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Abstract: The identification of compound fault components of a planetary gearbox is especially im-
portant for keeping the mechanical equipment working safely. However, the recognition perfor-
mance of existing deep learning-based methods is limited by insufficient compound fault samples 
and single label classification principles. To solve the issue, a capsule neural network with an im-
proved feature extractor, named LTSS-BoW-CapsNet, is proposed for the intelligent recognition of 
compound fault components. Firstly, a feature extractor is constructed to extract fault feature vec-
tors from raw signals, which is based on local temporal self-similarity coupled with bag-of-words 
models (LTSS-BoW). Then, a multi-label classifier based on a capsule network (CapsNet) is de-
signed, in which the dynamic routing algorithm and average threshold are adopted. The effective-
ness of the proposed LTSS-BoW-CapsNet method is validated by processing three compound fault 
diagnosis tasks. The experimental results demonstrate that our method can via decoupling effec-
tively identify the multi-fault components of different compound fault patterns. The testing accu-
racy is more than 97%, which is better than the other four traditional classification models. 

Keywords: planetary gearbox; compound fault diagnosis; capsule network; local temporal  
self-similarity; bag of words model 
 

1. Introduction 
1.1. Literature Review 

Planetary gearboxes play an important role in mechanical equipment such as wind 
turbine, helicopter and construction machinery, which generally work under time-varying 
load conditions. The key parts of a planetary gearbox are prone to multiple structural dam-
ages such as wear, broke, pitting and crack, etc. due to the influence of long-term alternating 
stresses. The service performance of a planetary gearbox further endangers the operation 
safety of the entire mechanical equipment. Therefore, it is significant to diagnose the poten-
tial faults of a planetary gearbox [1,2]. 

The internal components of a planetary gearbox are varied and generally work to-
gether with a complex coupling relationship. The fault characteristics are coupled in that 
the failure of several components may simultaneously occur to different degrees. Moreo-
ver, the fault features could be impacted by multi-source excitations such as random im-
pacts, time-varying load, strong noise, multi-interface attenuation and so on. As a result, 
it is very difficult to identify the compound fault of a planetary gearbox [3,4]. 

A series of studies have been carried out for the signal processing methods of a com-
pound fault diagnosis. Since the fault signal is highly unstable with complex frequency 
components, time–frequency methods such as the wavelet transform, ensemble empirical 
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mode decomposition (EEMD), symplectic geometric mode decomposition (SGMD), local 
mean decomposition (LMD), local characteristic-scale decomposition (LCD), variational 
mode decomposition (VMD), etc. are mainly used. Teng et al. [5] proposed a modulation 
model based on wavelet transform, which provided an effective tool for wind power gear-
box compound fault diagnosis; Zhao et al. [6] used the EEMD and feature fusion methods 
to diagnose the composite fault of rolling bearing; Pan et al. [7] proposed an SGMD signal 
decomposition algorithm to decompose the compound fault signals of rotating machin-
ery; Huang et al. [8] combined recursive least squares (RLS) with LMD to diagnose the 
early fault of bearings; Wang et al. [9] proposed an improved LCD method to extract the 
early fault characteristics of bearings; Zhang et al. [10] combined VMD with adaptive max-
imum correlated kurtosis deconvolution (AMCKD) to detect the wind turbine rolling 
bearing faults. Above all, these methods mainly focus on the improvement of the signal 
decomposition ability. However, the subsequent compound fault separation and identifi-
cation rely heavily on expert experience and knowledge, resulting in low recognition ac-
curacy. 

Deep learning (DL) has been used increasingly in the intelligent diagnosis of mechan-
ical equipment. The typical DL-based methods for the intelligent diagnosis of a planetary 
gearbox include: Deep Belief Network (DBN) [11,12], Generative Adversarial Network 
(GAN) [13], Convolutional Neural Network (CNN) [14–16], Long Short-Term Memory 
(LSTM) [17], etc. In terms of compound fault diagnosis, Shao et al. [12] combined adaptive 
DBN and CNN to diagnose the multiple faults of rolling bearings; Zhao et al. [13] pro-
posed a GAN model to improve the diagnosis performance under data imbalance condi-
tions; Zhang et al. [14] combined fast spectral kurtosis (FSK) with multi-branch CNN for 
multi-fault diagnosis of wind turbine gearboxes. 

However, most classification models treat compound fault as a new fault class and 
output single label, which cannot provide a true sense of decoupling identification of the 
compound fault. In fact, the compound fault is not exactly a new fault class since its fault 
information consists of corresponding fault characteristics of single faults. In addition, the 
training process of a DL-based model requires a large number of training samples. How-
ever, the fault samples are relatively rare in practice, and random combinations of differ-
ent single faults can generate various compound faults. It is impractical to collect sufficient 
compound fault samples for classification model training. Therefore, it is necessary to pro-
pose a new intelligent diagnosis method, which is especially suitable for compound fault 
diagnosis, and has the following functions: (1) only the single fault samples are required 
for model training, and the trained model can use the fault knowledge learned from the 
labeled single fault samples to identify the fault components of compound fault test sam-
ples; (2) the model can predict multi-labels for test samples when making classification 
decisions. 

