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ABSTRACT 
 

The Gompertz-Lindley distribution is an extension of the Lindley distribution with three parameters. 
It was found to be more flexible for modeling real life events. The distribution contains two shape 
parameters and a scale parameter. Despite the necessity of parameter estimation theory in 
modeling, it has not been shown that a method of estimation method is better for any of these three 
parameters of the Gompertz-Lindley distribution. This paper identifies the best estimation method 
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for the shape parameter of the Gompertz-Lindley distribution by deriving Bayesian estimators for 
the shape parameter of the distribution using two non-informative prior distributions (Uniform and 
Jeffery) and an informative prior (gamma) under squared error loss function (SELF), quadratic loss 
function (QLF) and precautionary loss function (PLF). These estimators were evaluated and the 
results compared with the maximum likelihood estimation method using Monte Carlo simulations 
with the mean square error (MSE) as a criterion for choosing the best estimator. 
 

 
Keywords: Gomperz-Lindley distribution; bayesian analysis; prior distributions; loss functions; 

maximum likelihood estimation and mean square error. 
 

1. INTRODUCTION 
 
A number of classical probability distributions 
have been used over the years for modeling real 
life datasets and one of such distributions is the 
Lindley distribution. The Lindley distribution is a 
probability distribution that was investigated in 
context of fiducial statistics as a counter example 
of Bayesian theory [1]. Its fundamental 
properties, estimation and applications have 
been discussed using different data sets [2-6].  
 
Despite the useful properties and various 
applications of the Lindley distribution, its 
applicability may be restricted to non-monotone 
hazard rate data according to [7]. This has lead 
to the introduction of other extensions of the 
Lindley distribution such as the transmuted 
Lindley distribution by [8], the exponentiated 
Power Lindley distribution by [9], Generalized 
Lindley distribution by [10], Transmuted 
Generalized Lindley distribution by [11], 

Extended Power Lindley distribution by [12], 
Transmuted Two-Parameter Lindley distribution 
by [13] and a three-parameter Lindley distribution 
by [14], power Lindley distribution by [15], the 
transmuted Lindley-geometric distribution by [16], 
the beta-Lindley distribution by [17], 
Kumaraswamy-Lindley distribution by [18] and 
Gompertz-Lindley distribution by [19]. 
 
Besides extended Lindley distributions, 
numerous compound probability distributions 
have been proposed for modeling real life 
situations and these compound distributions are 
found to be skewed, flexible and more better in 
statistical modeling compared to the classical 
distributions [20-30].  
 
According to [19], the probability density function 
(pdf), the cumulative distribution function (cdf), 
survival function, hazard function and quantile 
function (qf) of the Gompertz-Lindley distribution 
(GomLinD) are respectively defined as: 
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where 0   is a scale parameter while 0   and 0  are the extra shape parameters of the 

Gompertz-Lindley distribution (GomLinD).  
 
These functions are represented graphically using some arbitrary parameter values in the figure 
below: 

 
 

Fig. 1. Plots of the PDF, CDF, Survival and Hazard Function of the GomLinD for Selected 
Parameter Values 

 
The Gompertz-Lindley distribution (GomLinD) 
has three parameters (two shapes parameters 
and a scale parameter). It was found to be 
skewed and flexible with a decreasing hazard 
rate and different shapes and also performed 
better than the Generalized Lindley distribution 
(GenLinD), a three-parameter Lindley distribution 
(ATPLinD), Transmuted two-parameter Lindley 
distribution (TTPLinD), Transmuted Lindley 
distribution (TLinD) and the conventional Lindley 
distribution (LinD) based on an application of the 
models to a lifetime dataset [19].  
 
Estimation of parameters of a distribution differs 
by method from one parameter of the distribution 

to another and therefore this study aims at 
estimating the shape parameter of the GomLinD 
using Bayesian approach and making a 
comparison between the Bayesian approach and 
the method of maximum likelihood estimation.  
 
