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Abstract

A new class of Kuiper Belt objects (KBOs) that lie beyond Neptune with semimajor axes greater than 250
astronomical units show orbital anomalies that have been interpreted as evidence for an undiscovered ninth planet.
We show that a modified gravity theory known as modified Newtonian dynamics (MOND) provides an alternative
explanation for the anomalies using the well-established secular approximation. We predict that the major axes of
the orbits will be aligned with the direction toward the Galactic center and that the orbits cluster in phase space, in
agreement with observations of KBOs from the new class. Thus, MOND, which can explain galactic rotation
without invoking dark matter, might also be observable in the outer solar system.

Unified Astronomy Thesaurus concepts: Modified Newtonian dynamics (1069); Kuiper belt (893)

1. Introduction

An exciting development in outer solar system studies is the
discovery of a new class of Kuiper Belt objects (KBOs) with
orbits that lie outside that of Neptune and have semimajor axes
in excess of 250 au (Brown et al. 2004; Trujillo &
Sheppard 2014; Batygin et al. 2019). The alignment of the
major axes of these objects and other orbital anomalies are the
basis for the hypothesis that a planet about 5–10 times as
massive as Earth orbits the Sun at an average distance of 500 au
(Batygin & Brown 2016a, 2016b; Malhotra et al. 2016;
Batygin et al. 2019; Brown & Batygin 2016, 2019). Here we
argue that a modified gravity theory known as modified
Newtonian dynamics (MOND; Milgrom 1983; Famaey &
McGaugh 2012; Banik & Zhao 2022) provides an alternative
explanation for the observed alignment, owing to significant
quadrupolar and octupolar terms in the MOND galactic field
within the solar system (Milgrom 2009) that are absent in
Newtonian gravity. We show using the well-established secular
approximation (Murray & Dermott 2000) that MOND predicts
a population of KBOs with orbits whose major axes are aligned
along the direction toward the center of the galaxy and with
aphelia oriented toward the galactic center. Moreover, this
population is predicted to cluster in phase space: the orbits
should have high eccentricity and a propensity for their minor
axes to be perpendicular to the direction to the center of the
galaxy. All of these features are exhibited by known KBOs
belonging to the newly discovered class, in support of the
MOND hypothesis. MOND was originally developed to
explain galaxy rotation, and its predictions on the galactic
scale have recently been subject to stringent observational tests
(McGaugh et al. 2016; Chae et al. 2020). Progress has also
been made in applying MOND on the cosmological scale
(Skordis & Zlosnik 2021). Hence evidence of MOND on solar
system scales would further strengthen the case for it, and
establish the Kuiper Belt as a laboratory for studying important
questions of fundamental physics.

In the quasilinear formulation of MOND (Milgrom 2010),
the Newtonian gravitational field gN is modified with an
interpolating function ν to produce a “pristine” field
gP= ν(gN/a0)gN where a0 is a fundamental acceleration scale.
The interpolating function may induce a curl on the pristine
field; gQ is the curl-free part of gP, and it is the physical field: in
the absence of other forces, a test mass would experience
acceleration gQ. The interpolating function obeys ν(x)→ 1 as
x→∞ so that Newtonian gravity is recovered when the
gravitational field is strong compared to a0 and ν(x)→ x−1/2

as x→ 0 in the weak field regime to ensure consistency with
galaxy rotation curves. We take n = - -[ ( )]x1 1 exp , the
same form that is used by Lelli et al. (2017); see also Zhu et al.
(2023). This form has the right asymptotic behavior and is
consistent with astrophysical and solar system constraints. For
a point mass M the characteristic MOND radius is given by

= ( )R GM a ;M 0
1 2 this is the distance at which the field

crosses over from the strong field Newtonian behavior to an
MOND regime. Using a0= 1.2× 10−10 m s−2 (the best fit to
galaxy rotation data; McGaugh et al. 2016) and the mass of the
Sun M=Me, we find the MOND radius for the Sun
RM= 7000 au. This provides the first clue that MOND effects
may be detectable in the Kuiper Belt.

2. Galactic Field and the Phantom Mass

In Newtonian gravity, the galactic field is essentially uniform
on solar system scales and does not affect the observable
relative motion of solar system bodies since they all accelerate
equally in response to it. Tidal effects from nonuniformities in
the galactic field are relevant to the Oort cloud but not the
Kuiper Belt (Heisler & Tremaine 1986). The combined field of
the Sun at distance r and the galaxy is thus

g= - +ˆ ( )g r
GM

r
1N N2

where γN is the galactic field. In MOND however, there is an
additional anomalous field gA within the solar system that can
be interpreted as being due to a “phantom” mass density ρph
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(Milgrom 2009)

r
p

n= - · ( ) ( )g
G

g a
1

4
; 2N Nph 0

see Appendix B. The relative motion of objects in the solar
system is influenced by the anomalous MOND field gA, a
phenomenon called the external field effect (Bekenstein &
Milgrom 1984) that has been recently observed on the galactic
scale (Chae et al. 2020, 2021; Petersen & Lelli 2020; Asencio
et al. 2022; Chae 2022). Unlike dark matter, the phantom mass
has no independent dynamics; it is completely determined by
the visible matter that produces gN. Figure 1 shows the
phantom mass distribution corresponding to the Newtonian
field in Equation (1). Asymptotically, ρph falls off as a power
law for r? RM and exponentially for r= RM; there is
essentially no phantom mass in the inner solar system.

We can compute the potential ψA defined via gA=−∇ψA

using a multipole expansion (S.I. Section C). To leading order,
the potential of a mass distribution localized far from the origin
is given by the quadrupole term

y q= - ( ) ( )fGM

R
r P cos 3

3
2

2

where f is a geometric factor, M and R the mass and length
scales, respectively, that characterize the distribution, and P2 is
the second-order Legendre polynomial. We have assumed the

mass distribution is rotationally symmetric about the z-axis and
r= R. For the phantom mass distributionM=Me, R= RM and
f= q2/4π where q2 is a constant of order unity that depends on
γN/a0 and the form of ν. For our choice of ν and γN/a0= 1.20,
we find q2= 1.00 by numerical integration. This value of q2 is
of the same order of magnitude as the Cassini bound (Hees
et al. 2014), though it is numerically larger than the bound.
Other interpolating functions are shown by Hees et al. (2016) to
be consistent with the Cassini bound. Since here we are only
interested in an order-of-magnitude comparison, we may take
q2 to be of order unity.
To compare the effect of this quadrupole field on a KBO

with that of the hypothetical Planet Nine, we use the secular
approximation (Murray & Dermott 2000), wherein the mass of
a planet is distributed nonuniformly along its orbit. The amount
of mass on an arc of orbit is proportional to the time required
for the planet to traverse the arc. The quadrupolar field of
Planet Nine in this approximation is also given by Equation (3)
with M=m9 and R= a9 (the mass and semimajor axis,
respectively, of Planet Nine) and = - - -( )f e1 9

2 3 2 where e9
is the eccentricity of the Planet Nine orbit (S.I. Section C). Note
that the quadrupoles for MOND and Planet Nine are of
opposite sign. Taking representative values for the parameters
from Batygin et al. (2019; m9= 5 Earth masses, a9= 500 au,
and e9= 0.25), we find that the orbit-averaged quadrupole
moment for Planet Nine and MOND are the same order of
magnitude. This provides further indication that MOND could
have a significant effect on the orbits of KBOs.

3. MOND and the Outer Kuiper Belt

We now analyze the effects of the MOND field on the orbit
of a KBO of mass mK using the secular approximation. Under
the influence of the Sun alone, a KBO would move along a
Keplerian ellipse, with six orbital elements: semimajor axis aK,
eccentricity eK, three Euler angles (ωK, iK, ΩK), and the “mean
anomaly,” which specifies where on the ellipse the KBO is
located. We work in a frame with the Sun at the origin and the
center of the galaxy located along the positive z-axis. In its
reference configuration, the KBO orbit is assumed to lie in the
x–y plane with the perihelion on the positive x-axis. The
orientation (ωK, iK, ΩK) corresponds to the orbit being rotated
from the reference orientation successively about the z-axis by
ωK, the x-axis by iK and about the z-axis again by ΩK. In the
secular approximation, the dynamics has two important
simplifications (Murray & Dermott 2000): aK is conserved,
and the mean anomaly has no effect on the dynamics of the
other orbital elements. The four remaining dynamical variables,
eK and the Euler angles, undergo slow evolution due to the
MOND perturbation.
In the secular approximation, the dynamics of the orbit is

controlled by a “disturbing function,” which is the gravitational
potential energy of the orbit-distributed mass of the KBO and
the phantom mass distribution. This potential energy may be
written in the form of a multipole expansion (Appendix D). The
disturbing function is often calculated in an approximate
expansion in eccentricity or inclination (Murray & Dermott
2000), but we need the quadrupole and octupole terms exactly.
We have developed an efficient method to obtain these exact
expressions. To quadrupole order, the secular disturbing

Figure 1. Phantom mass distribution. The phantom mass is rotationally
symmetric about the z-axis and is localized at distances comparable to the
MOND radius RM. The Sun is at the origin, and the galactic center is on the
positive z-axis. Distance along the axes is marked in units of RM = 7000 au,
and the density ρph is in units of p( )M R4 M

3 . We take γN = 0.9 a0 consistent
with the acceleration of the Sun toward the center of the galaxy
(McGaugh 2018). An interesting feature is that the phantom mass distribution
changes sign near the point where the Newtonian field of the galaxy and the
Sun add up to zero.
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function is

p
= ⎜ ⎟

⎛
⎝

⎞
⎠

( ) 
Gm M

R

a

R

q

32
4Q

K

M

K

M
Q

2
2

where

w

w

=- - + +

+ -

( )
( ) ( )

 e e i

e i e i

2 3 15 cos 2 6 cos

9 cos 15 cos 2 cos . 5

Q K K K K

K K K K K

2 2 2

2 2 2 2

The octupole term and the derivation of the quadrupole and
octupole terms are given in Appendix D.

Due to the cylindrical symmetry of the anomalous field, the
secular disturbing function is independent of ΩK. As a result,
the component of the orbital angular momentum along the
symmetry axis, ( )GM m a hK K

1 2 is conserved. Here the scaled
angular momentum

= - ( )h e i1 cos . 6K K
2

Hence we have two conserved quantities, h and Q itself, so the
MOND dynamics of KBO orbits is integrable. We can
eliminate icos K from Q using Equation (6) to obtain an

expression for Q
eff that depends only on eK and ωK.

The orbital evolution can be visualized by plotting contours
of fixed Q

eff in the (eK, ωK) phase plane. Figure 2 shows that for
0� h2� 3/5, the phase space is dominated by two fixed points
located at (eC, π/2) and (eC, 3π/2) where = - ∣ ∣e h1 5 3C

2 .
Over this range of h, the contours encircle the fixed points,
which are separated from a region of phase space where the
contours are wavy lines extending across the phase plane. By
use of Lagrange’s equations we can show that the phase-space
flow is from left to right along the wavy lines (i.e., ωK increases
monotonically in time) while the loops are traversed clockwise
(Appendix E). The effect of the octupole term is to break the
symmetry between the fixed points: the one at (eC, π/2)
becomes less stable while the one at (eC, 3π/2) becomes more

stable. The dynamics of iK is dictated by Equation (E3), and ΩK

undergoes precession (monotonic increase in time) regardless
of the value of |h| (Appendix E).
Next we consider the effect of integrability-breaking terms

on the orbital dynamics. These terms include nonsecular terms
in the MOND disturbing function and the secular and
nonsecular perturbations produced by the giant planets.
Because of the long timescales involved, it is also important
to take into account the slow variation of the direction toward
the center of the galaxy. According to Hamiltonian chaos
theory (Percival & Richards 1983) the phase-space flow will
become chaotic under the perturbations, but a regular flow
should persist around the stable fixed point near (eC, 3π/2),
particularly for small values of h. (For a given aK, there is a
minimum value of |h| needed to ensure that the orbit does not
penetrate the inner solar system; see Appendix E.)
Thus we arrive at our central result: we predict the existence

of a population of KBOs that are localized near the fixed point
(eC, 3π/2). For small h, these orbits have inclinations iK≈ π/2.
For an orbit with ωK= 3π/2, the apsidal vector âK (the unit
vector that points from the Sun to the perihelion), then makes a
small angle π/2− iK with-n̂G, where n̂G is the unit vector that
points from the Sun to the center of the galaxy. Thus, we see
that the apsidal vectors are aligned along the direction -n̂G.
Finally, note that due to precession in ΩK, the orbits could have
very high inclinations relative to the ecliptic.

