

n−1∑
k=1

(W0 − 2W1)2(22k − 1),

and it follows that

P =
16

9
(n− 1)W1(2W0 −W1) +

1

9
(n− 1)W 2

0 −
16

9
(n− 1)W 2

1

+
(W0 − 2W1)2

81
(3n25 + 27(2−2n − 1)) +

8(W0 − 2W1)2

81
(22n − 3n− 1).

Moreover, we use equation 2.14 and equation 2.15 in Corollary 2.2.

Therefore, we get

‖A‖2F = (2− n)W 2
0 − 7

9

∑n−1
k=1 W

2
k + 1

9

∑n−1
k=1 W

2
k−1 + 16

9

∑n−1
k=1 W

2
−k+1 + 8

9

∑n−1
k=1 W

2
−k +P = 1

81
(96W 2

n−24W 2
−n−

15W 2
n−1+240W 2

−n+1+(72(22n)+192(2−2n)−96)W 2
0 +(576−288(22n)−768(2−2n))W0W1+(288(22n)+768(2−2n)−

1056)W 2
1 ).

This complates the proof. �
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From the last Theorem 3.3, we have the following corollary which gives Frobenius norm formulas of modified
Oreme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (take Wn = Gn, with G0 = 0, G1 =
1 and Wn = Hn, with H0 = 2, H1 = 1 and Wn = On, with O0 = 0, O1 = 1

2
, respectively).

Corollary 3.4. For n ≥ 0, Toeplitz matrices with the modified Oresme, Oresme-Lucas and Oresme numbers,
respectively have the following properties:

(a) ‖A‖F =
√

Ω2

where A is given as in (3.2)

Ω2 =
1

81
(96G2

n − 24G2
−n − 15G2

−n+1 + 240G2
−n+1 + 288(22n) + 768(2−2n)− 1056).

(b) ‖A‖F =
√

Ω3

where A is given as in (3.3)

Ω3 =
1

81
(96H2

n − 24H2
−n − 15H2

n−1 + 240H2
−n+1 − 288).

(c) ‖A‖F =
√

Ω4

where A is given as in (3.4)

Ω4 =
1

81
(96O2

n − 24O2
−n − 15O2

n−1 + 240O2
−n+1 + 72(22n) + 192(2−2n)− 264).

In the following theorem, we present the lower and upper bounds of the spectral norms of the Toeplitz matrices
with the modified Oresme numbers, Oresme-Lucas numbers and Oresme numbers, respectively, (set Wn = Gn

with G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

Theorem 3.5.
(a) Consider A = T (G0, G1, · · · , Gn−1) which is given as in (3.2). Let

C =


1 G−1 G−2 · · · G1−n

1 G0 G−1 · · · G2−n

1 G1 G0 · · · G3−n

...
...

...
. . .

...
1 Gn−2 Gn−3 · · · G0

 =


1 −4 −16 · · · G1−n

1 0 −4 · · · G2−n

1 1 0 · · · G3−n

...
...

...
. . .

...
1 Gn−2 Gn−3 · · · 0


and

D =


G0 1 1 · · · 1
G1 1 1 · · · 1
G2 1 1 · · · 1
...

...
...

. . .
...

Gn−1 1 1 · · · 1

 =


0 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

Gn−1 1 1 · · · 1


such that A = C ◦D (Hadamart Product of C and D).

(i)

‖A‖2 ≥
√

1

n
Ω2

where Ω2 is as in Corollary 3.4.

(ii)
‖A‖2 ≤ Ω5

where
Ω5 = (

1

27
(48G2

−n+1 − 3G2
−n + 32(22n − 1)− 21))

1
2 × 2
√
n.
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(b) Consider A = T (H0, H1, · · · , Hn−1) which is given as in (3.3). Let

C =


1 H−1 H−2 · · · H1−n

1 H0 H−1 · · · H2−n

1 H1 H0 · · · H3−n

...
...

...
. . .

...
1 Hn−2 Hn−3 · · · H0

 =


1 4 8 · · · H1−n

1 2 4 · · · H2−n

1 1 2 · · · H3−n

...
...

...
. . .

...
1 Hn−2 Hn−3 · · · 2


and

D =


H0 1 1 · · · 1
H1 1 1 · · · 1
H2 1 1 · · · 1
...

...
...

. . .
...

Hn−1 1 1 · · · 1

 =


2 1 1 · · · 1
1 1 1 · · · 1
1
2

1 1 · · · 1
...

...
...

. . .
...

Hn−1 1 1 · · · 1

 .

such that A = C ◦D (Hadamart Product of C and D).