We have two basic methods of parameter 
estimation and these are the classical and the 
non classical methods. The classical method of 
estimation involves a situation where the 
parameters are considered to be constant but 
unknown whereas the parameters are 
considered to be unknown and random just like 
variables under non classical approach.                      
The most widely used method in classical                
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theory is the method of maximum likelihood 
estimation while the Bayesian estimation method 
is used in the non classical theory. However, in 
most real life problems described by life time 
distributions, the parameters cannot be 
considered as constants in all the life testing 
period [31-33]. Based on the reason above,                  
it is true that the classical approach can                        
no longer handle problems of parameter 
estimation in life time models and hence there is 
need for Bayesian estimation in life time             
models.  
 
The aim of this article is to estimate the shape 
parameter of the GomLinD using Bayesian 
approach assuming three prior distributions and 
three loss functions. The remaining parts of this 
paper are presented as follows: in Section 2, 
maximum likelihood estimator (MLE) for the 
shape parameter is obtained. In Section 3, 
Bayesian estimators based on the prior beliefs 

(distributions) and loss functions are derived. The 
proposed estimators are evaluated using their 
mean squared errors (MSEs) in Section 4 and 
the summary and conclusion is presented in 
Section 5. 
 

2. MAXIMUM LIKELIHOOD ESTIMATION 
 

Let 1 2, ,...., nX X X  be a random sample from a 

population X of size ‘n’ independently and 
identically distributed random variables with 

probability density function ( ),f x . The likelihood 

is the joint probability function of the data, but 
viewed as a function of the parameters, treating 
the observed data as fixed quantities. Given that 

the values,  1 2, ,..., nx x x x  are obtained 

independently from the GomLinD with unknown 

parameters,  ,   and  .  

 
The likelihood function is given by: 
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For the shape parameter of the GomLinD,  , the likelihood function is given by; 
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Differentiating 𝒍 partially with respect to α gives; 
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where ̂  is the maximum likelihood estimator of the shape parameter,  . More information about the 

maximum likelihood estimation of the shape parameter of the GomLinD can be obtained from [19]. 

 
3. BAYESIAN ESTIMATION 
 
This paper has made use of two non-informative priors (uniform and Jeffrey) and an informative prior 
(gamma) to estimate the shape parameter of a GomLinD. These assumed priors distributions or 
beliefs have been used over the years by several authors including [34-42]. Our article also 
considered three loss functions which are squared error, quadratic and precautionary loss functions 
and these loss functions have been studied by other authors [43-51] etc. The stated prior distributions 
and loss functions are defined as follows: 

 
a. The uniform prior is defined as: 

 

   1;0p                                                                                                              (3.1) 

 
b. Also, the Jeffrey’s prior is defined as: 
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c. Also, the gamma prior is defined as: 
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i. Squared Error Loss Function (SELF) 

 
The squared error loss function relating to the shape parameter   is defined as: 

 

    
2
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 where SELF  is the estimator of the parameter   under SELF. 
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ii. Quadratic Loss Function (QLF)  

 
The quadratic loss function is defined from [52] as 

 

  
2
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 where QLF  is the estimator of the parameter   under QLF. 

 
iii. Precautionary Loss Function (PLF) 

 
The precautionary loss function (PLF) introduced by [53] is an asymmetric loss function and is defined 
as 
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 where PLF  is the estimator of the shape parameter   under PLF.  

 
The posterior distribution of a parameter is the distribution of the parameter after observing the 
available data and it is obtained by using Bayes’ theorem in relation to the shape parameter,  , 

likelihood function and prior distribution as follows:  
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where  P x  is the marginal distribution of X and   ( ) ( | )
x
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when the prior 

distribution of   is discrete and   ( ) ( | )P x p L x d  



   when the prior distribution of   is 

continuous. Also note that  p   and ( | )L x   are the prior distribution and the Likelihood function 

respectively.  