4. Comparison to Data

We now examine to what extent KBOs of the newly
discovered class (which we refer to as the Sedna family)
conform to these predictions. Batygin et al. (2019) identified
six members of the Sedna family that have stable orbits under
the influence of the known planets, and eight more that are
metastable. The stable KBOs are a particularly good testing
ground for the Planet Nine hypothesis as well as the MOND
hypothesis advanced here.

Figure 2. Orbital dynamics in the quadrupole approximation. (a) Contours of fixed Q
eff are wavy lines that extend across the w( )e ,K K

2 plane for 3/5 � h2 � 1. (b) For
0 � h2 < 3/5, the phase space is dominated by two fixed points. The contours of fixed SQ

eff are loops around the fixed points but remain wavy lines on the other side of
the separatrix shown in red. The orbital elements thus precess along the wavy lines or oscillate about the fixed-point values around the loops. The phase-space flow is
along the contours clockwise around the loops and from left to right (increasing ωK) along the wavy lines. The timescale of the dynamics is 107 yr for a KBO orbit with
a semimajor axis of 1000 au.
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Figure 3 shows the six Sedna family orbits that are stable,
projected onto the ecliptic plane. The well-documented
alignment of the orbits (Brown & Batygin 2019) is evident,
but the figure shows that the orbits are also aligned with the
direction to the center of the galaxy. This observation has not
been noted before and is a prediction of the MOND hypothesis.
To quantify the alignment, we calculate â · n̂K G for the six
stable KBOs, and find a mean value of −0.68. The expected
value of this quantity is zero in the absence of MOND, as there
is otherwise no physical basis for a correlation between the
apsidal vectors and the direction to the center of the galaxy. If
we make the null hypothesis that the apsidal vectors of the
KBOs are independent random variables uniformly distributed
over the unit sphere, then the observed value of −0.68 is 3σ
away from the expected value of zero. Alternatively, we note
that according to the null hypothesis, the quantity

a= +( ˆ · ˆ )nu 1 2K G is a random variable uniformly distrib-
uted over the unit interval 0� u� 1. The six observed values
of u deviate strongly from a uniform distribution. The
Kolmogorov–Smirnov test shows that the observed deviation
from a uniform distribution has a cumulative probability of
only 0.0045; hence, the null hypothesis is falsified at a high
level of confidence (see Appendix F). Our model does not
require perfect antialignment between âK and n̂ ;G a crude
estimate suggests that AK, the angle between âK and n̂G, should
lie in the range 130°–180° compatible with the data
(Appendix F).

Sometimes, the longitude of perihelion ϖ= ω+Ω is used as
a proxy for apsidal alignment. However, ϖ correlates with
alignment only for small inclinations, and it is a frame-
dependent quantity. We prefer to quantify the alignment by
calculating â · n̂K G because it is an invariant quantity and is
unambiguously a measure of alignment.

Figure 4 shows the orbital elements w( )e ,K K
2 as well as the

location of the fixed point p( )e , 3 2C
2 for the six stable KBOs

(see Appendix F for details). As expected, there is a clustering
of the fixed points and KBO orbital elements.
Thus far we have concentrated on the six KBOs of the Sedna

family that are known to have stable orbits under the influence
of the known planets and that are therefore the best exemplars
of the class. The review of Batygin et al. (2019) identifies eight
more KBOs that have metastable orbits and since the
publication of the review, eight additional KBOs that belong
to the class have appeared in the Minor Planet Database. In
Appendix F, we show that the alignment and phase-space
clustering shown in Figures 3 and 4 persist when all 22 KBOs
are included in the plots.

5. Conclusion

A larger sample of stable KBOs in the Sedna family
compared to dynamical simulations would allow for further
tests of the MOND hypothesis. The prospects for discovery of
more Sedna-like objects are good. Existing surveys such as
Dark Energy Survey (Sheppard & Trujillo 2016; Bernardinelli
et al. 2020a), Transiting Exoplanet Survey Satellite (Rice &
Laughlin 2020), and Outer Solar System Origins Survey
(Bannister et al. 2016, 2018) as well as the forthcoming Vera
Rubin Telescope (Schwamb et al. 2018a, 2018b) and CMB-S4
(Abazajian et al. 2016; Cowan et al. 2016) all have the requisite
sensitivity. In addition to KBOs fast spacecraft are another
promising probe of MOND in the outer solar system (Banik &
Kroupa 2019; Penner 2020).
Historically, claimed gravitational anomalies in the solar

system have almost invariably proven to be spurious under
closer examination, albeit sometimes involving more than a
century of debate and meticulous observation (Standish 1993;
Turyshev et al. 2012; Batygin et al. 2019). But they have also
led to the discovery of Neptune and helped establish general
relativity. It is possible that the Kuiper Belt anomalies are
evidence of Planet Nine, or that they are spurious (Lawler et al.
2017b; Shankman et al. 2017; Bernardinelli et al. 2020b;
Napier et al. 2021); alternatively, they may be evidence for a
modification of Newtonian gravity.

Figure 3. Orbital alignment. Orbits of six KBOs of the Sedna family projected
onto the ecliptic plane. The blue line is drawn parallel to the projection of n̂G

onto the ecliptic plane. The orbits and n̂G lie essentially in the ecliptic plane, so
the projection does not induce significant distortion. The major axes of the
orbits are seen to align with the direction to the center of the galaxy, with the
aphelion oriented toward the Galactic center. This result is intuitively plausible
since the aphelion is the heavy end of the orbit in secular perturbation theory.
The KBO orbital parameters used to generate this plot are taken from the Minor
Planet Database of the International Astronomical Union.

Figure 4. Phase-space clustering. Plot of w( )e ,K K
2 for the six KBOs of the

Sedna family (blue points) and the location of the corresponding fixed point of
the MOND orbital dynamics in the quadrupole approximation (red points). The
two points for each KBO have been connected by a dashed line to guide the
eye. The KBO orbital parameters used to generate this plot are taken from the
Minor Planet Database of the International Astronomical Union.
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Appendix A
Review of MOND Field Equations

The gravitational field is described by a vector g that
corresponds to the acceleration that would be experienced by a
test mass due to gravity if no other forces were present.
Newton’s law of gravitation may then be written as the pair of
field equations

p r = -  ´ =· ( )g gG4 and 0. A1N N

Here gN is the Newtonian gravitational field produced by the
mass density ρ, and G is Newton’s gravitational constant.

In the quasilinear formulation of MOND (Milgrom 2010),
given a mass distribution ρ, the first step is to calculate the
Newtonian field gN corresponding to that mass distribution.
Next, one calculates the pristine field, which is related to the
Newtonian field via the nonlinear relation

n= ⎜ ⎟
⎛
⎝

⎞
⎠

( )g g
g

a
. A2P N

N

0

Here a0= 1.2× 10−12 m s−2 is the MOND acceleration scale.
The value we have taken for this parameter is the recent best fit
to galaxy rotation data (McGaugh et al. 2016), but the value has
in fact remained remarkably stable for decades (Begeman et al.
1991; Gentile et al. 2011).

The interpolating function ν has the asymptotic behavior

n n ( ) ( ) ( ) x x x
x

x1 for 1 and
1

for 1. A3

The x? 1 behavior is fixed by the requirement that at strong
fields MOND should reduce to Newtonian gravity, and the
x= 1 behavior by the requirement that the field of a point mass
should fall off as 1/r at large distances. For specific
computations in this paper, we have worked with the
interpolating function

n =
- -

( )
( )

( )x
x

1

1 exp
. A4

This form is consistent with galaxy rotation data and also with
solar system constraints arising from the ephemerides of the
known planets.

The next step is to compute the quasilinear field gQ, which is
the curl-free part of gP. In MOND, the quasilinear field gQ is
the physical field: it is the acceleration experienced by test
masses that are placed in the gravitational field. It is now
helpful to define the mass density ρeff

p r- =  · ( )gG4 . A5Peff

It then follows that gQ obeys the field equations

p r = -  ´ =· ( )g gG4 and 0. A6Q Qeff

In other words, gQ is the Newtonian field produced by the mass
distribution ρeff. We may regard ρeff as the equivalent
distribution of dark and visible matter that would be needed

to mimic the effects predicted by MOND. However, MOND
effects cannot always be mimicked by a suitable distribution of
dark matter since ρeff is not necessarily positive.
As a simple illustration, consider the field of a point mass M

located at the origin. The Newtonian field is given by

= - ˆ ( )g r
GM

r
, A7N 2

and hence the pristine field is given by

n= - ⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( )g r
GM

r

R

r
. A8P

M
2

2

2

Here the MOND radius RM is given by

= ( )R
GM

a
. A9M

0

From the asymptotic forms of the interpolating function, it
follows that the pristine field has the asymptotic behavior

»-

»-

ˆ

ˆ ( )





g r

r

GM

r
r R

GM

R r
r R

for

1
for . A10

P M

M
M

2

Since gP is radial and spherically symmetric, it is also curl free.
Hence in this case the quasilinear field gQ= gP. By computing
the divergence of gP we find that the equivalent dark matter
density ρeff is a spherical halo that surrounds the point mass.
The halo is peaked near the MOND radius. For the
interpolating function in Equation (A4), there is essentially
no mass density for r< RM but there is a long tail as r→∞ .
For M=Me and the value of a0 quoted above, we find
RM= 7000 au, the MOND radius of the Sun.
Finally, we note that we have chosen to use the quasilinear

formulation of MOND because of its simplicity. However,
essentially equivalent results are obtained by use of the
nonlinear formulation of MOND originally introduced by
Bekenstein & Milgrom (1984).

Appendix B
Galactic Field Effect on the Solar System

Now let us consider the effect of the galactic gravitational
field on the solar system. On the scale of the solar system, the
galactic gravitational field can be treated as essentially uniform.
Ignoring all solar system objects except the Sun, we must
therefore solve

p d = -  ´ =· ( ) ( )g r gGM4 and 0 B1N N

subject to the boundary condition gN→ γN as r→∞where γN
is the constant Newtonian field of the galaxy. The solution is of
course

g= - +ˆ ( )g r
GM

r
. B2N N2

In Newtonian gravity, to the extent that the galactic field can be
treated as uniform, it has no effect on the relative motion of
bodies within the solar system since they all accelerate
uniformly in response to it. Tidal effects associated with
variation of the galactic field are important only for the most
remote solar system objects in the Oort cloud. Remarkably, we
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will now show that due to the nonlinearity of the equations, in
MOND the galactic field has an effect even on the inner solar
system, a phenomenon dubbed “the external field effect”
(Famaey et al. 2007; Milgrom 2009; Banik & Zhao 2018a).

To analyze this problem within quasilinear MOND, we make
use of Equation (A2) and the product rule to obtain

n n =  + ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

· ( · ) · ( )g g g
g

a

g

a
B3P N

N
N

N

0 0

where gN is given by Equation (B2). Evidently the first term on
the right-hand side is −4πGMeδ(r). Using Equation (A5),
(A6), and (B3) we obtain

p d p r = - -  ´ =· ( ) ( )g r gGM G4 4 and 0. B4Q Qph

Here the phantom mass density ρph is defined via

p r n- =  ⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

· ( )gG
g

a
4 . B5N

N
ph

0

Equation (B4) must be solved subject to the boundary
condition gQ→ γg for r→∞where γg is the physical
acceleration due to gravity in the solar system due to the
galactic field. This is a measurable parameter, and we shall
assume that γg= γNν(γN/a0). The latter relation is a very good
approximation for disk galaxies that do not have too flat an
aspect ratio (Brada & Milgrom 1995; Brown et al. 2018).

In order to analyze the effects of the galactic field on the
relative motion of solar system bodies, it is convenient to define
the anomalous gravitational field gA via

g= - +ˆ ( )g g r
GM

r
. B6Q A g2

gA captures effects beyond those due to the Newtonian field of
the Sun and the uniformly gravitational field of the galaxy. It
embodies the external field effect.

It is obvious from Equations (B4) and (B6) that the
anomalous field obeys

p r = -  ´ =· ( )g gG4 and 0 B7A Aph

subject to the boundary condition gA→ 0 and r→∞ . In short,
gA is the Newtonian field produced by the phantom mass
distribution.

Equations (B2), (B5), and (B7) are the main results of this
section. They provide an expression for the phantom mass that
sources anomalous effects in the inner solar system. As
discussed above, these effects are absent in Newtonian gravity
and hence absent in any dark matter model.

The external field effect within the solar system was
analyzed by Milgrom within the original nonlinear MOND
using a “surrogate mass approximation” (Milgrom 2009). Here
we have followed that analysis closely but working within
quasilinear MOND. The main difference is that the analysis is
simpler for quasilinear MOND, and it can be carried out
exactly. This is not entirely by chance: Milgrom constructed
quasilinear MOND as a theory for which the surrogate mass
approximation would be exact (Milgrom 2010).