The typical multi-label classification methods include binary relevance, multi-label 
K-NN, Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and 
Transformer structures [18,19], etc. Capsule Network (CapsNet) is a novel type of network 
proposed by Hinton et al. [20] in 2017. It utilizes capsule vectors rather than scalar neurons 
as the input and output of the network layers, which overcomes the problem that tradi-
tional networks cannot extract the spatial feature information. Meanwhile, it cancels the 
pooling layer to avoid the loss of valuable information, and can conduct multi-label out-
puts. It has been increasingly used in the fields of electroencephalography (EEG) emotion 
recognition [21], image and text classification [22,23], etc. In particular, it can identify and 
separate the overlapped objects [22], which is an important feature for the identification 
of compound faults. 

In terms of single fault diagnosis, Liu et al. [24] proposed an improved multi-scale re-
sidual generative adversarial network (GAN) and feature enhancement-driven capsule net-
work to solve the imbalanced fault data problem. Li et al. [25] proposed a dual convolu-
tional–CapsNet for the fault diagnosis of a planetary gearbox under different rotation con-
ditions. In terms of compound fault diagnosis, Liang et al. [26] integrated CapsNet with 
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stockwell transform (ST) and data augmentation generative adversarial networks (DA-
GANs) to diagnose the single and simultaneous faults for a wind turbine gearbox. Xu et al. 
[27] developed an improved deep convolutional–CapsNet to diagnose the sun gear–planet 
compound faults of an RV gearbox; Huang et al. [28] adopted a convolutional–CapsNet 
model with a multi-label classifier to decouple the gear-bearing compound faults of auto-
motive transmission. Then, Huang et al. [29] combined deep CapsNet and ensemble learn-
ing to improve the compound fault identification accuracy of an automotive gearbox. 

To achieve accurate identification, sufficient feature information needs to be fed into 
the primary layer to ensure the CapsNet is working efficiently, which depends on the fea-
ture extractor of the model. However, most models use the convolutional network to ex-
tract features from raw signals; the feature extraction process is considered as a “black 
box”, which has the limitation in compound fault feature extraction. As a result, the clas-
sification performance of the diagnosis model has been limited. This motivates us to de-
velop a more suitable feature extractor to directly obtain high representation feature vec-
tors from raw signals and ultimately increase the classification ability. 

To address this issue, a new feature extractor is constructed to optimize CapsNet, 
which combines local temporal self-similarity (LTSS) and bag-of-words (BoW) methods, 
named LTSS-BoW, for feature extraction. This model is improved from the temporal self-
similarity method [30], which has been successfully used to recognize the image action 
sequences due to its advantage of cross-view structural stability. In order to reduce the 
feature dimension and increase the computing efficiency, a sliding window is utilized to 
divide the raw time-series into a local subseries. On this basis, LTSS matrices of the sub-
series are constructed and the gradients of LTSS matrices are calculated. Then, the multi-
dimensional LTSS feature vectors are obtained by moving the sliding window with a fixed 
step size to traverse the entire sample signal. The LTSS feature extraction leads to much 
data redundance, and thus brings a large computation burden. Therefore, BoW is utilized 
to further improve computing efficiency, which has the advantages of strong anti-noise 
ability and good robustness [31,32]. Finally, the histogram feature vectors are treated as 
the inputs of the CapsNet layers. 

1.2. Main Contributions of This Paper 
The main contributions of this work are summarized as follows: 

(1) A novel framework, named LTSS-BoW-CapsNet, is proposed to intelligently identify 
the fault components contained in the compound fault signals of the planetary gear-
box. 

(2) An LTSS-BoW-based feature extraction method is presented to increase the identifi-
cation performance, which can be used to directly obtain high representation feature 
vectors from raw signals. 

(3) A multi-label classifier based on CapsNet is designed to predict multi-labels for com-
pound fault classification decisions, in which the dynamic routing algorithm and av-
erage threshold are adopted. 

(4) Verification experiments are conducted to demonstrate the advantages of the pro-
posed method. 