 
3.1 Bayesian Analysis under Uniform Prior with Three Loss Functions 
 
The posterior distribution of the shape parameter   assuming a uniform prior distribution is obtained 

from (3.7) using integration by substitution method as: 
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Bayes estimators under uniform prior with SELF, QLF and PLF are given respectively as: 
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3.2 Bayesian Analysis under Jeffrey’s Prior with Three Loss Functions 
 

The posterior distribution of the shape parameter   for a given data assuming a Jeffrey’s prior 

distribution is obtained from (3.7) using integration by substitution method as: 
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Bayes estimators under Jeffrey’s prior with SELF, QLF and PLF are given respectively as: 
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3.3 Bayesian Analysis under Gamma Prior with Three Loss Functions 
 
The posterior distribution of the shape parameter   for a given data assuming a gamma prior 

distribution is obtained from (3.7) using integration by substitution method as 
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Bayes estimators under gamma prior with SELF, QLF and PLF are given respectively as: 
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4. RESULTS AND DISCUSSION 
 

Here, we conducted a Monte Carlo simulation 
with R software under 10,000 replications using 
inverse transformation method of simulation to 
generate random samples of sizes n = (25, 45, 
85, 125, 175, 225) from the GomLinD under 
varying parameter values. The results of this 
simulation study was presented in the following 
tables by listing the true parameter values and 
the average estimates of the shape parameter 
with their respective Mean Square Errors (MSEs) 
under the appropriate estimation methods which 
include the Maximum Likelihood Estimation 
(MLE), Squared Error Loss Function (SELF), 
Quadratic Loss Function (QLF), and 
Precautionary Loss Function (PLF) under 
Uniform Jeffrey and gamma priors respectively. 
The measure used for checking the efficiency of 
the estimators is the Mean Square Error (MSE): 

 
21 ˆ .

n
MSE E     

 

Judging the results from Table 1 to Table 6, it 
can be explained that the estimators of the      
shape parameter using QLF under Gamma, 
uniform and Jeffrey priors are better than                   
the other estimators the reason is that they                
have the smallest MSEs irrespective of the 
differences in the samples sizes and the                  
allotted values of the parameter. We also 

discovered that there is consistency in the 
efficiency of the QLF under gamma prior         
and this consistency in the result for Bayesian 
estimators (using QLF under Uniform, Jeffrey 
and gamma priors) is an indication that the 
method is the most suitable for estimating the 
shape parameter compared to MLE and 
Bayesian method with the other two loss 
functions considered in this study. Also, judging 
all the prior distributions, we can clearly state that 
the QLF under the gamma prior has the smallest 
MSEs as compared to uniform and Jeffrey priors 
irrespective of the parameter values and the 
sample sizes and this level of performance of the 
QLF is found to be consistent despite all 
differences.  
 
Finally, the results in the tables above has shown 
that the average estimates of the shape 
parameter get closer to its true value when 
sample size increases and the mean square 
errors (MSEs) all decrease as sample size 
increases which satisfies the first-order 
asymptotic theory. Also, Bayesian estimators and 
maximum likelihood estimators (MLEs) all 
become better when the sample size increases. 
In fact, for very large sample sizes the 
performances of these estimators are observed 
to be closely similar for all the methods of 
estimation. 
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Table 1. Estimates and Mean Squared Errors (MSEs) for 1.8, 1.5, 1.2, 0.5a       and 2.0b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 
25 Estimate 1.8735  1.9485 1.7986 1.9856  1.8735  1.7237 1.9106  1.9474  1.8031  1.9831  

MSE 0.1593 0.1885  0.1418  0.2073  0.1593  0.1361  0.1723  0.1747  0.1312  0.1922  
45 Estimate 1.8375 1.8784  1.7967 1.8987 1.8375 1.7559 1.8578 1.8799 1.7999 1.8998  

MSE 0.0787 0.0869 0.0739 0.0923  0.0787  0.0725  0.0824  0.0839  0.0710  0.0891  
85 Estimate 1.8226 1.8440  1.8011  1.8547  1.8226  1.7797  1.8333  1.8455  1.8030  1.856  

MSE 0.0408  0.0432  0.0394  0.0448  0.0408  0.0389  0.0419  0.0425  0.0386  0.044  
125 Estimate 1.8159  1.8304  1.8013  1.8376  1.8159  1.7868  1.8231  1.8315  1.8027  1.8387  