Finally for reference we provide a more explicit expression
for the phantom mass. It is convenient to work in a system of
coordinates wherein the Sun is at the origin and the Galactic
center is along the positive z-axis. Then making use of

Equations (B2) and (B5), we obtain
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R
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M
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where we are working in spherical polar coordinates, and
=r r RM and q=u cos . The function μ is given by
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Assuming the interpolating function is given by Equation (A4),
the derivative is given by

n ¢ = -
-

- -
( ) ( )
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2
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1 exp
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Equations (B8), (B9), (B10), and (B11) provide the desired
explicit expression for ρph.
To gain some insight into the expressions in the preceding

paragraph, we consider some limiting cases. First, let us
suppose that γN= 0. In the absence of the galactic field, the
expression for the phantom mass simplifies to

r
p

=
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M
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As expected, the phantom mass distribution is spherically
symmetric in the absence of the galactic field. Taking the limit
r 0, we find

r
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the phantom mass vanishes exponentially inside the MOND
radius. For  ¥r

r
p
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M
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the phantom mass vanishes slowly as a power law far beyond
the MOND radius.
Turning to the more relevant case where the galactic field is

present, we find that for r 0, the expression in
Equation (B13) still holds; the phantom mass vanishes
exponentially within the solar system. For  ¥r however,
the asymptotic behavior is different. In this limit

r
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h h

h
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Here for brevity we have written γN/a0= ηN. Thus, the
phantom mass distribution vanishes more quickly as a power
law when the galactic field is taken into consideration. In fact, it
can be shown that the total phantom mass is finite so long as
the external galactic field is present (Milgrom 2010).
The picture that emerges from the asymptotics is that there is

essentially no phantom mass in the solar system well within the
MOND radius. The phantom mass density must be peaked at
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around the MOND radius and must decline gradually at greater
distances. Moreover, it is clear from the exact expression that
ρph must be rotationally symmetric about the z-axis. We may
therefore expand the phantom mass distribution in harmonics
defined via

òr q q q r q=
p

( ) ( ) ( ) ( )r d P rsin cos , . B16ℓ ℓph
0

ph

These harmonics can be calculated numerically using the exact
expression we have deduced for ρph above. Figure 5 shows the
first few harmonics as a function of r. These plots confirm the
general picture that ρph is peaked near the MOND radius and
exponentially small within it. The plots also reveal a kink at a
common value of r in all harmonics.

The origin of the kink is the following. There is a point along
the z-axis where the Galactic field and the solar field exactly
cancel. This point is known as a saddle point in the literature
(Milgrom 1986; Penner 2020; Oria et al. 2021). It is easy to see
from Equation (B2) that this distance is h=r N . Near this
point, the phantom mass diverges and moreover displays an
interesting variation in sign depending on the direction from
which this point is approached. However, the density has a
weak square root divergence at this point and hence there is no
substantial mass concentration present here.

In order to calculate the harmonics numerically, we have
taken γg the galactic gravitational field to be 1.5a0 and solved
the transcendental equation γg= γNν(γN/a0) to obtain
γN= 0.9a0. The results are not sensitive to the particular value
of γg/a0 so long as it is a factor of order unity. The value we
have used is based on the rotation curve model of the Milky
Way described in McGaugh (2018). It is also compatible with
the value γg= (1.9± 0.1)a0 obtained from Gaia astrometry
(Klioner et al. 2021).

Appendix C
Multipole Expansion in Gravity

The Newtonian gravitational potential ψN is defined via the
relation gN=−∇ψN. For a mass distribution ρ, the potential is

given by the exact expression

òy
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It is useful to recall the expansion (Matthews & Walker 1970)
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where r< denotes the lesser of r and ¢r , and r> denotes the
greater.
For the circumstance that the mass distribution is localized

near the origin, and the observation point lies outside of the
support of the mass distribution, by use of Equations (C1) and
(C2), we obtain
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Here M is the mass scale of the mass distribution, R is the size
scale, and the dimensionless multipole moments Jℓm are given
by

ò
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2 1
, . C4ℓm ℓ
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This is the usual multipole expansion familiar from electro-
statics: it corresponds to the situation that the mass distribution
is localized and the field is desired at a point far from the mass
distribution. As usual, the (ℓ, m) term in the field falls off with
distance as 1/r ℓ+1 and has an angular dependence given by
Yℓm(θ, f).
Here we are interested in the complementary situation that

within the mass distribution there is an empty cavity devoid of
mass. We are interested in the field near the center of this
cavity. Making use of Equations (C1) and (C2), we obtain the
complementary multipole expansion
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Again, M is the mass scale of the mass distribution, and R the
size scale. The dimensionless complementary multipole
moments ℓm are given by
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In contrast to the usual multipole expansion, we see that here
the (ℓ, m) term in the expansion grows as r ℓ; its angular
dependence is still given by Yℓm(θ, f).
For the special case of cylindrical symmetry, = 0ℓm except

for m= 0. Hence, the complementary multipole expansion
simplifies to

åy q= -
=

¥
⎛
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⎞
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r

R
P cos , C7N

ℓ
ℓ

ℓ
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Figure 5. Plot of the phantom density harmonics ρph,ℓ as a function of distance
from the Sun for ℓ = 0 (blue), ℓ = 1 (green), and ℓ = 2 (orange). The density is
in units of M RM

3 and distance is in units of RM. In generating these plots, we
took γg = 1.5a0 as discussed in the main text. As expected the mass densities
are peaked at a distance of the order of the MOND radius. The origin of the
kinks at a common distance from the Sun is discussed in the Appendix text.
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and the nonvanishing multipole moments are given by

ò q r=
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For reference, it is useful to explicitly write the quadrupole
term for the case of cylindrical symmetry

y q= -( ) ( ) ( )r
GM

R
r P cos C9N

Q
3 20

2
2

where

ò q r= ( ) ( ) ( ) r r
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P

1
cos . C1020

3

3 2

Thus far in our discussion, we have focused on the multipole
expansion for the Newtonian gravitational field gN=−∇ψN.
However the same discussion applies, mutatis mutandis, for the
MOND external field gA=−∇ψA, which is mathematically
the Newtonian field produced by the phantom mass ρph.

We now evaluate the quadrupole term in the multipole
expansion of Equation (C5) for several cases of interest. The
simplest mass distribution that produces a quadrupolar field is
two point masses each of mass M located on the z-axis
symmetrically about the origin at a distance 2R from each
other. This distribution has cylindrical symmetry, and a simple
calculation using Equation (C10) reveals that = 220 in this
case. Note that the multipole moment is positive here. This is
called a prolate quadrupole.

Next consider a circle of radius R and total mass M that lies
in the x–y plane centered about the origin. This distribution also
has cylindrical symmetry and in this case, use of
Equation (C10) reveals that = -20

1

2
here. Note that the

multipole moment is negative here. This is called an oblate
quadrupole.

Next let us consider the quadrupolar field of a hypothetical
Planet Nine. In the secular approximation, we want the orbit-
averaged field of Planet Nine. In other words, we assume that
the mass of Planet Nine is distributed nonuniformly over the
ellipse corresponding to its orbit. The amount of mass
contained in any arc of the orbit is proportional to the time it
takes Planet Nine to traverse that arc. We assume that the orbit
lies in the x–y plane with the Sun at the origin and the point of
perihelion on the positive x-axis. Note that this mass
distribution does not have cylindrical symmetry. Nonetheless,
we find upon explicit evaluation that = 0m2 except for m= 0.
For that case, setting M→m9 and R→ a9, where m9 is the
mass of Planet Nine and a9 is the semimajor axis of its orbit, we
obtain

= -
-( )

( )
e

1

2

1

1
C1120

9
2 3 2

where e9 is the eccentricity of the orbit of Planet Nine. Note
that Equation (C11) reduces to the expected result for a circle
when e9= 0. It follows from Equation (C5) that the
quadrupolar field of Planet Nine is cylindrically symmetric
and given by

y q=
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a e
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9
3
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We postpone for now the derivation of the multipole moments
 m2 for the orbit of Planet Nine quoted above, but we note that
the emergent cylindrical symmetry in the moments is

analogous to the well-known fact that the moment of inertia
of a cube is isotropic and diagonal. A cube is by no means
spherically symmetrical, but it has sufficient symmetry to
render the moment of inertia isotropic.
We note that the dominant interaction of Planet Nine with

objects in the inner solar system is via its quadrupole field. The
reader may have noticed that the orbit-averaged mass
distribution has a nonzero dipole moment, but it is well known
that in an inertial frame centered at the Sun, the dipole
interaction term is exactly canceled by the “indirect interaction”
potential (see, for example, Murray & Dermott 2000).
We turn now to the multipole expansion of the anomalous

field in MOND. The phantom mass distribution is cylindrically
symmetric about the z-axis, which is taken to point toward the
Galactic center, with the Sun at the origin. The nonvanishing
multipole moments are written as p= q 4ℓ ℓ0 where

ò òp m= -
¥

-

+
- ( ) ( ) ( )q dr dur P u r u2 , C13ℓ

ℓ
ℓ

0 1

1
1

where m ( )r u, is given by Equation (B9). If we choose the
Galactic field γg/a0= 1.5 as in the previous section, then we
find by numerical evaluation of Equation (C13) the following
values for the lowest-order multipoles:

» = = ¼ ( )q q q0, 1.00, 0.51 C141 2 3

That q1≈ 10−12 in our numerical evaluation is encouraging,
since it is known that q1= 0 exactly for the phantom mass.
This was shown by Bekenstein & Milgrom (1984) and
Milgrom (2009). Thus for MOND, as for Planet Nine, its
dominant interaction with bodies in the inner solar system is
quadrupolar. We note that the values of q2 and q3 are functions
of the dimensionless quantity γg/a0 and are also sensitive to the
form of the interpolating function (this sensitivity is studied by
Milgrom 2009). Thus at the present stage of development,
MOND is not able to pin down the precise values of these
parameters. The takeaway from our computation and the
tabulation by Milgrom (2009) is that q2 and q3 are of order
unity to within an order of magnitude or two. Studies of the
outer solar system will help constrain the values of these
parameters and hence the interpolating function in a way that is
independent of and complementary to traditional studies of
galaxy rotation (McGaugh et al. 2016). The parameter q2 is also
bounded by spacecraft orbits. The best bounds are from Cassini
(Hees et al. 2014). Our parameter q2 is related to the parameter
Q2 in Hees et al. (2014) via

p
= ( )q

GM

a
Q

4

3
. C152

sun

0
3 2

q2= 1.00 corresponds to Q2= 27× 10−27 s−2, which is in
tension with the Cassini bound of (3± 3)× 10−27 s−2 (Hees
et al. 2014). However, Hees et al. (2016) showed that other
interpolating functions yield values of Q2 that are compatible
with the Cassini bound. Our results on orbital dynamics are not
sensitive to the form of the interpolating function, and a
quadrupole compatible with the Cassini bound is sufficient for
our purpose.
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For reference, we now provide an explicit expression for the
quadrupole field in MOND

y
p

q= - ( ) ( )GM

R

q
r P

4
cos . C16A

Q

M
3

2 2
2

Equations (C12) and (C16) provide expressions for the
quadrupolar fields that are used in the paper to compare the
order of magnitude of the MOND perturbation with that of
Planet Nine on objects in the Kuiper Belt. Note that the MOND
potential has a spurious reflection symmetry about the x–y
plane in the quadrupole approximation. This symmetry is
absent in the problem since there is difference between the
direction pointing toward Galactic center and the direction
pointing away from it. The octupole term breaks this symmetry,
and inclusion of this term will prove important for our analysis
below. The multipole expansion is a good approximation for
r= RM= 7000 au. For a KBO whose orbit extends to 500 au,
this condition is reasonably well satisfied.