1.3. Structure of the Rest of This Paper 
The rest of this paper is organized as follows: Section 2 introduces the basic theoreti-

cal background of the LTSS-BoW feature extractor and CapsNet, and presents the overall 
diagnostic scheme of the proposed LTSS-BoW-CapsNet method in detail. Section 3 shows 
the experimental verification and comparative analysis results. The conclusions are drawn 
in Section 4. 
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2. Research Methodology 
2.1. Compound Fault Description 

Based on the author’s previous research works [33,34], Figure 1 exhibits the simu-
lated vibration signals of a planetary gear set with the planet gear crack, sun gear crack 
and compound gear cracks, respectively. For the single crack fault cases, a series of abnor-
mal impulses with a fixed period appear in the time-domain as the cracked tooth engages 
with the matching gear. As shown in Figure 1d, the compound fault-related features con-
tain the information of two kinds of single fault-induced features. However, it is not 
simply the superposition of single fault-induced features. When two cracked teeth are en-
gaged simultaneously, the two types of anomalous pulses will be coupled and form new 
fault features; meanwhile, the single fault-induced features are also deformed. Therefore, 
it is difficult to identify the fault components contained in the compound fault signal. 

 
Figure 1. The simulated vibration signals of a planetary gear set with gear cracks. (a) Planetary gear 
set; (b) planet gear crack; (c) sun gear crack; (d) compound gear cracks. 

The main limitations of existing compound fault diagnosis models are: (1) most re-
searchers label compound faults as a new fault class, and the compound fault samples 
need to be fed into the network with other single fault samples for model training [12–14]. 
Therefore, the proposed network cannot work effectively if the compound fault training 
samples are insufficient. However, compound faults are not exactly a new fault class since 
it contains the fault information of single fault components. Hence, it is possible to use the 
fault knowledge learned from the labeled single fault samples to identify the fault com-
ponents of the compound fault; (2) the traditional neural networks generally use a softmax 
classifier, which only identifies the most obvious fault class [26,27]. Therefore, it cannot 
output multiple independent labels at the same time, so it is unable to identify via decou-
pling the fault components contained inside the compound fault. In addition, it is more 
difficult to distinguish the fault components in the condition that the single fault-related 
features are close to each other. 
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2.2. Overall Framework of the Proposed Method 
In order to intelligently identify the fault components contained in the compound fault 

of the planetary gearbox, this work proposed a novel diagnostic framework, which mainly 
includes two parts: the LTSS-BoW model is the feature extractor, and CapsNet makes multi-
label classification decisions. The overall framework of the proposed method is shown in 
Figure 2. Each part is described in the following. 

 
Figure 2. Overall framework of the proposed method. 

2.3. LTSS-BoW Feature Extractor 
2.3.1. LTSS Feature Extraction 

LTSS is an optimized data representation method that utilizes local structural infor-
mation of time-series. Compared with conventional statistical features, LTSS feature ma-
trices contain more useful information including sequential characteristics and change 
trends. 

Figure 3 shows the proposed LTSS feature extraction scheme, which includes three 
steps: (1) Construct the LTSS matrix from the raw signal. At first, the sliding window is 
utilized to divide the raw signal sample into a local subseries. On this basis, LTSS matrices 
of the subseries are constructed. (2) Extract the gradient feature of the LTSS matrix. The 
upper right triangular elements of the LTSS matrix are divided into several blocks. Then, 
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the gradient of each block is calculated to construct the block-based descriptor. (3) Trans-
form the signal sample to a sequence of LTSS feature vectors. The signal samples are rep-
resented as a sequence of LTSS feature vectors, and all these samples are then gathered 
together to form a feature space. The detailed steps are given as follows. 

 
Figure 3. The flowchart of LTSS model. 

Step 1: Construct the LTSS matrix from the raw signal 
The raw vibration signals measured under each health condition are divided into 

non-overlapping and equal-length signal samples. The sliding window with a length of 
2 1m t= Δ +   is utilized to collect the data points around time point t from time step 

t t− Δ  to t t+ Δ . The dataset ( )y t  can be denoted as: 

( ) ( ) ( ) ( ){ }, , , ,y t x t t x t x t t= −Δ + Δ   (1)

Then, the Euclidean distance of each two data points in ( )y t  is calculated to con-

struct the LTSS matrix ( )D t : 

11 1

1

( )
m

ij

m mm

d d
D t d

d d

 
  = =   
  


  


 (2)

( ) ( )ijd x i x j= −  (3)
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where ijd denotes the Euclidean distance between the ith element and the jth element in

( )y t , and m is the length of ( )y t , i.e., 2 1tΔ + . 

Step 2: Extract the gradient feature of the LTSS matrix 
Since the LTSS matrix is symmetrical, only the upper right triangular elements are 

considered in order to save computing resources. A block-based descriptor is employed 
to capture the structural information hidden in the LTSS matrix. At first, the whole matrix 
is divided into several blocks with a size of n n× ; Then, the gradient of each block is cal-

culated to obtain column vector qb ; Finally, all these vectors are concatenated as a multi-
dimensional vector tp , which is named as the upper right triangular block-based de-
scriptor: 

1 2
T T T

t qp b b b =  ， ， ，  (4)

where T stands for transpose; q is the number of blocks. 