(i)

‖A‖2 ≥
√

1

n
Ω3

where Ω3 is as in Corollary 3.4.
(ii)

‖A‖2 ≤ Ω6

where

Ω6 =

{
( 1
27

(48H2
−n+1 − 3H2

−n − 117))
1
2 ×
√
n , n ≥ 6

(− 1
27

(48H2
n − 3H2

n−1 − 144))
1
2 × ( 1

27
(48H2

−n+1 − 3H2
−n − 117))

1
2 , 1 ≤ n < 6

.

(c) Consider A = T (O0, O1, · · · , On−1) which is given as in (3.4). Let

C =


1 O−1 O−2 · · · O1−n

1 O0 O−1 · · · O2−n

1 O1 O0 · · · O3−n

...
...

...
. . .

...
1 On−2 On−3 · · · O0

 =


1 −2 −8 · · · O1−n

1 0 −2 · · · O2−n

1 1
2

0 · · · O3−n

...
...

...
. . .

...
1 On−2 On−3 · · · 0


and

D =


O0 1 1 · · · 1
O1 1 1 · · · 1
O2 1 1 · · · 1
...

...
...

. . .
...

On−1 1 1 · · · 1

 =


0 1 1 · · · 1
1
2

1 1 · · · 1
1
2

1 1 · · · 1
...

...
...

. . .
...

On−1 1 1 · · · 1


such that A = C ◦D (Hadamart Product of C and D).

(i)

‖A‖2 ≥
√

1

n
Ω4

where Ω4 is as in Corollary 3.4.
(ii)

‖A‖2 ≤ Ω7

where
Ω7 = (

1

27
(48O2

−n+1 − 3O2
−n + 15 + 8(22n − 1)))

1
2 ×
√
n.

51
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Proof.

(a)

(i) We use equation (2.2).

(ii) By definition, we get

r1 (C) = max
i

(
∑
j

|cij |2)
1
2 = (

n∑
j=1

|c1j |2)
1
2 = (1 +

n−1∑
k=1

W 2
−k)

1
2

= (
1

27
(48G2

−n+1 − 3G2
−n − 24G2

0 − 48G2
1 + 8(G0 − 2G1)2(22n − 1)) + 1)

1
2

= (
1

27
(48G2

−n+1 − 3G2
−n + 32(22n − 1)− 21))

1
2

and

c1 (D) = max
j

(
∑
i

|dij |2)
1
2

=
√
n (0 ≤ Gi ≤ 1, for (i ≥ 0 and n ≥ 1)).

So, from inequality (2.7),

‖A‖2 ≤ r1(C)c1(D) = Ω5 = (
1

27
(48G2

−n+1 − 3G2
−n + 32(22n − 1)− 21))

1
2 ×
√
n

(b)

(i) We use equation (2.2).

(ii) We get

r1 (C) = max
i

(
∑
j

|cij |2)
1
2 = (

n∑
j=1

|c1j |2)
1
2 = (1 +

n−1∑
k=1

H2
−k)

1
2

= (
1

27
(48H2

−n+1 − 3H2
−n − 24H2

0 − 48H2
1 + 8(H0 − 2H1)2(22n − 1)) + 1)

1
2

= (
1

27
(48H2

−n+1 − 3H2
−n − 117))

1
2

and

c1(D) = max
j

(
∑
i

|dij |2)
1
2 =

{ √
n , n ≥ 6

(− 1
27

(48H2
n − 3H2

n−1 − 144))
1
2 , 1 ≤ n < 6

so by defination of Hadamard product and from inequality (2.7)

‖A‖2 ≤ r1(C)c1(D) = Ω6


( 1
27

(48H2
−n+1 − 3H2

−n − 117))
1
2 ×
√
n , n ≥ 6

(− 1
27

(48H2
n − 3H2

n−1 − 144))
1
2

×( 1
27

(48H2
−n+1 − 3H2

−n − 117))
1
2

, 0 ≤ n < 6
.

(c)

(i) We use equation (2.2).
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(ii) We get

r1 (C) = max
i

(
∑
j

|cij |2)
1
2 = (

n∑
j=1

|c1j |2)
1
2 = (1 +

n−1∑
k=1

O2
−k)

1
2

= (
1

27
(48O2

−n+1 − 3O2
−n − 24O2

0 − 48O2
1 + 8(O0 − 2O1)2(22n − 1)) + 1)

1
2

= (
1

27
(48O2

−n+1 − 3O2
−n + 15 + 8(22n − 1)))

1
2

and

c1 (D) = max
j

(
∑
i

|dij |2)
1
2

=
√
n (0 ≤ Oi ≤ 1, for (i ≥ 0 and n ≥ 1)).

so, from inequality (2.7)

‖A‖2 ≤ r1(C)c1(D) = Ω7 = (
1

27
(48O2

−n+1 − 3O2
−n + 15 + 8(22n − 1)))

1
2 ×
√
n.