MSE 0.0273  0.0284  0.0266  0.0291  0.0273  0.0263  0.0278  0.0281  0.0262  0.0288  
175 Estimate 1.8120  1.8223  1.8016  1.8275  1.8120  1.7913  1.8171  1.8232  1.8026  1.8283  

MSE 0.0189  0.0195  0.0186  0.0199  0.0189  0.0185  0.0192  0.0194  0.0184  0.0197  
225 Estimate 1.8086  1.8167  1.8006  1.8207  1.8086  1.7925  1.8126  1.8174  1.8013  1.8214  

MSE 0.0150  0.0153  0.0148  0.0156  0.0150  0.0147  0.0152  0.0153  0.0147  0.0155  
MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 

  

Table 2. Estimates and Mean Squared Errors (MSEs) for 0.5, 1.5, 1.2, 0.5a       and 2.0b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

25 Estimate 0.5204  0.5412  0.4996  0.5516  0.5204  0.4788  0.5307  0.5560  0.5148  0.5662  
MSE 0.0123  0.0145  0.0109  0.0160  0.0123  0.0105  0.0133  0.0164  0.0116  0.0181  

45 Estimate 0.5104  0.5218  0.4991  0.5274  0.5104  0.4877  0.5161  0.5300  0.5075  0.5356  
MSE 0.0061  0.0067  0.0057  0.0071  0.0061  0.0056  0.0064  0.0073  0.0059  0.0078  

85 Estimate 0.5063  0.5122  0.5003  0.5152  0.5063  0.4944  0.5092  0.5166  0.5048  0.5196  
MSE 0.0032  0.0033  0.0030  0.0035  0.0032  0.0030  0.0032  0.0035  0.0031  0.0036  

125 Estimate 0.5044  0.5084  0.5004  0.5105  0.5044  0.4963  0.5064  0.5114  0.5034  0.5134  
MSE 0.0021  0.0022  0.0021  0.0022  0.0021  0.0020  0.0021  0.0023  0.0021  0.0023  

175 Estimate 0.5033  0.5062  0.5005  0.5076  0.5033  0.4976  0.5048  0.5083  0.5026  0.5098  
MSE 0.0015  0.0015  0.0014  0.0015  0.0015  0.0014  0.0015  0.0015  0.0014  0.0016  

225 Estimate 0.5024  0.5046  0.5002  0.5057  0.5024  0.4979  0.5035  0.5063  0.5018  0.5074  
MSE 0.0012  0.0012  0.0011  0.0012  0.0012  0.0011  0.0012  0.0012  0.0012  0.0012  

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 
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Table 3. Estimates and Mean Squared Errors (MSEs) for 1.8, 0.2, 1.2, 0.5a       and 2.0b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

25 Estimate 1.8735  1.9485  1.7986  1.9856  1.8735  1.7237  1.9106  1.9474  1.8031  1.9831  
MSE 0.1593  0.1885  0.1418  0.2073  0.1593  0.1361  0.1723  0.1747  0.1312  0.1922  

45 Estimate 1.8375  1.8784  1.7967  1.8987  1.8375  1.7559  1.8578  1.8799  1.7999  1.8998  
MSE 0.0787  0.0869  0.0739  0.0923  0.0787  0.0725  0.0824  0.0839  0.0710  0.0891  

85 Estimate 1.8226  1.8440  1.8011  1.8547  1.8226  1.7797  1.8333  1.8455  1.8030 1.856  
MSE 0.0408  0.0432  0.0394  0.0448  0.0408  0.0389  0.0419  0.0425  0.0386  0.044  

125 Estimate 1.8159  1.8304  1.8013  1.8376  1.8159  1.7868  1.8231  1.8315  1.8027  1.8387  
MSE 0.0273  0.0284  0.0266  0.0291  0.0273  0.0263  0.0278  0.0281 0.0262  0.0288  