As shown in Figure 3, the detailed procedure to calculate the gradient vector qb  is 

as follows. Taking a block with a size of n n×  as an example, the gradient in x direction 

xp  is defined as: 

[ ]1 2, , ,x x x xnp l l l= 
 

(5)

1 2 1

1 1

1

2

x

i i
xi

xn n n

l r r
r rl

l r r

+ −

−

= −
 − =


= −  

(6)

where xnl  is the column vector of xp ; nr  is the column vector of the block. The similar 

calculation can be used to get the gradient in y  direction yp . 
Then, an 8-bin histogram-based gradient direction is defined as:  

( )

( )

( )

arctan , 0

arctan 0

2 arctan 0, 0

y
x y

x

y
x

x

y
x y

x

p
angel if p p

p

p
angel if p

p

p
angel if p p

p

π

π

  
= >  

 
   = + <  

 
   = + > <   

 (7)

The gradient vector qb  is formed by counting the number of elements within the 
range of each gradient direction. 
Step 3: Transform the signal sample to a sequence of LTSS feature vectors 

A sequence of feature vectors tp  can be obtained by moving the sliding window 
with a fixed step size to traverse the entire sample signal, and repeating the above steps. 
Then, the signal sample can be transformed to a sequence of LTSS feature vectors as: 

1 2, , , , ,T T T T
j kZ p p p p =     (8)
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where 
jp  is the feature vector extracted from the jth sliding window, and k is the num-

ber of sliding windows. 

2.3.2. BoW Model 
The LTSS feature extraction leads to much data redundance, and thus brings a large 

computation burden. The BoW model is a simplifying assumption to construct a global 
representation from local features, which can be used to improve computing efficiency, 
making it common in many fields such as natural language processing and image/video-
based action recognition [31,32]. As shown in Figure 4, for the learning phase, the BoW 
model performs an adaptive k-means clustering algorithm to sort all original LTSS feature 
vectors generating a codebook. For a new feature sample, a histogram-based encoding 
(HBE) strategy is used to encode it based on the codebook. The statistical feature histo-
gram is subsequently computed as the inputs of the CapsNet layers. 

 
Figure 4. The flowchart of BoW model. 

Step 1: Form the codebook using clustering algorithm. 
Based on Section 2.3.1, the signal samples are represented as a sequence of LTSS fea-

ture vectors iZ , and all these samples are then gathered together to form a feature space: 

1

s
ii

T Z
=

=  (9)

where s is the number of samples. 
In this paper, the typical k-means clustering algorithm is employed to automatically 

learn the most representative words, i.e., codewords, which are determined by the cluster 
centers. Further, all these codewords form a codebook with a size of K  , i.e., 
{ } , 1, 2 , ,iC i K=  , where K  is the cluster number, which has great influence in cluster-
ing results. 

Several approaches have been proposed to select the appropriate cluster number [35]. 
Among them, the Davis–Bouldin (DB) index is a promising method because of its simplic-
ity, which is defined as the average similarity measure of each cluster with its most similar 
cluster, and is expressed as: 

,
, 1

1 max
K

i ji ji j
DB D

K ≠=

=   (10)
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where the similarity ,i jD  is the ratio of within-cluster distances to between-cluster dis-
tances (see Figure 4), and the expression is: 

,
,

i j
i j

i j

d d
D

d
+

=  (11)

where id  denotes the average distance of all points in the i-th cluster to the cluster cen-

ter, jd  denotes the average distance of all points in the j-th cluster to the cluster center, 

,i jd  denotes the Euclidean distance between the i-th and j-th cluster centers. 
According to Equations (10) and (11), the smaller the DB index, the better the cluster-

ing results. So, the best cluster number corresponds to the minimum DB index. 
Step 2: Encode the feature sample using histogram-based encoding (HBE) strategy 

Histogram is an accurate representation of the distribution of numerical data, which 
has been widely employed in image processing, quality evaluation and time-series pro-
cessing [29]. Assume that a new signal sample Y  has been expressed as the LTSS feature 
vector form, for each point of the LTSS feature vector, the Euclidean distance between it 
and all the codewords in the codebook are calculated, and the codeword with minimum 
Euclidean distance is assigned to replace this point. Thus, the LTSS feature vector is de-
scribed by a series of nearest codewords, and the frequency of each codeword is gathered 
to construct the statistical feature histogram, i.e., { }1 2, , , KH h h h=  . 

2.4. Capsule Network for Decision-Making 
The framework of CapsNet is shown in Figure 5. CapsNet usually contains a primary 

capsule layer and digital capsule layer. Different from the traditional neural network, the 
main improvements of CapsNet are: (1) traditional scalar neurons are replaced by capsule 
vectors to further mine the spatial information of features; (2) the dynamic routing algo-
rithm is adopted to transmit information between the primary capsule layer and digital 
capsule layer, which effectively reduces the loss of feature information. 