This complates the proof. �

From the equation (2.10) and Corollary 3.4, we have the following corollary which gives the Frobenius norms of
the Kronecker products of the Toeplitz matrices with special cases of generalized Oresme numbers.

Corollary 3.6.

(a) Let A = T (G0, G1, · · · , Gn−1) and B = T (H0, H1, · · · , Hn−1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property.

‖A⊗B‖F = ‖A‖F ‖B‖F
=
√

Ω2

√
Ω3

where Ω2 and Ω3 are as in Corollary 3.4 (a) and (b),

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1, respectively).
(b) Suppose that A = T (G0, G1, · · · , Gn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with modified

Oresme numbers and Oresme numbers, respectively, then we obtain the following property:

‖A⊗B‖F = ‖A‖F ‖B‖F
=
√

Ω2

√
Ω4

where Ω2 and Ω4 are as in Corollary 3.4 (a) and (c),

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

(c) Given A = T (H0, H1, · · · , Hn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with Oresme-Lucas
numbers and Oresme numbers, respectively, then we get the following property:

‖A⊗B‖F = ‖A‖F ‖B‖F
=
√

Ω3

√
Ω4

where Ω3 and Ω4 are as in Corallary 3.4 (b) and (c),

(set Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

Proof. (a), (b) and (c) follows from equation (2.10) and Theorem 3.3 and Corollary 3.4. �

From the above inequality (2.9) and Theorem 3.3 and Corollary 3.4, we have the following result, which gives an
upper bound for the Frobenius norm of Hadamard products of Toeplitz matrices by exclusive cases of generalized
Oresme numbers.
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Corollary 3.7.

(a) Let A = T (G0, G1, · · · , Gn−1) and B = T (H0, H1, · · · , Hn−1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property:

‖A ◦B‖F ≤ ‖A‖F ‖B‖F
≤
√

Ω2

√
Ω3

where Ω2 and Ω3 are as in Corollary 3.4 (a) and (b),

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1, respectively).

(b) Suppose that A = T (G0, G1, · · · , Gn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with modified
Oresme numbers and Oresme numbers, respectively, then we obtain the following property:

‖A ◦B‖F ≤ ‖A‖F ‖B‖F
≤
√

Ω2

√
Ω4

where Ω2 and Ω4 are as in Corollary 3.4 (a) and (c),

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

(c) Assume that A = T (H0, H1, · · · , Hn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with Oresme-
Lucas numbers and Oresme numbers, respectively, then we have the following property:

‖A ◦B‖F ≤ ‖A‖F ‖B‖F
≤
√

Ω3

√
Ω4

where Ω3 and Ω4 are as in Corollary 3.4 (b) and (c),

(set Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

In the last inequality (2.8) and Theorem 3.5, we have the following Corollary, which gives an upper bound for the
spectral norm of Hadamard products of Toeplitz matrices with special cases of generalized Oresme numbers.

Corollary 3.8.

(a) Given A = T (G0, G1, · · · , Gn−1) and B = T (H0, H1, · · · , Hn−1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have following property:

‖A ◦B‖2 ≤ Ω5 × Ω6

where Ω5 and Ω6 are as in Theorem 3.5,

(take Wn = Gn with G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1, respectively).

(b) Let A = T (G0, G1, · · · , Gn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with modified Oresme
numbers and Oresme numbers respectively, then we have the following property:

‖A ◦B‖2 ≤ Ω5 × Ω7

where Ω5 and Ω7 are as in Theorem 3.5,

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

(c) Suppose that A = T (H0, H1, · · · , Hn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with Oresme-
Lucas numbers and Oresme numbers respectively, then we get the following property:

‖A ◦B‖2 ≤ Ω6 × Ω7

where Ω6 and Ω7 are as in Theorem 3.5,
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(set Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

Proof. For (a), (b) and (c) see inequality (2.8) and Theorem 3.5.�

From the related equation (2.10) and Theorem 3.5, we have the following Corollary which gives an upper bound for
the spectral norm of Kronocker products of Toeplitz matrices with special cases of generalized Oresme numbers.

Corollary 3.9.