For later use, let us also calculate the orbit-averaged
multipole moments for Planet Nine. We take the orbit to lie
in the z–x plane with the Sun at the origin and the perihelion
along the positive z-axis. The ellipse may then be described
parametrically by the equations

x x= - = -( ) ( )z a e x a ecos and 1 sin . C179 9 9 9
2

Here the parameter ξ is known as the eccentric anomaly and
ranges from 0–2π around the ellipse (see Figure 6). It is useful
to also calculate the spherical polar coordinates (r, θ, f) of

points around the ellipse as a function of ξ. It follows from
Equation (C17) that

x= -( ) ( )r a e1 cos C189 9

and that
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Finally f= 0 for 0< ξ< π and f= π for π< ξ< 2π. Let us
assume that the planet starts at ξ= 0 at t= 0 and moves in the
direction of increasing ξ. The anomaly ξ of the planet at time t
is then given by Kepler’s anomaly equation

p
x x
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9
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Here T9 denotes the orbital period of Planet Nine. The mass dm
associated with an infinitesimal arc of the orbit is proportional
to the time it takes to traverse the arc. Hence, dm/m9= dt/T9
and making use of Equation (C20), we then obtain

x p
x= -( ) ( )dm

d

m
e

2
1 cos . C219

9

We are now in a position to compute the orbit-averaged
multipole moments. We find that for even m
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and for odd m =( )J 0ℓm
0 . The superscript in J(0) is meant to

remind us that this multipole moment is computed with the
orbit in the z–x plane with the Sun at the origin and the
perihelion along the positive z-axis. Equation (C22) was
obtained from Equation (C4) by making the following
substitutions. M→m9, R→ a9, and drρ→ dξ(dm9/dξ), using
Equation (C21) for dm/dξ, Equation (C18) for r and
Equation (C19) for qcos . It is also helpful to recall that

q f
p
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f( ) ( )!
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2 1

4
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The integral in Equation (C22) is evaluated only over the right
half of the orbit (0< ξ< π) for which =fe 1im . For the left half
(π< ξ< 2π), the quantity = -f ( )e 1im m. Hence the contrib-
ution of the right half must be doubled for even m, and for odd
m the two halves cancel leading to =( )J 0ℓm

0 .
For the record, we explicitly provide the low-order multi-

poles that are most relevant to our analysis. We find upon
integrating Equation (C22) that =( )J 10,0

0 . The nonzero quadru-
pole moments are found to be

= - = + ( ) ( ) ( )( ) ( )J e J e
1

4

3

2
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1

4
1 9 . C242, 2

0
9
2
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Figure 6. The orbit of Planet Nine is taken to lie in the z–x plane with the Sun
at the origin. The perihelion is assumed to lie on the positive z-axis. The
multipole moments for this reference configuration are denoted J(0) and ( ) 0 .
The eccentric anomaly ξ is taken to be zero at perihelion and to increase
clockwise in the figure. Also shown in the figure is the angle θ for an arbitrary
point on the orbit. θ is the spherical polar colatitude of that point, and it also
represents the true anomaly around the orbit.
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The nonzero octupole moments are found to be
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Obviously, the same expressions would apply for a KBO with
the replacement e9→ eK where eK is the eccentricity of the
KBO or for Neptune with the replacement e9→ e8 where e8 is
the eccentricity of the orbit of Neptune.

The complementary multipole moments ( ) ℓm
0 may be

calculated similarly using Equation (C6). Analogous to
Equation (C22), we obtain
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For later use, we provide low-order complementary multipole
moments that will be especially relevant. By explicit evaluation
of the integral in Equation (C26), we find =( ) 100

0 . The
complementary quadrupole moments are
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Note that Equation (C27) does not match Equation (C11)
because they are computed for different orientations of the
orbit. We describe in the next section how to obtain
Equation (C11) from Equation (C27).

Appendix D
The Disturbing Function

As a prelude, consider two distributions of mass: ρ1 localized
near the origin and ρ2 located far from the origin. The
gravitational potential energy of these two distributions is
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Here ψ1 denotes the gravitational potential due to ρ1. Making
use of the multipole expansion Equation (C3) and the definition
of complementary moments Equation (C6), we obtain
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Here M1 is the mass scale for the distribution ρ1, and R1 is the
length scale. M2 and R2 are the corresponding quantities for ρ2.
If we regard Jℓm as the 2ℓ+ 1 components of a column vector Jℓ
and  *ℓm as the components of a row vector † ℓ , we may write
Equation (D2) more compactly as
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Now let us consider the effect of the MOND field gA on the
motion of a KBO. Under the influence of the Sun alone, the
KBO would trace an ellipse in accordance with Kepler’s laws.

The ellipse is characterized by five orbital elements (aK, eK, ωK,
iK, and ΩK). The semimajor axis aK and the eccentricity eK
specify the shape of the orbit. The Euler angles (ωK, iK, ΩK)
specify the orientation and will be defined more precisely
momentarily. Under the influence of perturbations, the orbital
elements change slowly. In the secular approximation, the
semimajor axis does not change, and the dynamics is controlled
by the disturbing function , which is the potential energy of
the KBO time averaged over its Keplerian orbit in the
perturbing MOND potential (Moulton 1984; Murray &
Dermott 2000).
The disturbing function is often calculated in an expansion in

the eccentricity of the orbit or the inclination of the orbit
(Murray & Dermott 2000). In our problem, we need the
disturbing function for arbitrary eccentricity and inclination,
and hence we cannot use expansions in these variables. We
have developed a method to calculate the secular disturbing
function by expanding it in a multipole expansion and
computing the quadrupole and octupole terms exactly. In
principle, the higher multipoles can also be calculated by this
method but they are not needed for our immediate purpose.
The key ingredient in our approach is to recognize that the

multipole moments Jℓ and ℓ transform as rank ℓ tensors under
rotations. Thus if, for example, a mass distribution ρ is rotated
about the y-axis by an angle j, then the multipole moments
transform as j ( )( )J R Jℓ y

ℓ
ℓ and similarly for ℓ. Here j( )( )Ry

ℓ

is a (2ℓ+ 1)× (2ℓ+ 1) dimensional unitary matrix that
corresponds to the rotation about the y-axis for a rank ℓ tensor.
We will discuss the form of these matrices shortly, but first let
us use them to develop an expression for the disturbing
function.
In this section we will find it convenient to work in a

coordinate frame wherein the Sun is at the origin, and the y-axis
points in the direction of the galactic center. The multipole
moments of the phantom mass distribution are then given by

p
= -⎛

⎝
⎞
⎠

( )( ) ( ) R
2

D4ℓ x
ℓ

ℓ
0

where p-( )( )R 2x
ℓ denotes the matrix corresponding to a

rotation about the x-axis by −π/2 and

p
d= ( )( )

q

4
D5ℓm

ℓ
m

0
,0

are the multipole moments for the phantom mass distribution
when the Galactic center is taken to be along the z-axis, as it
was in the preceding section. qℓ is given by Equations (C13)
and (C14). We will compute the components of ℓ below
explicitly for ℓ= 2 and ℓ= 3.
The z–x plane will be used as the reference plane to describe

the evolution of the KBO orbit. We take as the reference
orientation the configuration such that the KBO orbit lies in the
reference plane with its perihelion located on the positive z-
axis. The orbital elements (ωK, iK, ΩK) correspond to the
orientation obtained by first rotating the reference orbit about
the y-axis by the angle ωK, then about the z-axis by the angle iK
and finally about the y-axis again by an angle ΩK. The orbit
orientation is also fully specified by two unit vectors: the
apsidal vector âK , which points from the Sun to the direction of
the perihelion, and the orbit normal n̂K , which is normal to the
plane of the orbit and points in the direction of the angular
momentum of the KBO. In the reference configuration,

=ˆ ˆ( )a zK
0 and =ˆ ˆ( )n yK

0 . The reader may find it helpful to
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visualize how âK and n̂K change as the orbit undergoes
successive y–z–y rotations by the angles (ωK, iK, ΩK). Note in
particular that n̂K will be inclined at an angle iK to the positive
y-axis at the end of the process. The orbit-averaged multipole
moments of the KBO with orbital elements (aK, eK, ωK, iK, and
ΩK) are given by

w= W( ) ( ) ( ) ( )( ) ( ) ( ) ( )J R R i R J D6ℓ y
ℓ

z
ℓ

K y
ℓ

K ℓ
0

where ( )Jℓ
0 denotes the moments for the standard orientation of

the orbit that we calculated in the preceding section. (See
Equations (C22), (C24), and (C25) with the replacement
e9→ eK.)

We can now write an exact formal expression for the
disturbing function that governs the evolution of the KBO orbit
under the influence of the MOND field. We substitute in
Equation (D3) the expression forℓ given in Equation (D4) and
the expression for ℓ given in Equation (D6) to obtain

å= -
=

¥
⎜ ⎟
⎛
⎝

⎞
⎠

( ) 
Gm M

R

a

R
D7K

M ℓ

K

M

ℓ

ℓ
2

where the matrix elementℓ is given by

w= W( ) ( ) ( ) ( )† ( ) ( ) ( ) ( )  R R i R J . D8ℓ ℓ y
ℓ

K z
ℓ

K y
ℓ

K ℓ
0

ℓ depends on eK through ( )Jℓ
0 and on (ωK, iK, ΩK) through the

rotation factors. It also depends on qℓ through ℓ. Note that we
have omitted the ℓ= 0 term because it is independent of all of
the orbital elements and therefore does not have any effect on
the dynamics. We are able to omit the ℓ= 1 term because the
phantom mass has no dipole moment. Intuitively we expect that
due to the cylindrical symmetry of the MOND field about the y-
axis, the matrix element and the disturbing function should
be independent of ΩK. Mathematically this happens becauseℓ

in Equation (D4) proves to be invariant under rotations about
the y-axis. Thus j =( )( )  Ry

ℓ
ℓ ℓ for any angle j, which

implies W =( )† ( ) † Rℓ y
ℓ

K ℓ.

We may write the rotation matrix j j= -( ) [ ]( ) ( )R iLexpy
ℓ

y
ℓ

where ( )Ly
ℓ is the (2ℓ+ 1)× (2ℓ+ 1) matrix corresponding to

the generator of rotations about the y-axis. From the general
theory of representations of the rotation group (familiar to
physicists as the quantum theory of angular momentum), we
know that ( )Ly

ℓ has 2ℓ+ 1 eigenvectors m
( )vℓ
y with eigenvalue μ,

where μ is an integer in the range −ℓ� μ� ℓ. In terms of these
eigenvectors, j( )( )Ry

ℓ has the spectral representation

åj mj= -
m

m m
=-

( ) ( ) ( )( ) ( ) ( ) †R i v vexp . D9y
ℓ

ℓ

ℓ

ℓ
y

ℓ
y

Note that m
( )vℓ
y is a 2ℓ+ 1 component column vector; m

( ) †vℓ
y is a

2ℓ+ 1 component row vector. Hence, the right-hand side of
Equation (D9) is a (2ℓ+ 1)× (2ℓ+ 1) matrix, as it should be.
Sometimes, we will find it convenient to explicitly write the
components of m

( )vℓ
y as m ( )( )v mℓ

y where m is an integer in the range
−ℓ�m� ℓ. Similarly, we may write the spectral representation

åj mj= -
m

m m
=-

( ) ( ) ( )( ) ( ) ( ) †R i v vexp D10x
ℓ

ℓ

ℓ

ℓ
x

ℓ
x

where m
( )vℓ
x are eigenvectors of ( )Lx

ℓ , the generator of rotations

about the x-axis. We are working in a basis wherein ( )Lz
ℓ is

diagonal. Hence, the eigenvectors are d=m m( )( )v mℓ
z

m, , and the

matrix j( )( )Rz
ℓ is diagonal. Its effect on a vector is simply to

multiply each component of the vector by the appropriate
phase. Thus,

j j -( ) ( ) ( )( )R J im Jexp . D11z
ℓ

ℓ ℓm

With the help of these results, we arrive at the following
expression for the matrix elementℓ in Equation (D12):

å
mm

=
¢

m
m mm m

m w- W
¢ ¢

- ¢[ ] [ ] ( )† ( ) ( ) † ( )  e v v J e D12ℓ
i

ℓ ℓ
y

ℓ
y

ℓ
i0K K

where the sums over μ and m¢ range from −ℓ to ℓ, and the
inclination factor  is given by

å

å

m

m m m

= - 

=  -  

mm
m

m m m m

m
m m

¢
=

  ¢

=-
¢

[ ] ( )[ ]

( ) ( ) ( ) ( )

( ) † ( ) ( ) † ( )

( ) ( )

 v v i i v v

v i i v

exp

exp . D13

ℓ

ℓ

ℓ
y

ℓ
z

K ℓ
z

ℓ
y

ℓ

ℓ

ℓ
y

K ℓ
y

Equations (D12) and (D13) provide the tools needed to
calculate the matrix element ℓ and hence the disturbing
function. We illustrate the computation for ℓ= 2 and also carry
it out explicitly for ℓ= 3 since we need the disturbing function
to octupole order for our analysis. However, we note that
closed-form expressions for m

( )vℓ
y , ℓ, and ( )Jℓ

0 exist for arbitrary
ℓ and hence the procedure outlined above allows us to compute
the matrix element for any ℓ exactly without perturbing in eK or
iK.
To obtain 2, our first task is to compute 2 for the

phantom mass distribution. Using the spectral representation
for Rx(− π/2), we may write Equation (D4) as