The specific parameters of CapsNet include the number and dimension of the cap-
sules. For the primary capsule layer, the number of capsules is determined by the best 
cluster number K  of the BoW model, and the dimension of the capsules is the same as 
the number of sliding windows used in the LTSS model. For the digital capsule layer, the 
number of digital capsules is the number of classifications, and the module length of the 
digital capsule vector represents the classification probability. Since the digital capsules 
are independent of each other, it can predict multi-labels for test samples when making 
classification decisions; therefore, CapsNet is adopted as the fault classifier. 

The entire process of the dynamic routing algorithm can be divided into four steps 
as follows. The margin loss function and average threshold adopted for decision-making 
are described in Sections 2.5 and 2.6, respectively. 

 
Figure 5. The framework of CapsNet. 
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Step 1: The input vectors iu   of the primary capsule layer are the extracted feature 
vectors by the previous LTSS-BoW model. Each primary capsule is multiplied by an 
independent weight matrix to predict the high-level capsule, which can be expressed as: 

,i j ij iu W u= ⋅  (12)

where the subscripts i  and j  denote the i th primary capsule and j th digital capsule, 

respectively. ,i jW  is the weight matrix, and j iu  denotes the prediction vector. 

Step 2: The output vector js  is obtained by the weighted sum of all the intermediate 

prediction vectors j iu , which can be expressed as: 

,j i j j i
i

s c u= ⋅  (13)

where ,i jc  is the coupling coefficient determined by the softmax function, which can be 

regarded as the connection probability that j iu  should be coupled to js . The process 

can be expressed as: 

( ) ( )
( )
,

, , ,

,
1

exp
softmax 0 1

exp

i j
i j i j i jk

j
i j

j

b
c b c

b
=

= = ≥ =


，  (14)

where k is the number of digital capsules. ,i jb  is the prior probability of ,i jc . In the 

forward propagation, ,i jb  is initialized to zero and updated by dynamic routing as Al-
gorithm 1. 

Step 3: The final output vector jh  of the digital capsule layer can be obtained by the 

nonlinear mapping of js   using the squashing function. The squashing function can 

compress the vector modulus length within the range of [ )0,1  without changing its 
orientation, which can be expressed as: 

( )
2

2squashing
1

j j
j j

jj

s s
h s

ss
= = ⋅

+
 (15)

Step 4: The dynamic routing process is executed as shown in Algorithm 1 to update ,i jb : 

, ,i j i j j j ib b h u= + ⋅  (16)

where the dot product j j ih u⋅  is used to evaluate the similarity between the interme-

diate prediction vector j iu   and the output vector jh  . The higher the similarity, the 

larger the values of ,i jb  and ,i jc . The optimal solution of the coupling coefficient ,i jc  
can be obtained by continuous updating. 

Ultimately, the final output vector jh  is returned, and the modulus length of the 

vector represents the classification probability pred
jp . 
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Algorithm 1 Dynamic routing algorithm 

1: Enter: j iu
 

2: Initialization parameters: 0
,i jb  

3: Set the number of iterations T 

4: For 1 tor T= do 

5: ( )1, ,softmaxr r
i j i jc b −=

 

6: 
,

r
j i jj i

i
s u c=

 

7: ( )squashingr r
j jh s=

 

8: 
1

, ,
r r r
i j i j j j ib b h u−= + ⋅

 

Return jh  

Among them, 

( )
( )
,

,

,
1

exp
softmax :

exp

i j
i j k

i j
j

b
c

b
=

=


 

( )
2

2squashing
1

r r
j jr

j rr
jj

s s
s

ss
= ⋅

+

2.5. Margin Loss Function 
The margin loss function is adopted as the objective function to calculate the loss 

value. Compared with the cross-entropy loss function, the boundary loss function can di-
rectly measure the similarity between different classes of samples based on the Euclidean 
distance, which can expand the inter-class differences and reduce the intra-class differ-
ences. The expression is: 

( ) ( ) ( ){ }2 2

1 1
max 0, 1 max 0,

k k
pred pred

j j j j j
j j

J L T m p T p mλ+ −

= =

= = − + − −   (17)

In the formula, k is the number of fault classes. jT  is the classification indicator function 

and 1jT =  represents that the input sample belongs to class j, otherwise 0jT = . pred
jp  is 

the predicted probability that the input sample belongs to class j. m +  denotes the ex-
pected upper bound of the predicted probability when the sample belongs to class j. m −  
denotes the expected lower bound of the predicted probability when the sample does not 
belong to class j. λ  is the weight penalty factor. 