175 Estimate 1.8120  1.8223  1.8016  1.8275  1.8120  1.7913  1.8171  1.8232  1.8026  1.8283  
MSE 0.0189  0.0195  0.0186  0.0199  0.0189  0.0185  0.0192  0.0194  0.0184  0.0197  

225 Estimate 1.8086  1.8167  1.8006  1.8207  1.8086  1.7925  1.8126  1.8174  1.8013  1.8214  
MSE 0.0150  0.0153  0.0148  0.0156  0.0150  0.0147  0.0152  0.0153  0.0147  0.0155  

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 
 

Table 4. Estimates and Mean Squared Errors (MSEs) for 1.8, 1.5, 0.3, 0.5a       and 2.0b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

25 Estimate 1.8735  1.9485  1.7986  1.9856  1.8735  1.7237  1.9106  1.9474  1.8031  1.9831  
MSE 0.1593  0.1885  0.1418  0.2073  0.1593  0.1361  0.1723  0.1747  0.1312  0.1922  

45 Estimate 1.8375  1.8784  1.7967  1.8987  1.8375  1.7559  1.8578  1.8799  1.7999  1.8998  
MSE 0.0787  0.0869  0.0739  0.0923  0.0787  0.0725  0.0824  0.0839  0.0710  0.0891  

85 Estimate 1.8226  1.8440  1.8011  1.8547  1.8226  1.7797  1.8333  1.8455  1.8030  1.856  
MSE 0.0408  0.0432  0.0394  0.0448  0.0408  0.0389  0.0419  0.0425  0.0386  0.044  

125 Estimate 1.8159  1.8304  1.8013  1.8376  1.8159  1.7868  1.8231  1.8315  1.8027  1.8387  
MSE 0.0273  0.0284  0.0266  0.0291  0.0273  0.0263  0.0278  0.0281  0.0262  0.0288  

175 Estimate 1.8120  1.8223  1.8016  1.8275  1.8120  1.7913  1.8171  1.8232  1.8026  1.8283  
MSE 0.0189  0.0195  0.0186  0.0199  0.0189  0.0185  0.0192  0.0194  0.0184  0.0197  

225 Estimate 1.8086  1.8167  1.8006  1.8207  1.8086  1.7925  1.8126  1.8174  1.8013  1.8214  
MSE 0.0150  0.0153  0.0148  0.0156  0.0150  0.0147  0.0152  0.0153  0.0147  0.0155  

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 
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Table 5. Estimates and Mean Squared Errors (MSEs) for 1.8, 1.5, 1.2, 2.5a       and 2.0b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

25 Estimate 1.8735  1.9485  1.7986  1.9856  1.8735  1.7237  1.9106  1.6945  1.5689  1.7256  
MSE 0.1593  0.1885  0.1418  0.2073  0.1593  0.1361  0.1723  0.0972  0.1272  0.0948  

45 Estimate 1.8375  1.8784  1.7967  1.8987  1.8375  1.7559  1.8578  1.7381  1.6641  1.7565  
MSE 0.0787  0.0869  0.0739  0.0923  0.0787  0.0725  0.0824  0.0601  0.0701  0.0594  

85 Estimate 1.8226  1.8440  1.8011  1.8547  1.8226  1.7797  1.8333  1.7695  1.7288  1.7797  
MSE 0.0408  0.0432  0.0394  0.0448  0.0408  0.0389  0.0419  0.0350  0.0376  0.0349  

125 Estimate 1.8159  1.8304  1.8013  1.8376  1.8159  1.7868  1.8231  1.7798  1.7518  1.7868  
MSE 0.0273  0.0284  0.0266  0.0291  0.0273  0.0263  0.0278  0.0245  0.0257  0.0245  

175 Estimate 1.8120  1.8223  1.8016  1.8275  1.8120  1.7913  1.8171  1.7862  1.7660  1.7912  
MSE 0.0189  0.0195  0.0186  0.0199  0.0189  0.0185  0.0192  0.0175  0.0181  0.0175  