å=
m

m m
=-

[ ] ( )( ) ( ) † ( ) v v . D14x x
2

2

2

2 2 2
0

Making use of the explicit formulae for m
( )v x
2 tabulated below

and Equation (D5) for ( ) 2
0 , we obtain

p p
= = ( )( ) † ( ) ( ) † ( ) v

q
v

q

4

6

4
and

4

1

2
. D15x x

2, 2 2
0 2

2,0 2
0 2

Equations (D14) and (D15) yield

p p
= - = -

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

( )( )
q q

v
4

3 8

0
1 2

0

3 8

4
. D16y

2
2 2

2,0

The last equality above shows that 2 is proportional to the
eigenvector of ( )Ly

2 that is invariant under rotations about the
y-axis.
We now compute the ingredients that make up the matrix

element2 given by Equation (D12). From Equation (D16), it
follows that

p
= -m ( )† ( ) v

q

4
D17y

2 2
2
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for μ= 0 and zero for other values of μ. Using Equation (C24)
for ( )J2

0 and the eigenvectors m
( )v y
2 tabulated below, we find

=-

= +



( ) ( )

( ) † ( )

( ) † ( )

v J e

v J e

5 6

8
,

1

8
4 6 . D18

y
K

y
K

2, 2 2
0 2

2,0 2
0 2

Making use of the tabulated eigenvectors and Equation (D13),
we can also compute the relevant components of the inclination
factor

= -

= +

 [ ( ) ]

( ) ( )





i

i

1

4

3

2
cos 2 1 ,

1

4

3

4
cos 2 . D19

K

K

0, 2

0,0

Combining the results in Equations (D17), (D18), and (D19)
in accordance with Equations (D7) and (D12), we finally obtain
the ℓ= 2 or quadrupole term in the disturbing function

p
= ⎜ ⎟

⎛
⎝

⎞
⎠

( ) 
Gm M

R

a

R

q

32
D20Q

K

M

K

M
Q

2
2

with

w

w

=- - + +

+ -

( )
( ) ( )

 e e i

e i e i

2 3 15 cos 2 6 cos

9 cos 15 cos 2 cos . D21

Q K K K K

K K K K K

2 2 2

2 2 2 2

Equations (D20) and (D21) are the key formulae in this section.
We now briefly consider the disturbing function that

describes the effect of Planet Nine on the dynamics of a
KBO in the quadrupole approximation. We assume that the
orbit of Planet Nine lies in the z–x plane with the Sun at the
focus, and the perihelion on the positive z-axis. We use the z–x
plane as the reference plane and assume that the orbit of Planet
Nine remains fixed for the time duration of interest. The
reference configuration of the KBO orbit is one wherein it lies
in the reference plane with the perihelion along the positive z-
axis. The configuration (ωK, iK, ΩK) corresponds to giving the
orbit a y–z–y sequence of rotations by the angles ωK, iK, and
ΩK, respectively. Hence, the quadrupolar disturbing function is
given by the ℓ= 2 term in Equation (D7) with the replacements
Me→m9 and RM→ a9. 2 is given by Equation (D8) with

( )J2
0 still given by Equation (C24) but with 2 given by

Equation (C27) not by Equation (D16). Comparing
Equation (C27) to Equation (D16), we see that the only change
in2 is the replacement

p
 -

-( )
( )

q

e4

1

2

1

1
. D222

9
2 3 2

Hence, the disturbing function for Planet Nine acting on the
KBO to quadrupole order is given by making the same
replacement in Equation (D20) leading to

= -
-

⎜ ⎟
⎛
⎝

⎞
⎠ ( )

( )( ) 
Gm m

a

a

a e

1

16

1

1
. D23Q

K K
Q

9 9

9 9

2

9
2 3 2

Here, Q is still given by Equation (D21).
On long timescales, it is not valid to treat the orbit of Planet

Nine as fixed. It should evolve slowly in response to
perturbations by the four known giant planets. In the analysis
of the interaction of Planet Nine and a KBO, it is therefore

better to use a fixed plane such as the mean ecliptic as the
reference plane rather than the orbital plane of Planet Nine as
we have done above. The disturbing function would then be a
function of the orbital elements of both the KBO and Planet
Nine. We have derived such expressions for the disturbing
function to quadrupole and octupole order, and in principle, the
expressions can be extended to arbitrary orders using our
computational scheme. We will present this analysis elsewhere
since we do not need these expressions for our present purpose.
Similar expressions have been obtained by Mardling (2010) but
are not available in the literature.
Another useful variation of Equation (D23) to consider is the

disturbing function that describes the effect of Neptune or one
of the other giant planets on the motion of a KBO in the secular
approximation. The same expression applies as for the
interaction of a KBO with Planet Nine but with the following
replacements in Equations (D23) and (D21): (mK, aK,
eK)→ (m8, a8, e8) and (m9, a9, e9)→ (mK, aK, eK) since
Neptune replaces the KBO as the object in the inner orbit, and
the KBO replaces Planet Nine as the outer object. Bearing in
mind that, to a good approximation, the giant planets have
essentially circular orbits in a common plane, their combined
effect on a KBO to quadrupole order is described by the
following well-known approximate disturbing function:

å=
-
- =

( )
( )

( )( )
Gm

a

i

e
m a

1

8

1 3 cos

1
. D24Q

K

K

K

K i
i i

G
3

2

2 3 2
5,6,7,8

2

Now let us return to the disturbing function that describes the
effect of the galactic field on a KBO in MOND and work out
the ℓ= 3 octupole term in Equation (D7). The derivation is
similar to that of the quadrupole, and for the sake of brevity we
only provide the final result

p
= - ⎜ ⎟

⎛
⎝

⎞
⎠

( ) 
Gm M

R

a

R

q

16
. D25K

M

K

M
oct

3
3

oct

Here, q3 is given by Equation (C13) and

w

w

=

+ + -( ) ( ) ( )

 e i

e e i i

175

16
sin sin 3

15

16
4 3 sin 4 sin 5 sin . D26

K K K

K K K K K

oct
3 3

3 3

To conclude this section, we tabulate the eigenvectors of Lx
and Ly that are used in the calculations above. The eigenvectors
of ( )Ly

2 are denoted m
( )v y
2 for −2� μ�+ 2. The first column of

the following matrix is ( )v y
2,2 , the second column is ( )v y

2,1 , and so

on, to the last column, which corresponds to -
( )v y
2, 2. These

eigenvectors are orthonormal and satisfy d=m n m n
( ) † ( )v vy y
2, 2, , , and

hence the eigenmatrix below is unitary. Similar remarks apply
to all of the eigenmatrices below

- -

- -
- -

- -

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

( )
i i i i

i i i i

1 4 1 2 3 8 1 2 1 4

2 2 0 2 2

6 4 0 1 2 0 6 4
2 2 0 2 2

1 4 1 2 3 8 1 2 1 4

. D27
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The eigenvectors of ( )Lx
2 are

- -
- - -

-

- -

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

( )

i i

i i

i i

i i

1 4 2 3 8 2 1 4

1 2 2 0 2 1 2

6 4 0 1 2 0 6 4
1 2 2 0 2 1 2

1 4 2 3 8 2 1 4

. D28

For calculation of the octupole, we need the eigenvectors of
( )Ly
3 tabulated below

- - -
- - -
- - - - -

- - - - -
- - -
- - -

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )D29

i i i i

i i

i i i i

i i i i

i i

i i i i

1

8

6 15 20 15 6

6 4 10 0 10 4 6

15 10 12 10 15

20 0 12 0 12 0 20

15 10 12 10 15

6 4 10 0 10 4 6

6 15 20 15 6

.

Finally, the eigenvectors of ( )Lx
3 are as follows:

- - - -
- - -

- - - - -

- -
- - -
- - -

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

( )D30

i i i

i i

i i i

i i i

i i

i i i

1

8

1 6 15 20 15 6 1

6 4 10 0 10 4 6

15 10 1 12 1 10 15

20 0 12 0 12 0 20

15 10 1 12 1 10 15

6 4 10 0 10 4 6

1 6 15 20 15 6 1

.

Appendix E
Dynamics

We now analyze the effect of MOND on the dynamics of a
KBO. In Lagrangian or Hamiltonian mechanics, the state of the
KBO would be specified by its position and velocity or by its
position and canonical momentum—a total of six dynamical
variables or three degrees of freedom. In celestial mechanics, it
is more convenient to work with a noncanonical set of
variables, the orbital elements (aK, eK, ωK, iK, ΩK, and fK). aK
and eK specify the shape of the instantaneous orbit (the orbit
that the KBO would pursue if all influences except the
Newtonian gravity of the Sun were turned off); ωK, iK, and ΩK

specify the orientation of the orbit; and fK specifies the location
of the KBO along the orbit. To be precise, fK is the angle
between the position vector of the KBO and the apsidal vector
joining the Sun to the perihelion. The dynamics of the orbital
elements is determined by the disturbing function via
Lagrange’s equations.

In the secular approximation, we focus on the behavior of the
orbital elements on timescales that are long compared to the
orbital period of the instantaneous orbit. In this approximation,
the disturbing function is time averaged over the orbit, and the
anomaly fK is eliminated from the equations. Furthermore, it
turns out that in the secular approximation the semimajor axis
aK is conserved and may be regarded as a fixed parameter
(Murray & Dermott 2000). Hence, in the secular approximation
there are only four dynamical variables (eK, ωK, iK, and ΩK) and

two degrees of freedom. The dynamics of these variables are
governed by the following Lagrange equations:

w

w

w

=- -
¶
¶

W
=

-

¶
¶

=
- ¶

¶
-

-

¶
¶

=
-

¶
¶

-
¶
¶W

⎜ ⎟
⎛
⎝

⎞
⎠

( )





 



m
de

dt n a
e

m
d

dt n a e i i

m
d

dt n a

e

e e n a

i

e i

m
di

dt n a e
i

R

i

1
1

1 1

1

1
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1 1 1 cot

1

1 1

1
cot

1
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.

E1

K
K

K K
K

K

K
K

K K K K K

K
K

K K

K

K K K K

K

K K

K
K

K K K

K
k K K

2
2

2 2

2

2

2 2

2 2

Here = ( )n GM aK K
3 1 2 is the mean angular frequency of a

Kepler orbit of semimajor axis aK.
This is a formidable set of coupled nonlinear differential

equations, but for our problem, a great simplification occurs
due to symmetry, allowing for an exact solution. First, it is easy
to verify that the disturbing function  itself is a conserved
quantity, by observing that

w
w

=
¶
¶

+
¶
¶W

W
+

¶
¶

+
¶
¶

( )

    d

dt e

de

dt

d

dt

d

dt i

di

dt
,

E2
K

K

K

K

K

K

K

K

and making use of Lagrange’s Equations (E1). Second, due to
cylindrical symmetry about the axis joining the Sun to the
center of the Galaxy,  is independent of ΩK. More crucially,
the symmetry implies that the axial component of the angular
momentum is conserved. For a Keplerian orbit, the magnitude
of the angular momentum is given by -[ ( )]GM m a e1K K K

2 2 1 2

in terms of the orbital elements. The component along the
symmetry axis is -[ ( )]GM m a e i1 cosK K K K

2 2 1 2 . Discarding
unimportant constants, it follows that the quantity

= - ( )h e i1 cos E3K K
2

is conserved. It is easy to verify explicitly by use of Lagrange’s
Equations (E1) that h is conserved if  is independent of ΩK.
We will call h the dimensionless axial angular momentum in
the following discussion.
Hence, our problem is integrable. There are four dynamical

variables, (eK, ωK, iK, and ΩK) and hence two degrees of
freedom. There are also two conserved quantities:  and h.
It is useful to make the following observations based on the

definition of h. (i) Since 0� eK� 1 and 0� iK� π, it follows
that |h|� 1 with negative values of h corresponds to
π/2< iK� π. (ii) For a given h, the eccentricity lies in the
range - e h0 1K

2 . (iii) For h> 0, the inclination lies in
the range  i i0 ;K max for h< 0, in the range
p p-  i iKmax . Here, = - ∣ ∣i hcosmax

1 , and it lies in the
range p i0 2max . (iv) Obviously if h= 0, then either eK
= 1 or iK= π/2. (v) If h=± 1, then eK = 0 and iK = 0 or π,
respectively.
To gain some qualitative insight into the KBO dynamics, we

now work in the quadrupole approximation to the disturbing
function given in Equations (D20) and (D21). We use
Equation (E3) to eliminate iK to obtain Q as a function of
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(eK, ωK). The result is

w

w w

=- - +

+ - + -
-

( )

( ) ( )



E4

h h

e h
e

2 9 15 cos 2

15 cos 2 3 15 1 cos 2
1

1
.