2.6. Average Threshold 

An adaptive average threshold ϕ is set to limit the number of output labels. If 
pred

jp  
is greater than the threshold ϕ, the jth class label output is 1, which means the jth class 
exists. Otherwise, the jth class label output is 0, which means the jth class does not exist. 
The process can be expressed as: 



Sensors 2024, 24, 940 12 of 22 
 

 

( )
1

1=
k

pred pred
j

j
average p p

k
ϕ

=

=   (18)

1, pred
j jL if p ϕ= >  (19)

[ ]1 2, ,j kL L L L L∈ =   (20)

where jL  is the output label of the jth class. L denotes the set of all the predicted class 
labels. 

2.7. Diagnosis Process 
Taking advantages of LTSS-BoW-based vibration feature extraction, coupled with 

CapsNet-based decision-making, a novel framework is proposed to diagnose the com-
pound fault of a planetary gearbox. To summarize, the detailed steps are given below and 
shown in Figure 6. 
(1) Collect the vibration signals of the planetary gearbox in different health states, divide 

the raw signal into equal-length signal samples and normalize the data samples. 
(2) Divide the dataset into a training dataset and a test dataset. Note that the training 

dataset only contains the normal and single fault samples. The test dataset is com-
posed of compound fault samples. 

(3) Design the LTSS-BoW feature extractor and convert all the samples into feature ma-
trices. 

(4) Train the CapsNet model based on the training dataset. The trained model is used to 
identify the fault components of the test samples and output the predicted probabil-
ity of each fault class. 

(5) Compare the predicted probability of each fault class with the average threshold for 
class label output. 

 
Figure 6. The diagnosis flowchart of proposed method. 
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3. Experimental Verification 
To evaluate the effectiveness of the proposed LTSS-BoW-CapsNet diagnosis method, 

a series of experiments were conducted on our planetary gearbox test rig. The experi-
mental results are analyzed in three aspects: (1) demonstrate the multi-label output results 
of CapsNet; (2) compare the diagnosis results of our proposed method with other meth-
ods; (3) perform feature visualization to further evaluate the feature learning ability of the 
proposed method on the compound fault diagnosis tasks. 

3.1. Experimental Setup and Data Description 
As shown in Figure 7, the test rig for a planetary gearbox consists of the drive motor, 

planetary reducer, magnetic powder brake, three-axis acceleration sensor installed on the 
gearbox and the Dewetron acquisition system. As shown in Figure 8, four kinds of single 
fault patterns were separately seeded on the planetary gearbox, which are sun gear tooth 
crack, planet tooth crack, planet tooth surface pitting and ring gear tooth crack, denoted 
as SC, PC, PP and RC, respectively. Three kinds of compound fault patterns were simu-
lated in the experiments, which are SC–PC, SC–PP and SC–RC, respectively. 

 
Figure 7. Planetary gearbox test rig. 

 
Figure 8. Gear faults. 

In the experiment, the sun gear is the input component, and the carrier is the output. 
The rotation speed is set to 1200 rpm, and the load torque is 5 N·m. Setting the sampling 
frequency to 10,240 Hz, the vibration signal for each normal or faulty pattern is collected 
with a sampling time of 30 s. The raw signal is divided into non-overlapping signal sam-
ples and each sample has 2048 data points. 

In order to reduce the impact of raw data on the diagnostic model, the normalization 
regularization method is adopted to normalize the raw data to between 0 and 1, and the 
corresponding formula is as follows: 

( )
( )

average
max average

i i
i

i i

N N
M

N N
−

=
−

 
(21)
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Figure 9 shows the normalized time-domain signal for each fault pattern. It can be 

observed that the gear fault can induce impacts with a fixed period, i.e., st , pt , rt , in the 
time-domain signal. Compared with the single fault patterns, the coupling effect between 
multiple faults makes the vibration characteristics more complicated in compound fault 

cases. It is worth noting that new fault features occur due to the coupling effects, i.e., spt  
and s rt ; meanwhile, the single fault-induced features are also deformed. Therefore, it is 
difficult to manually identify the compound fault components from the raw signal. 

 
Figure 9. Normalized time-domain signal for each fault pattern (a) N, (b) SC, (c) PC, (d) PP, (e) RC, 
(f) SC–PC, (g) SC–PP and (h) SC–RC. 
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For the proposed diagnostic approach based on LTSS-BoW and CapsNet, three com-
pound fault diagnosis tasks shown in Table 1 are set up. The normal and single fault sam-
ples are used for training based on the 5-fold cross-check method. After the model training 
process, the compound fault samples are used for testing. The trained model needs to 
predict multiple fault labels for the compound fault test samples based on the knowledge 
learned from the single fault samples. 

Table 1. Compound fault diagnosis tasks. 