(a) Let A = T (G0, G1, · · · , Gn−1) and B = (H0, H1, · · · , Hn−1) be Toeplitz matrices with modified Oresme
numbers and Oresme-Lucas numbers, respectively, then we have the following property:

‖A⊗B‖2 ≤ Ω5 × Ω6

where Ω5 and Ω6 are as in Theorem 3.5,

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = Hn with H0 = 2, H1 = 1, respectively).

(b) Let A = T (G0, G1, · · · , Gn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with modified Oresme
numbers and Oresme numbers respectively, then we get the following property:

‖A⊗B‖2 ≤ Ω5 × Ω7

where Ω5 and Ω7 are as in Theorem 3.5,

(set Wn = Gn with G0 = 0, G1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

(c) Let A = T (H0, H1, · · · , Hn−1) and B = T (O0, O1, · · · , On−1) be Toeplitz matrices with Oresme-Lucas
numbers and Oresme numbers respectively, then we obtain the following property:

‖A⊗B‖2 ≤ Ω6 × Ω7

where Ω6 and Ω7 are as in Theorem 3.5,

(set Wn = Hn with H0 = 2, H1 = 1 and Wn = On with O0 = 0, O1 = 1
2
, respectively).

Proof. For (a), (b) and (c) see equation (2.10) and Theorem 3.5.�

4 CONCLUSIONS

The sequences of numbers were widely used in
many research areas, such as physics, engineering,
architecture, nature and art. Recently, there have
been so many studies of the sequences of numbers in
the literature that concern about subsequences of the
Horadam numbers which have second order recurrence
relations. Generalized Oresme numbers are special
cases of Horadam numbers.

In this paper, we obtain results on Toeplitz matrices with
Oresme numbers components.

• In chapter 1, We present some known results
on Oresme numbers such as recurrence relation,
characteristic equation and Binet’s formulas.

• In chapter 2, We give some basic definitions and
result of special norms of the Toeplitz matrices
and find sum formulas of Toeplitz matrices with
Oresme numbers.

• In chapter 3, We obtain special norms of Toeplitz
matrices with Oresme numbers and find upper
and lower bounds for spectral norms of Toeplitz
matrices with Oresme numbers components.

Linear recurrence relations (sequences) have many
applications. Now, we present some applications of
second order sequences.

• For the applications of Gaussian Fibonacci and
Gaussian Lucas numbers to Pauli Fibonacci and
Pauli Lucas quaternions, see [10].

• For the application of Pell Numbers to the
solutions of three-dimensional difference
equation systems, see [11].

• For the application of Jacobsthal numbers to
special matrices, see [12].

• For the application of generalized k-order
Fibonacci numbers to hybrid quaternions, see
[13].
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• For the applications of Fibonacci and Lucas
numbers to Split Complex Bi-Periodic numbers,
see [14].

• For the applications of generalized bivariate
Fibonacci and Lucas polynomials to matrix
polynomials, see [15].

• For the applications of generalized Fibonacci
numbers to binomial sums, see [16].

• For the application of generalized Jacobsthal
numbers to hyperbolic numbers, see [17].

• For the application of generalized Fibonacci
numbers to dual hyperbolic numbers, see [18].

• For the application of Laplace transform and
various matrix operations to the characteristic
polynomial of the Fibonacci numbers, see [19].

• For the application of Generalized Fibonacci
Matrices to Cryptography, see [20].

• For the application of higher order Jacobsthal
numbers to quaternions, see [21].

• For the application of Fibonacci and Lucas
Identities to Toeplitz-Hessenberg matrices, see
[22].

• For the applications of Fibonacci numbers to
lacunary statistical convergence, see [23].

• For the applications of Fibonacci numbers to
lacunary statistical convergence in intuitionistic
fuzzy normed linear spaces, see [24].

• For the applications of Fibonacci numbers to
ideal convergence on intuitionistic fuzzy normed
linear spaces, see [25].

• For the applications of k-Fibonacci and k−Lucas
numbers to spinors, see [26].

• For the application of dual-generalized complex
Fibonacci and Lucas numbers to Quaternions,
see [27].

• For the application of special cases of Horadam
numbers to Neutrosophic analysis see [28].

• For the application of Hyperbolic Fibonacci
numbers to Quaternions, see [29].
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[11] Büyük H, Taşkara N. On the solutions of three-
dimensional difference equation systems via pell
numbers. European Journal of Science and
Technology. 2022;34:433-440.

[12] Vasanthi S, Sivakumar B. Jacobsthal matrices and
their properties. Indian Journal of Science and
Technology. 2022;15(5):207-215.
Available: https://doi.org/10.17485/IJST/v15i5.1948

56
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