225 Estimate 1.8086  1.8167  1.8006  1.8207  1.8086  1.7925  1.8126  1.7886  1.7728  1.7925  
MSE 0.0150  0.0153  0.0148  0.0156  0.0150  0.0147  0.0152  0.0142  0.0145  0.0141  

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 
 

Table 6. Estimates and Mean Squared Errors (MSEs) for 1.8, 1.5, 1.2, 0.5a       and 0.1b   under different priors, loss functions and 

sample sizes 
 

n Measures MLE Uniform Prior Jeffrey’s Prior Gamma Prior 

SELF QLF PLF SELF QLF PLF SELF QLF PLF 

25 Estimate 1.8735  1.9485  1.7986  1.9856  1.8735  1.7237  1.9106  1.8103  1.6661  1.8461  
MSE 0.1593  0.1885  0.1418  0.2073  0.1593  0.1361  0.1723  0.1323  0.1299  0.1396  

45 Estimate 1.8375  1.8784  1.7967  1.8987  1.8375  1.7559  1.8578  1.8039  1.7239  1.8238  
MSE 0.0787  0.0869  0.0739  0.0923  0.0787  0.0725  0.0824  0.0714  0.0710  0.0735  

85 Estimate 1.8226  1.8440  1.8011  1.8547  1.8226  1.7797  1.8333  1.8051  1.7627  1.8157  
MSE 0.0408  0.0432  0.0394  0.0448  0.0408  0.0389  0.0419  0.0387  0.0383  0.0394  

125 Estimate 1.8159  1.8304  1.8013  1.8376  1.8159  1.7868  1.8231  1.8041  1.7753  1.8113  
MSE 0.0273  0.0284  0.0266  0.0291  0.0273  0.0263  0.0278  0.0263  0.0261  0.0266  

175 Estimate 1.8120  1.8223  1.8016  1.8275  1.8120  1.7913  1.8171  1.8036  1.7830  1.8088  
MSE 0.0189  0.0195  0.0186  0.0199  0.0189  0.0185  0.0192  0.0185  0.0183  0.0186  

225 Estimate 1.8086  1.8167  1.8006  1.8207  1.8086  1.7925  1.8126  1.8021  1.7861  1.8061  
MSE 0.0150  0.0153  0.0148  0.0156  0.0150  0.0147  0.0152  0.0147  0.0146  0.0148  

MLE=Maximum likelihood estimator, SELF=Square error loss function, QLF= Quadratic loss function, PLF= Precautionary loss function 
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5. SUMMARY AND CONCLUSION 
  
In this article, we have derived Bayesian 
estimators for the shape parameter of the 
Gompertz-Lindley distribution with the 
assumption of the Uniform, Jeffrey and gamma 
prior distributions using three loss functions 
which are squared error loss function, quadratic 
loss function and precautionary loss function. 
The posterior distributions and Bayes estimators 
of the shape parameter of the Gompertz-Lindley 
were derived using the aforementioned priors 
and loss functions respectively. We checked 
efficiency of the proposed estimators using their 
mean square errors by means of Monte Carlo 
Simulations with different parameter values and 
sample sizes. The results revealed that using 
quadratic loss function gives estimators with the 
lowest MSEs under all the prior distributions 
(gamma, Jeffreys and uniform). Specifically 
speaking, it was discovered that Bayesian 
Method using Quadratic Loss Function under 
gamma prior gives the most efficient estimators 
of the shape parameter compared to estimators 
of Maximum Likelihood method, Squared Error 
Loss Function and Precautionary Loss Function 
(PLF) under both Uniform and Jeffrey priors 
irrespective of the differently chosen parameters 
values and the sample sizes. It was also clear 
that changing values of the scale parameter of 
the distribution does not affect or change the 
efficiency of the estimators of the estimated 
shape parameter. 
 
Recommendation: We recommend that since this 
study considered only one shape parameter of 
the GomLinD, future studies should consider the 
scale parameter of the Gompertz-Lindley 
distribution because in statistical applications of 
the model it will be very important to identify and 
understand the best method for estimating both 
the scale and shape parameters of the model.  
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