Task Test Dataset Training Dataset Training Samples Test Samples 
1 SC–PC N, SC, PC 100 10 
2 SC–PP N, SC, PP 100 10 
3 SC–RC N, SC, RC 100 10 

3.2. Parameter Setting 
3.2.1. Parameters of LTSS-BoW Model 

The length of sliding window 2 1m t= Δ +   and cluster center number K have a 
great influence in the calculation efficiency and accuracy. Considering the calculation 
complexity of the LTSS matrix, the parameter tΔ   is set to take value from the range

[ ]416，  with a step size of 3. K  is adaptively determined by DB index as described in 
Section 2.3.2. The smaller the DB index, the better the clustering results, so the best cluster 
number is set to 125 as shown in Figure 10. For each sample, the output matrix size is 
125 5×  after extracting basic features through the LTSS-BoW model. 

 
Figure 10. Trend of DB index. 

3.2.2. Parameters of CapsNet 
The extracted features are fed into the primary capsule layer as inputs. The number 

of digital capsules is determined by the number of categories to be classified. During the 
training process, the Adam optimizer with the initial learning rate of 0.001 is adopted to 
update the parameters. The iteration of dynamic routing r  is set to 3. The batch size is 
set to 10. The margin loss function is adopted to calculate the loss value. The structural 
parameters of the network in this paper are greatly reduced, which is more conducive to 
improve the training speed. The specific parameters used for the LTSS-BoW model and 
CapsNet are summarized in Table 2. 

Our approach is based on the Pytorch framework and trained on an NVIDIA RTX3070 
GPU. 
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Table 2. Model parameters. 

Layer Parameters Value 

LTSS-BoW tΔ  4, 7, 10, 13, 16 
The cluster center number K 125 

CapsNet 

The number of primary capsules 125 
The dimension of primary capsules 5 

The number of digital capsules 3 
The dimension of digital capsules 10 

The iteration of dynamic routing r  3 

3.3. Diagnosis Results 
3.3.1. The Predicted Probability for Multi-Label Output 

For compound fault diagnosis task 1, the predicted probability values for each pat-
tern are listed in Table 3 and shown in Figure 11. The LTSS-BoW-CapsNet model is trained 
based on the signal samples of normal, SC and PC patterns. Then, the trained model is 
tested based on the signal samples of an SC–PC compound fault pattern. In our experi-
ments, each task was performed independently ten times to eliminate the influence of 
randomness. For all tests, the predicted probability values for the existence of SC and PC 
fault patterns are significantly higher than the average threshold, while the predicted 
probability values for normal patterns are far below the threshold. Therefore, the class 
labels of SC and PC fault patterns are equal to 1. Thus, the model accurately identifies the 
fault components of the SC–PC compound fault pattern and can output two single labels 
simultaneously. A similar procedure can be used to analyze the multi-label output results 
in task 2 and 3. 

Table 3. The predicted probability for each pattern in task 1. 

Number of Tests 
Predicted Probability 

Average Threshold 
SC PC N 

1 0.72 0.75 0.07 0.5133 
2 0.77 0.61 0 0.46 
3 0.74 0.7 0.01 0.4833 
4 0.76 0.7 0.03 0.4967 
5 0.78 0.65 0.01 0.48 
6 0.73 0.74 0.07 0.5133 
7 0.78 0.68 0.04 0.5 
8 0.77 0.7 0.06 0.51 
9 0.79 0.75 0.21 0.5833 

10 0.76 0.67 0.01 0.48 
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Figure 11. The predicted probability values for each pattern in task 1. 

3.3.2. Comparative Analysis 
To validate the effectiveness of the proposed LTSS-BoW-CapsNet method, four mod-

els were selected to compare the diagnosis performance. The comparison models include 
an SVM-based model, a kNN-based model, a CNN-based model and a CNN-CapsNet 
model, which are briefly described below: 
(i). SVM-based and kNN-based models. To compare the effect of a classifier, two widely 

used classifiers SVM and kNN are used for making classification decisions. These 
two methods extract features based on the same LTSS-BoW model. 

(ii). CNN-based model. CNN is a typical neural network with convolution and pooling 
operations. The classical LetNet5 model is used here for comparison. 

(iii). CNN-CapsNet model [26]. This method uses a convolution network as a feature ex-
tractor, and a capsule network as the classifier. The parameter settings are described 
in Ref. [26]. 
In our experiments, each diagnosis task was performed independently ten times to 

obtain the average accuracy. Table 4 lists the accuracies of the four models on the com-
pound fault diagnosis tasks. The results show that the SVM-based, kNN-based and CNN-
based models failed in all three tasks due to the limitation of the classification principle. 
The CNN-CapsNet model only identifies the fault components of SC–RC and failed in the 
tasks SC–PC and SC–PP. The proposed LTSS-BoW-CapsNet method performed well in all 
tasks with an accuracy of more than 97%. This demonstrates that the proposed method 
can identify via decoupling the fault components and have better stability for different 
types of compound fault diagnosis. 