Q K

K K K
K

eff 2 2

2 2
2

Here, - e h0 1K
2 and 0� ωK< 2π. The conservation

of Q implies that the KBO trajectories will lie along contours

of fixed Q
eff in the (eK, ωK) plane. Hence, we can visualize the

dynamics by plotting the contours of fixed Q
eff .

It is easy to see that for fixed eK, the scaled disturbing
function Q

eff oscillates as a function of ωK with minima at
ωK= π/2 and 3π/2 and maxima at 0 and π. This is facilitated
by rewriting Q

eff in the form

w

=- - - +
-

+ + -
-

⎜ ⎟
⎛
⎝

⎞
⎠

( )

 h e
h

e

h e
h

e

2 9 3
15

1

15
1

cos 2 E5

Q K
K

K
K

K

eff 2 2
2

2

2 2
2

2

and demonstrating that the coefficient of wcos 2 K is positive for
the entire range < < -e h0 1K

2 2. It is also easy to see that
= - + h2 6Q

eff 2 for eK = 0 and = - h10 6Q
eff 2 for

= -e h1K
2 2. Remarkably, we see that Q

eff is independent of
ωK for the extremal values of eK. We also observe that

 - -  = -( ) ( ) ( ) ( ) e h e h1 0 12 1 0. E6Q K Q K
ef 2 2 eff 2 2

Next let us consider the behavior of Q
eff as a function of eK

2

for fixed ωK. For this purpose, it is better to revert to the form in
Equation (E4). We observe that the last term in Q

eff with the
factor -( )e1 1 K

2 is monotonically increasing with eK
2 since its

coefficient is positive. For the eK
2 term, we can distinguish two

cases. For w >cos 2 1 5K , it is monotonically increasing with
eK
2 since its coefficient is positive. For w cos 2 1 5K , it is not
monotonically increasing. Hence, we can definitely state that
Q

eff is monotonically increasing as a function of eK
2 for all ωK

such that w >cos 2 1 5K . But for w cos 1 5K , further
analysis is needed. These values of ωK correspond to two
equal intervals centered on ωK= π/2 and ωK= 3π/2 with a
width greater than π/2 but less than π. In these intervals, we
will see that there are two possible behaviors as a function of
eK
2 . Either Q

eff can remain monotonically increasing, or it can
first decrease to a minimum and then increase again as eK

2 varies
from 0 to 1− h2. To determine the actual behavior that is
obtained, we compute ¶ ¶ eQ K

eff 2 and find it is equal to zero for
e eK

2 2 where

w
w

= -
-
-

∣ ∣
( )

( )e h1
1 cos 2

1 5 cos 2
. E7K

K

2

Obviously, we need w <cos 2 1 5K for e2 to be real, but in fact
we need to impose the more stringent conditions that

- e h0 12 2. The condition that -e h12 2 is auto-
matically fulfilled for w- >( )1 5 cos 2 0K as we have
assumed. But the condition that e 02 translates to

w -
-

( )
h

cos 2 1
4

5

1

1
. E8K 2

It is easy to see that the right-hand side of Equation (E8)
decreases monotonically from 1/5 to −1 as h2 goes from 0 to
3/5 and is less than −1 for h2> 3/5.
In summary, we find the following behavior for Q

eff

considered as a function of eK
2 for fixed ωK. (i) For

3/5< h2� 1, we find Q
eff is monotonic increasing for all ωK.

(ii) For 0� h2� 3/5, we find that provided Equation (E8) is
satisfied, Q

eff shows nonmonotonic behavior: it decreases for
< e e0 K

2 2 and increases for < -e e h1K
2 2 2 with a

minimum at =e eK
2 2 where e2 is given by Equation (E7).

The range of ωK defined by Equation (E8) corresponds to two
intervals centered about ωK= π/2 and ω= 3π/2. Outside of
this range of ωK values, Q remains monotonic even for
0� h2� 3/5. Crucially then, we find that Q

eff has two global
minima at (eK, ωK) given by (eC, π/2) and (eC, 3π/2) where

= - ∣ ∣ ( )e h1
5

3
. E9C

2

Equation (E9) is obtained from Equation (E7) by setting
ωK→ π/2 or 3π/2. This result for the location of the minimum
is one of the key results of this section.
We are now ready to plot contours of fixed Q

eff . It is
convenient to define D = - ( )   e 0Q Q Q K

eff eff eff 2 . Making
use of Equation (D21), we find explicitly that

w w

w

D =- - + -

+
-

-

( ) ( )

( )
( ) ( )

 e

h

e

15 1 cos 2 15 cos 2 3

15

1
1 cos 2 . E10

Q K K K

K
K

eff 2

2

2

Evidently D = 0Q
eff for =e 0K

2 and D = -( ) h12 1Q
eff 2 for

= -e h1K
2 2. (i) For h2> 3/5, DQ

eff increases monotonically
with eK

2 for fixed ωK and oscillates with ωK for fixed eK as
discussed above. Hence, we expect the contours of fixedDQ

eff

to be wavy lines with maxima at ωK= π/2 and 3π/2 and
minima at ωK= 0, π and 2π. The contours for different values
of DQ

eff between zero and the maximal value of 12(1− h2)
may be plotted exactly by solving Equation (E10) for eK

2 as a
function of ωK. This is a quadratic equation, and hence we have
to choose the root by either verifying the pattern of maxima and
minima noted above or by continuity with the expected result
as e 0K

2 . (ii) For 0� h2� 3/5, it is convenient to first plot
the contour corresponding to D = 0Q

eff . Equation (E10) has
the trivial solution =e 0K

2 for D = 0Q
eff and a nontrivial

solution

w
w

= -
-
-

( )e h1
1 cos 2

1 5 cos 2
. E11K

K

K

2 2

We require that - e h0 1K
2 2. Imposing these conditions

on the right-hand side of Equation (E11), we find as expected
that the nontrivial solution exists over the range of ωK that
satisfies Equation (E8). This range corresponds to two equal
intervals, one centered about ωK= π/2 and the other centered
about ωK= 3π/2. Plotting the trivial and nontrivial solutions in
red, we see from Figure 2(b) in the main body of the paper that
they define two dome-shaped regions. D > 0Q

eff outside the

dome-shaped regions and D < 0Q
eff inside the domes. In

particular, the domes contain the minima of DQ
eff , which are
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located at (eK, ωK)→ (eC, π/2 or 3π/2) where eC is given by
Equation (E9). At the minima, it is easy to compute using
Equation (E10) that

D = - -⎜ ⎟
⎛
⎝

⎞
⎠

∣ ∣ ( ) h30
3

5
. E12Q

eff
2

Thus, the minima are deepest for |h|→ 0. We expect the
contours to be wavy lines outside the domes and loops within.
To actually plot the contours, we proceed as in case (i) for the
region outside the domes, plotting the appropriate solution to
Equation (E10). But inside the dome, we plot both solutions to
Equation (E10) over the range of ωK for which these solutions
are real. Those plots join smoothly to form the expected loops.
The results are shown in Figure 2 in the main body of the
paper.

Dynamically, the phase-space flow therefore corresponds to
precession along the wavy lines for h2> 3/5. For h2< 3/5, the
phase space breaks up into two regions: one in which the
trajectories correspond to precession (i.e., monotonic increase
of ωK), and the other in which the trajectories encircle the
minima, which are fixed points of the dynamics.

For the record, we provide the specific parameters used to
generate Figure 2 in the main body of the paper. In (a) we
chose = >h 0.9 3 5 . The allowed range of DQ

eff is
D - =( )  h0 12 1 2.28Q

eff 2 . The plotted contours corre-
spond to D = 0.4, 0.8, 1.2, 1.6Q

eff and 2.0. In (b) we chose

= <h 0.5 3 5 . Outside the domes, < D 0 Q
eff

- =( )h12 1 92 . The plotted contours correspond to
D = 2, 4, 6Q

eff and 8. Inside the domes, - ¼ 2.28
D < 0Q

eff . The lower limit comes from Equation (E12). The
plotted contours correspond to D = - - 0.75, 1.5Q

eff

and −2.25.
Plotting the contours of Q

eff determines the curves traced by
the KBO through the (eK, ωK) phase space but not the direction
of the flow. To obtain the direction, we must return to
Lagrange’s Equations (E1). Making use of the quadrupole
approximation to Q in Equation (D20) and using the
conservation of h defined by Equation (E3), we find

w

w
w

w

= - -
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- - + -
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⎤
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Here, TK is defined via

p
= ⎜ ⎟

⎛
⎝

⎞
⎠

( )
T

n
a

R

q1

32
E14

K

K

M

3
2

and is the natural timescale for MOND induced evolution of
the KBO orbit. The first of these equations is sufficient to
determine the direction of the flow. We see that de dt 0K

2 for
0� ωK� π/2 and π� ωK� 3π/2; and <de dt 0K

2 for
π/2< ωK< π and 3π/2< ωK< 2π. From this, we infer that

the precession is from left to right in the figure (ωK increases
monotonically with time) while the oscillations are clockwise
in the figure.
It is easy to verify that if we set (eK, ωK) to the fixed-point

values (eC, π/2 or 3π/2) on the right-hand side of
Equation (E13) then =de dt 0K

2 and dωK/dt= 0, as expected.
Linearizing the equation of motion (E13) about the fixed point
yields

w

w

D = - - D

D =- D
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1 2
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2

1
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4

where D = -e e eK C K
2 2 2 and ΔωK= ωK− π/2 or ΔωK=

ωK− 3π/2. From Equation (E15), we see that the frequency
of small oscillations about the fixed point is

- -⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣ ∣ ∣ ∣ ( )
T

h h
8640 3

5

5

3
. E16

K

1 2 1 2

We see that the frequency increases monotonically as |h|→ 0,
reaching the maximum value of

( )
T

24 15
. E17

K

Thus far we have focused on the dynamics of eK and ωK. The
dynamics of iK are latched to those of eK by the conservation of
h via Equation (E3). It is worth noting explicitly that at the
fixed point (eC, π/2 or 3π/2) that

= ⎛
⎝

⎞
⎠

( ) ∣ ∣ ( )i h hcos
3

5
sgn . E18K

1 4
1 2

This is established using Equations (E9) and (E3). Here,
= +( )hsgn 1 for h> 0 and = -( )hsgn 1 for h< 0. It follows

that eC→ 1 as h→ 0 and iK→ π/2. More precisely,

p
» - ⎛

⎝
⎞
⎠

( ) ∣ ∣ ( )i h h
2

3

5
sgn E19K

1 4
1 2

for small h.
The dynamics of ΩK is also fully determined by that of eK

and ωK. To see this, we return to the Lagrange Equations (E1)
and make use of the quadrupole approximations in
Equations (D20) and (D21) and of the conservation law in
Equation (E3) to obtain

w
W

= -
-

- + -
( )

[ ( ) ( )]

( )

d

dt T

h

e
e e

1

1
12 1 30 1 cos 2 .

E20

K

K K
K K K2
2 2

We see that if eK and ωK are known functions of time, we can
readily integrate Equation (E20) to obtain ΩK. It is also evident
from Equation (E20) that dΩK/dt< 0 for h> 0 and dΩK/dt> 0
for h< 0. In either case, ΩK varies monotonically in time
although it may not do so uniformly. To obtain the behavior of
ΩK when (eK, ωK) are at a fixed point, we set eK→ eC and
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ωK→ π/2 or 3π/2 in Equation (E20). We obtain

W
= - -⎡

⎣⎢
⎤
⎦⎥

( ) ∣ ∣ ( )d

dt T
h h

1
sgn

3

5
60 48

5

3
. E21K

K

In other words, we obtain uniform precession in ΩK at the fixed
point with dΩK/dt= 0 for the special case that h= 0.

Thus far, we have worked with the quadrupole approx-
imation to the disturbing function. We now consider how the
integrable dynamics above is modified by the octupole
correction given by Equations (D25) and (D26). In particular,
we are interested in how the two fixed points located at (eC, π/
2) and (eC, 3π/2) are affected. We find that the octupole term
shifts the locations of these fixed points slightly, but more
crucially it makes the fixed point at (eC, π/2) less stable than
the one at (eC, 3π/2). Hence, it is the latter fixed point that will
be dominant in shaping the anomalous structure of the
Kuiper Belt.

We sketch briefly how these results are established. The
octupole term respects the cylindrical symmetry of the
problem, so h remains conserved, and we can use
Equation (E3) to eliminate iK from Equation (D26). Setting
(eK, ωK) to the two fixed-point values, we see that oct

eff is
positive at the first fixed point and negative at the second
consistent with the idea that the octupole term is destabilizing
the first and stabilizing the second. In order to make this
quantitative, we expandoct

eff around each of the fixed points to
quadratic order. For the fixed point located at (eC, π/2) in the
quadrupole approximation, we find that it shifts to a slightly
higher value of eK and becomes less stable, as evidenced by the
frequency of small oscillations about the fixed point, which
becomes lower. For the fixed point at (eC, 3π/2) in the
quadrupole approximation, we find that it shifts to a slightly
lower value of eK and becomes more stable as evidenced by the
frequency of small oscillations, which becomes higher. The
formulae for the shifts in position and frequencies are long and
not very illuminating, so for brevity we omit them.

Now let us consider the effect of symmetry breaking
perturbations on the integrable MOND induced dynamics
considered so far. The perturbations include nonsecular terms
in the MOND disturbing function as well as secular and
nonsecular perturbations caused by the giant planets. For the
long time dynamics, the slow variation in the symmetry axis as
the Sun rotates around the galaxy must also be considered (for
an analogous problem, see Banik & Zhao 2018b). According to
Hamiltonian chaos theory (Percival & Richards 1983), the
phase-space flow will become chaotic under these perturba-
tions, but the regular flow around the stable fixed point (eC, 3π/
2) should persist especially for small h. Hence, we predict that a
population of KBOs should be found in orbits close to the
stable fixed point for small h (we will specify below the
relevant values of h). This is the central result of the paper.

Let us describe more fully the key characteristics of the
orbits of this predicted KBO population that are stabilized by
the galactic field in MOND. Recall that we are using as the
reference plane not the mean ecliptic but rather the plane
perpendicular to the direction to the center of the Galaxy. Thus,
an orbit with ωK= 3π/2 and iK= π/2 will have its apsidal
vector âK pointing directly away from the center of the galaxy.
Here, âK is a unit vector that points from the Sun to the
perihelion. This would be the case for a fixed-point orbit with
h= 0. However, as we will explain momentarily, we expect h
to be small for reasons of stability, but greater than a minimum

threshold value hmin that depends on the seminar major axis aK.
Thus, we expect the orbits to have iK≈ π/2 and for the apsidal
vector âK to be inclined at a small angle (π/2− iK) relative to
-n̂G. Here, n̂G is the unit vector that points from the Sun to the
center of the galaxy.
Let us denote by AK the angle between âK and n̂G. We can

estimate the expected range of AK as follows. For a given h in
the range 0� h2� 3/5, the orbital elements (eK, ωK) of the
stable fixed point are (eC, 3π/2) in the quadrupole approx-
imation. Here, eC is given by Equation (E9). Making use of
Equations (E3) and (E9), we conclude that

= ⎛
⎝

⎞
⎠

( )∣ ∣ ( )i h hcos
3

5
sgn E22K

1 4
1 2

at the fixed point. Now, AK= π/2+ iK, which leads to

a = = - - ⎛
⎝

⎞
⎠

ˆ · ˆ ∣ ∣ ( )n A hcos 1
3

5
. E23K G K

1 2

Assuming that 0< |h|� (3/5)1/2, it follows that
129° < AK� 180°. Taking into account that the lower bound
on |h| is hmin, we can refine our estimate to read

 < < - -- ⎛

⎝
⎜ ⎛

⎝
⎞
⎠

⎞

⎠
⎟ ( )A h129 cos 1

3

5
. E24K

1
1 2

min

We will see below that for aK? a8, h 0min and the upper
limit of the range of expected AK approaches 180°. By contrast,
in the absence of MOND, the Galactic field has no significant
effect on KBOs, and there should be no correlation between âK

and n̂G.
Next, let us explain the origin of the bound hmin. The closest

approach of the KBO to the Sun is aK(1− eK). For the orbit to
be detached from the inner solar system, we need

- >( ) ( )a e a1 . E25K K 8

Taking eK to be the fixed-point value eC given by
Equation (E9), we find that Equation (E25) leads to the
condition that >∣ ∣h hmin where

= - -⎜ ⎟
⎡

⎣
⎢

⎛
⎝

⎞
⎠

⎤

⎦
⎥ ( )h

a

a

3

5
1 1 . E26

K
min

8
2

For aK? a8, we see that ~ h a a2 3 5 0Kmin 8 as
aK→∞ as noted above.
Finally, let us comment briefly on the orbit normal l̂K .

Obviously l̂K must be perpendicular to âK , and hence we
expect l̂K to be roughly at 90° to n̂G as well to the same extent
that âK is antialigned with n̂G. However, due to precession of
ΩK, we expect l̂K to be as random as possible, consistent with
the constraint that it is strictly perpendicular to âK . Since n̂G
lies almost in the ecliptic plane, it follows that the predicted
population of KBOs may be found in the ecliptic plane as well
as at high inclinations to it.
In summary, the main result of this section is the prediction

that there is a population of KBOs with orbits clustered in the
(eK, ωK) phase space near the stable fixed point of the
dynamics. The fixed point is at (eC, 3π/2) in the quadrupole
approximation where eC is given by Equation (E9). We have
described the orbital characteristics of this population, and in
the next section we will show that an observed population of
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KBOs does indeed have orbits consistent with the predicted
characteristics.

Appendix F
Comparison to Data

There are several well-established families of KBOs. Many
KBOs are in orbits that are locked in 2:1 or 3:2 resonances with
Neptune. The classical KBOs have semimajor axes that lie
between the two resonances noted above. Centaurs penetrate
the inner solar system but also recede far beyond the orbit of
Neptune. The scattered disk consists of KBOs that recede far
beyond the orbit of Neptune but have a perihelion distance
comparable to that of Neptune. Recently, a new subclass of this
family has been recognized: objects that have perihelion
distances well beyond the semimajor axis of Neptune and
highly eccentric orbits that carry them to the outer reaches of
the solar system. Sedna (Brown et al. 2004) and 2012 VP113
(Trujillo & Sheppard 2014) were the first members of this
subclass to be discovered. We will therefore call this the Sedna
family of KBOs.

The orbits of KBOs are for the most part compatible with
dynamical models of the solar system based on eight planets
and Newtonian gravity. The Sedna family are a notable
exception. The Planet Nine hypothesis was introduced to
explain the anomalous structure of their orbits. Here, we will
explore the alternative hypothesis that this anomalous structure
is due to the Galactic field in MOND. Because their orbits are
detached from the inner solar system, the Sedna family are a
particularly clean and sensitive probe of MOND effects and are
the exclusive focus of this paper. However, we note that the
Centaurs also pose a puzzle: they have a broad distribution of
inclinations with many cases of very high inclination and even
retrograde motion. The dynamics of Centaurs are chaotic and
complicated by their penetration into the inner solar system and
therefore not considered further here. However, the finding in
the previous section that MOND effects can lead to orbits with
very high inclinations is potentially significant in this context
and may be worth further consideration.

In their comprehensive review of the Planet Nine hypothesis,
Batygin et al. (2019) identified six members of the Sedna
family that dynamical simulations reveal have stable orbits
under the influence of the known planets and eight more that
have metastable orbits. These 14 objects were the trans-
Neptunian objects in the Minor Planet Database of the
International Astronomical Union whose orbital parameters
satisfied the criteria that a� 250 au, q� 30 au (where q
denotes the perihelion distance) and i� 40° as of 2018 October
10. As of 2022 June 21, there are eight additional objects that
meet these criteria in the International Astronomical Union
database. Table 1 lists the orbital parameters for all 22 KBOs:
the 14 discussed in the review by Batygin et al. (2019) as well
as the eight additional ones that are now known. These data are
taken from the Minor Planet Database; references to the
discovery papers and the primary observational literature may
be found on the website of the minor planet center. Note that
for all 22 KBOs, q> a8 where a8= 30.07 au is the semimajor
axis of Neptunes nearly circular orbit. These KBOs are a good
testing ground for the Planet Nine hypothesis and also for
MOND effects. In the main body of the paper, we limited
ourselves to the six with stable orbits, as they are likely the
most clear-cut members of the new population of KBOs that
we predict based on MOND. Here also our main focus is on the

same six KBOs, but in addition we show that the orbits of the
eight metastable objects and the eight new ones are also
compatible with MOND.
The orientation of the orbits is specified relative to the mean

ecliptic plane, which is taken to be the X–Y plane. In the
reference orientation, the orbit of a KBO is assumed to lie in
the X–Y plane with the perihelion along the positive X-axis. The
equation of the orbit in the reference configuration is therefore

x

x

= -

= -
= ( )
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Y a e
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cos
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0. F1

K K K
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Here, 0� ξ< 2π and aK and eK can be looked up from Table 1.
The actual orientation of the orbit is found by rotating it about
the Z-axis by ω, then about the X-axis by i, and again the Z-axis
by Ω. After these transformations, the equation of the orbit is
given by
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Table 1
Orbital Elements of KBOs of the Sedna Family

Object ω Ω i e q (au) a (au)

Sedna 311°. 1 144°. 2 11°. 9 0.85 76.37 510.39
TG387a 118°. 0 300°. 8 11°. 7 0.94 65.04 1031.49
2012 VP113 293°. 5 90°. 7 24°. 1 0.69 80.39 258.27
VN112b 326°. 8 66°. 0 25°. 6 0.85 47.30 318.97
GB174 347°. 0 130°. 9 21°. 6 0.86 48.61 336.67
SR349 340°. 0 34°. 8 18°. 0 0.84 47.69 302.23

RX245 64°. 6 8°. 6 12°. 1 0.90 45.73 448.49
KG163 32°. 3 219°. 1 14° 0.95 40.49 776.24
GT50 129°. 3 46°. 1 8°. 8 0.88 38.48 324.66
TG422 285°. 6 112°. 9 18°. 6 0.92 35.55 468.98
FE72 133°. 5 337° 20°. 7 0.98 36 1586.3
SY99 31°. 7 29°. 5 4°. 2 0.94 50.1 815.97
RF98 311°. 6 67°. 6 29°. 6 0.90 36.07 357.63
FT28 40°. 8 217°. 7 17°. 4 0.85 43.41 297.64

EU5 109°. 5 109°. 3 18°. 3 0.95 46.65 973.47
VM35 303°. 6 192°. 3 8°. 5 0.84 44.61 283.12
SD106 162°. 6 219°. 4 4°. 8 0.89 42.75 378.97
WB556 235°. 5 114°. 8 24°. 2 0.86 42.7 299.72
TU115 225°. 1 192°. 3 23°. 5 0.90 35.01 344.29
SL102 265°. 5 94°. 7 6°. 5 0.89 38.12 338.01
RA109 262°. 9 104°. 7 12°. 4 0.91 45.99 504.02
FL28 225° 294°. 5 15°. 8 0.90 32.17 336.45

Notes. The data are from the Minor Planet Database of the International
Astronomical Union. As discussed in the review by Batygin et al. (2019), the
first six have stable orbits under the influence of the known planets; the next
eight are metastable. The final eight have been added to the database since the
publication of the review (between 2018 October 10 and 2022 June 21).
a TG387 is named Leleakuhonua.
b VN112 is named Alicanto.
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In the ecliptic frame, the latitude and longitude are denoted
(β, λ). n̂G, the unit vector that points in the direction of
the Galactic center, therefore has the components

b l b l b( )cos cos , cos sin , sin with β=− 5°.5 and λ= 266°.4.
Using this information, we can plot the orbits of all six

KBOs projected into the ecliptic plane, and we can also project
the vector n̂G into the ecliptic plane. This leads to the plot
shown in Figure 3 in the main body of the paper. Note that the
orbits as well as n̂G lie almost in the ecliptic plane, so this
visualization gives an accurate impression of their relative
orientation. We see from this figure that the orbits have a
remarkable alignment of their apsidal vectors. This striking
alignment was discovered and highlighted by Trujillo &
Sheppard (2014) and Batygin & Brown (2016a). But we see
now that in addition, the orbits are well aligned with the
direction to the center of the Galaxy—a feature that arises
naturally in MOND but not in Newtonian gravity. Intuitively,
the MOND alignment can be understood as follows. In secular
perturbation theory, we think of the orbits as wires with a
nonuniform density. The perihelion is the lighter end of the
wire, and the aphelion is the heavy end. We see that the orbits
are aligned with the heavy end toward the Galactic center,
consistent with the idea that the orbits are responding to the
Galactic field.