Table 4. Diagnosis accuracies of all the models. 

Method Task 1 Task 2 Task 3 
LTSS-BoW-SVM 0% 0% 0% 
LTSS-BoW-kNN 0% 0% 0% 

CNN 0% 0% 0% 
CNN-CapsNet 0% 0% 100% 

Our proposed method 100% 97% 100% 
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To further visually analyze the diagnosis results, the confusion matrices and the label 
outputs of four diagnosis methods (LTSS-BoW-SVM, CNN, CNN-CapsNet and the pro-
posed LTSS-BoW-CapsNet) for three diagnosis tasks are displayed in Figure 12 and Figure 
13, respectively. 

task 1 task 2 task 3 

Figure 12. Confusion matrices of four diagnosis methods for three compound fault diagnosis tasks 
(a–c) LTSS-BoW-SVM model; (d–f) CNN model; (g–i) CNN-CapsNet model; (j–l) LTSS-BoW-Cap-
sNet model. 

It can be clearly seen that the LTSS-BoW-SVM and CNN models only output single 
class labels. The reason is that the traditional classifiers identify the most obvious features 
and output the most likely single fault label for compound fault diagnosis task. Therefore, 
the traditional classifiers cannot output multiple independent labels at the same time; it is 
unable to identify via decoupling the fault components contained in the compound fault. 

CNN-CapsNet identifies the SC and RC fault components contained in the SC–RC 
compound fault, while wrongly identifying the SC–PC and SC–PP compound faults as an 
SC single fault. The reason could be the fault features of SC are more obvious than PC and 
PP faults in the compound fault signals. Therefore, the CNN has the limitation in com-
pound fault feature extraction, especially in the case that one fault component has greater 
influence than the other one. 

The proposed LTSS-BoW-CapsNet model successfully identifies the fault compo-
nents contained in the compound faults in three tasks, which indicates that the LTSS-BoW 
model has better feature extraction ability. Moreover, the CapsNet model can output 
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multi-labels due to its unique classification principle. Above all, the proposed model has 
significant advantages in compound fault diagnosis. 

 
Figure 13. Label outputs of four diagnosis methods for three compound fault diagnosis tasks (a–c) 
LTSS-BoW-SVM model; (d–f) CNN model; (g–i) CNN-CapsNet model; (j–l) LTSS-BoW-CapsNet 
model. 

Additionally, a t-SNE visual diagram is used to downscale the deep feature embed-
ding and obtain the feature distribution of the CNN-CapsNet and LTSS-BoW-CapsNet 
models. As shown in Figure 14, comparing the feature results extracted by the high-level 
capsule layer in task 1, it can be seen that the class spacing between the SC–PC pattern 
and SC pattern is much closer than the class spacing with the PC pattern for the CNN-
CapsNet method, which makes it easy to mistakenly identify the SC–PC class as SC. How-
ever, the class spacing distribution between the SC–PC pattern and two single fault pat-
terns is uniform and clear for the LTSS-BoW-CapsNet method, so the fault components 
contained in the compound fault can be effectively identified. It indicates that the use of 
LTSS-BoW can enhance the ability of the network model to extract coupling features. 
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(a) (b) 

Figure 14. t-SNE visual diagrams in task 1 (a) CNN-CapsNet, (b) LTSS-BoW-CapsNet. 

4. Conclusions 
In this paper, a novel LTSS-BoW-CapsNet framework is proposed to diagnose the 

compound fault of a planetary gearbox. An improved LTSS-BoW feature extractor is con-
structed to extract fault feature vectors, which has the advantages of high feature extrac-
tion efficiency and strong robustness. Then, a multi-label classifier based on CapsNet is 
designed. The dynamic routing algorithm and average threshold are adopted to predict 
multi-labels for compound fault components recognition. 

The effectiveness of the proposed LTSS-BoW-CapsNet method is evaluated by pro-
cessing three compound fault diagnosis tasks. The experimental results demonstrate that 
our proposed approach can effectively identify via decoupling the multi-fault components 
contained in the compound fault signals of planetary gearbox. The testing accuracy is 
more than 97%, which is better than the other four traditional classification models. The 
trained model can only use the fault knowledge learned from the labeled single fault train-
ing samples to identify the fault components of compound fault test samples. Therefore, 
it can solve the problem that the compound fault samples are insufficient in practice. 

This research only realized the diagnosis of compound faults containing two types 
of faults. However, the compound fault of a planetary gearbox could be more complex in 
practice. Therefore, in future work, the proposed method would be improved by using 
multi-channel signal fusion and feature fusion, so that it can identify more fault compo-
nents via decoupling and achieve better identification performance. 
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