We now quantify the degree of alignment, but before that, it
is worth noting here that in our dynamical analysis we used a
different coordinate system. The reference plane was perpend-
icular to n̂G, the unit vector that points in the direction of the
center of the Galaxy. We took the y-axis to point in the
direction of n̂G and the reference plane to be the z–x plane. In
the reference configuration, the orbit lay in the z–x plane with
the perihelion along the positive z-axis. The actual configura-
tion is obtained by an Ry–Rz–Ry sequence of rotations by ωK, iK,
and ΩK. We distinguish the two systems notationally by using
uppercase letters (X, Y, Z) for the ecliptic frame and lowercase
letters (x, y, z) for the frame that we used in the dynamical
analysis. For the orientation variables, we write (ω, i, Ω)
without subscripts in the ecliptic frame and with subscripts (ωK,
iK, ΩK) in the frame used for the dynamical analysis.

In order to quantify the alignment, it is useful first to
calculate the apsidal vectors âK in the XYZ frame. We note that
âK points along the positive X-axis when the orbit is in the
reference orientation. After being rotated to its actual orienta-
tion specified by (ω, i, Ω), the vector âK is given by

a
w w
w w

w
=

W - W
W + W

⎛

⎝
⎜

⎞

⎠
⎟ˆ ( )

i
i

i

cos cos sin sin cos
cos sin sin cos cos

sin sin
. F3K

One way to quantify the alignment of the apsidal vectors with
n̂G is to compute the mean value of â · n̂K G for the six KBOs
of interest. We obtain the value −0.68 for this alignment
parameter. Note that the alignment parameter is negative,
reflecting that the apsidal vectors are antialigned with n̂G. In the
absence of MOND, there should be no correlation between n̂G

and the apsidal vectors, and the expected value of the alignment
parameter is zero. If we take as the null hypothesis that the
apsidal vectors should be independent unit vectors uniformly
distributed over the unit sphere, then the observed value of the
alignment parameter is three standard deviations away from the
expected value of zero. Another way to quantify the alignment
of the apsidal vectors is to note that the six values of â · n̂K G

lie in the range −1 to −0.3. The probability of that happening
by chance is approximately 1 in 500. Thus, we see that the
degree of alignment is highly unlikely to be due to chance.
Finally in Table 2 we enumerate the values of AK, the angle
between âK and n̂G, for all six KBOs. In the preceding section,
we had estimated that these angles should lie between 129° and
an upper bound that depends on aK. That upper bound is also
listed in Table 2 for each KBO. Considering the crudeness of
the estimated bounds, the observed values are in reasonable
agreement with the predicted range.
We can quantify the alignment of the apsidal vectors with n̂G

by asking what is the probability that the alignment parameter
(the mean value of â · n̂K G) would be less than the observed
value of −0.68 under the null hypothesis that the apsidal unit
vectors αK are independent and uniformly distributed in
orientation. A simple calculation shows that this probability is
0.0011 or approximately 1 in 1000.
We can better quantify the alignment of the apsidal vectors

with n̂G by using the Kolmogorov–Smirnov test as follows. We
define

a= +( ˆ · ˆ ) ( )nu
1

2
1 F4i Ki G

where âKi is the apsidal vector of the ith KBO in the data set.
i= 1, 2,K,n where n= 6 if we only consider the six KBOs that
are known to have stable orbits. Our prediction is that the
ui-values should cluster close to zero (since zero corresponds to
perfect antialignment between âKi and n̂G). By contrast, the
null hypothesis is that the ui-values are uniformly distributed
random variables over the range 0� ui� 1 (this follows from
the hypothesis that the âKi are uniformly distributed over the
unit sphere).
To qualitatively compare the data to the null hypothesis, we

plot the staircase

å= Q -
=

( ) ( ) ( )C u u u F5
i

n

i
1

where Θ denotes the step function [Θ(x)= 1 for x> 0 and Θ

(x)= 0 otherwise]. C(u) should be compared to

=( ) ( )K u u, F6

which is the cumulative distribution function corresponding to
the null hypothesis. Figure 7 shows plots of C(u) and K(u) for

Table 2
Alignment Angle AK and Scaled Axial Angular Momentum h for Six KBOs of
the Sedna Family Compared to Estimated MOND Upper Bound on AK and

Lower Bound on |h|

Object AK Amax h hmin

Sedna 166° 177° −0.14 0.003
TG387a 151° 179° 0.0069 0.0007
2012 VP113 117° 175° −0.085 0.01
VN112b 128° 176° 0.033 0.007
GB174 147° 176° −0.18 0.006
SR349 110° 176° 0.081 0.008

Notes.
a TG387 is named Leleakuhonua.
b VN112 is named Alicanto.
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the six stable KBOs; we see that the data depart markedly from
the null hypothesis.

To quantitatively compare the data to the null hypothesis, we
calculate the maximum vertical deviation between the null
cumulative distribution function and the data staircase,

D = -∣ ( ) ( )∣ ( )
 

C u K umax . F7
u0 1

We find the deviation for the case of the six stable objects
Δ6= 0.658562K. The Kolmogorov–Smirnov statistic is the
probability that a deviation greater than that observed will arise
on the basis of the null hypothesis. Using the Kolmogorov–
Smirnov formula (see, for example, Press et al. 1998), we find
that the probability of a deviation as large as Δ6 for n= 6 is
0.0054K or approximately 1 in 200.

According to Press et al. (1998), although the Kolmogorov–
Smirnov formula is asymptotic for large n, it is quite accurate
for n as small as 4. To confirm this, we have calculated the
Kolmogorov–Smirnov statistic by a second method. We
simulate a large number (N = 300,000) of sets of data based
on the null hypothesis. Each data set consists of n random
numbers drawn from a uniform distribution over the unit
interval. For each simulated data set, we calculate Δ, and then
we determine the fraction of data sets for which Δ exceeds the
measured value Δn. This fraction is an estimate of the
Kolmogorov–Smirnov statistic. Using this method, we obtain
the values 0.0045K for n= 6. We see that the Kolmogorov–
Smirnov formula overshoots slightly, but it is quite accurate
even for n= 6. Hence, the null hypothesis is falsified at a high
level of significance.

Thus, we see that the apsidal vectors of the six KBOs are
aligned with the direction to the Galactic center, and this
alignment is compatible with expectations based on MOND.
To strengthen this conclusion, we must look to future surveys
to provide a larger observational sample, and we need to refine

the predictions of the MOND model by carrying out large-scale
numerical simulations of KBO dynamics in MOND.
In the literature, the aspidal alignment of Sedna family

KBOs is sometimes quantified by reporting the clustering of
their longitudes of perihelion ϖ= ω+Ω in the ecliptic frame.
As noted in the main text, we prefer to use â · n̂K G as a
measure of alignment because it is frame invariant and
unambiguously a measure of alignment. However, we have
verified that the clustering predicted by our model in ωK and iK
(together with complete randomization in ΩK) does translate
into a clustering in ϖ for orbits with i< 40°.
Table 2 also includes the calculated value of the scaled axial

angular momentum h for each KBO along with the lower
bound hmin. We explain below how icos K can be computed
from the known orbital data using Equation (F9). Using the
computed values of icos K , the tabulated values of eK and
Equation (E3), we can compute the values of h for each KBO.
hmin can be computed using Equation (E26), and the tabulated
values of aK. We see that the h data lie in the range

< <∣ ∣h h 3 5min and generally toward the lower end of it as
expected for stability in the MOND analysis.
Thus far we have focused on the six Sedna family

members with stable orbits, the best exemplars of this class.
Figure 8 shows the orbits of all 14 KBOs discussed in the
review by Batygin et al. (2019). Figure 9 shows the orbits of
all 22 KBOs in Table 1 including the eight new ones that
have been tabulated in the Minor Planet Database since the
review of Batygin et al. (2019). As in Figure 3, the orbits and
the direction to the Galactic center are projected into the
ecliptic plane. We see that the alignment between the orbits
and the direction to the Galactic center persists in this larger
data set. Eighteen of the 22 orbits are well aligned. We can
quantify this more precisely using the Kolmogorov–Smirnov
test. Figure 10 shows the staircase corresponding to all 22
objects enumerated in Table 1. The deviation of the staircase
from a uniform distribution expected on the basis of the
null hypothesis is quite noticeable, and we find Δ22=
0.329609K. The corresponding Kolmogorov–Smirnoff
probability is 0.0125K using the formula and 0.0123K
based on our Monte Carlo evaluation described above. Thus,
the null hypothesis that there is no alignment between the
apsidal vectors and n̂G can be ruled out at a high level of
significance. As before, the alignment of the orbits is
consistent with both Planet Nine and MOND hypotheses,
but the additional alignment with the Galactic center
provides further support for MOND.
Finally, we can use the data in Table 1 to compute the values

of ωK and demonstrate that the six KBOs are clustered in the
(eK, ωK) phase space, and moreover the clustering is close to
the approximate location of the fixed point. To this end, it is
useful to first compute the orbit normal l̂K in the XYZ frame.
When the orbit is in the reference orientation, l̂K is along the
positive Z-axis. After, the orbit it brought to the appropriate
orientation l̂K is given by

=
W

- W
⎛

⎝
⎜

⎞

⎠
⎟

ˆ ( )l
i
i

i

sin sin
cos sin

cos
. F8K

We see from Equation (F8) that =ˆ · ˆl Z icosK . The corresp-
onding formula for the frame used in the dynamical analysis is

= ˆ · ˆ ( )l nicos . F9K K G

Figure 7. Plot of the C(u) staircase (blue) for the six KBOs of the Sedna family
that are known to have stable orbits. Also shown is K(u), the cumulative
distribution function for the null hypothesis (red dashed line).
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Since 0� iK� π, it follows that isin 0K and isin K can be
unambiguously calculated from icos K . Next we observe that
according to Equation (F3) a w=ˆ · Ẑ isin sinK . It follows
that

aw = ˆ · ˆ ( )nisin sin . F10K K K G

By a similar argument, we can also show

aw = ´(ˆ ˆ ) · ˆ ( )l nicos sin . F11K K K K G

Note that the right-hand sides of Equations (F10) and (F11) can
be computed from the known forms of all three vectors in the
ecliptic frame. Together, Equations (F10) and (F11) unam-
biguously determine ωK. It may be worth remarking that both
iK and ωK are fixed unambiguously once we have chosen the
reference plane to be perpendicular to n̂G, the direction to the
center of the Galaxy. This choice is dictated by the physics and
is not arbitrary. However, our choice of axes in the reference
plane is arbitrary, and ΩK will be dependent on that choice.
Hence, it is not meaningful to speak of clustering in ΩK or
ϖK= ωK+ΩK, but it is meaningful to examine clustering in
ωK, as we now proceed to do.
Figure 4 shows the clustering of the six KBOs in the (eK, ωK)

plane. The ωK values were calculated using Equations (F9),
(F10), and (F11), and the eK values are those enumerated in
Table 1. These points are shown in blue. Also shown in red in
the same plot are the locations of the corresponding fixed
points (eC, 3π/2) in the quadrupole approximation. We see that
the Sedna family of KBOs is clustered close to the fixed points
in phase space, as predicted. Figure 11 shows that the
clustering in phase space persists when we include all 22
KBOs enumerated in Table 1: the six with stable orbits shown
in the main body of the paper as well as the eight with
metastable orbits and the eight that have appeared in the Minor
Planet Database since the publication of the review by Batygin
et al. (2019).
To strengthen the evidence for phase-space clustering, we

must look to future surveys to provide a larger observational
sample of KBOs of the Sedna family. Also, numerical
simulations of the dynamics will allow for a more precise
location of the fixed point and its domain of stability. These
calculations are underway.

Figure 8. Orbits of 14 KBOs of the Sedna family projected onto the ecliptic
plane. The blue line is parallel to the projection of n̂G onto the ecliptic plane; it
points toward the center of the Galaxy. The orbits of the six KBOs that are
stable are shown in purple; these are the same orbits plotted in Figure 3. Eight
additional KBOs with metastable orbits are shown in green. These 14 KBOs
are the ones considered in support of the Planet Nine hypothesis in the review
by Batygin et al. (2019). The orbital elements are from the Minor Planet
Database and are given in Table 1.

Figure 9. Same as Figure 8 with eight additional KBO orbits plotted (pink
curves). These are the KBOs that have been added to the Minor Planet
Database since the publication of the review by Batygin et al. (2019). The 14
objects plotted in Figure 8 are shown in purple (stable orbits) and green
(metastable orbits).

Figure 10. Plot of the C(u) staircase (blue) for all 22 KBOs listed in Table 1.
These objects meet the criteria used in the review article by Batygin et al.
(2019) to identify potential members of the Sedna family (a � 250 au,
q � 30 au and i < 40°). Also shown is K(u), the cumulative distribution
function for the null hypothesis (red dashed line).
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