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Abstract: Aiming to address problems such as low sampling success rate and long computation 

time in the motion planning of a dual-arm cooperative system with multiple constraints, this paper 

proposes an Informed-Bi-Quick RRT* algorithm based on offline sampling. First, in the process of 

pre-sampling, the new algorithm relaxes the approximation of constrained manifolds by introduc-

ing the idea of incremental construction, and it incorporates the stochastic gradient descent method 

to replace global random sampling with local random sampling, which enriches the data set and 

shortens the offline sampling time of the data set. Second, the new algorithm improves the original 

Quick-RRT* algorithm by combining the two-tree idea and the multi-target bias expansion strategy, 

and it improves the adaptability of the algorithm to different obstacle environments. In addition, 

the loosely constrained motion and tightly constrained motion in the two-arm cooperative system 

are analyzed, and the adaptive planning of the two-arm trajectory in different motions is described 

in detail. In this paper, the two-arm cooperative model constructed with UR5 and UR10 robot arms 

is studied, and the ability of the proposed algorithm to deal with multiple constraints is verified by 

simulating assembly and handling tasks. The experimental results show that compared with other 

methods, the proposed algorithm has obvious advantages in path quality and planning efficiency.  

Keywords: two-arm collaboration; constrained sampling; offline-based sampling; loose constraints; 

tight constraints 

 

1. Introduction 

The basis of the coordinated motion realization system is to perform reasonable mo-

tion planning according to the operation scene [1,2]. With the continuous expansion of the 

application scenarios of the two-armed cooperative system, increasing numbers of task 

constraints are faced, such as end-effector constraints, closed-loop constraints, and geo-

metric constraints [3]. Planning complex cooperative systems is an important and specific 

problem when many constraints need to be considered in special cases. At present, the 

mainstream motion-planning methods [4,5] that deal with a single constraint are rela-

tively common and effective, but many algorithms have certain limitations in the face of 

dealing with multiple constraints [6–9]. For example, methods based on Inverse Kinemat-

ics (IK) [10] are traditional methods for dealing with end-effector constraints of redundant 

robotic arms that can directly evaluate constraints and sample target poses. In the face of 

multiple end-effector constraints, the IK-based response control method [11,12] relaxes 

the hard geometric constraints to soft ones based on cost through nonlinear optimization. 

Under operator supervision, this optimization is feasible. Optimizer-based programming 

methods [13,14] are effective for everyday operational tasks, adding kinematic constraints 

to the optimizer to generate a trajectory that follows a given path. Long et al. [15] formed 

a constrained operable polyhedron that help generate trajectories in optimization-based 
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motion planners. However, these two types of algorithms share the same problem of being 

easily trapped in local minima and having difficulty dealing with complex paths with 

multiple constraints [16,17]. 

Sampling-based planning methods [18–22] are preferred for solving obstacle con-

straints in high-dimensional configuration spaces due to their adaptability. However, 

when faced with multiple task constraints, sampling planning can present challenges. The 

main difficulty arises from the requirement that the configuration satisfies the constraint 

function, which defines the manifold in the configuration space. Sampling-based motion-

planning algorithms often struggle to uniformly sample the configuration space and ob-

tain constrained configurations. 

The planning methods based on multi-constraint sampling include projection, con-

tinuous, and offline sampling [23]. The projection-based method finds the configuration 

that satisfies the constrained function by solving the system of constrained equations. The 

projection operator then obtains the configuration and maps it to the implicit manifold. 

This method was first used by Yakey et al. [24] for the closed-loop control of a parallel 

manipulator. The authors apply the projection idea to general end-effector constraints and 

optimize the projection process using stochastic gradient descent and Jacobian gradient 

descent. For instance, Berenson et al. [25] combine the Jacobian matrix projection method 

with C-space sampling to move the sample onto the constrained manifold and solve the 

motion-planning problem in high-dimensional space with end-effector a�itude and joint 

torque constraints. Recently implemented planners can solve complex combinations of 

constraints using projections with general constraints. For example, humanoid path plan-

ner (HPP) [26,27] systems combine explicit and implicit manifold constraints into more 

efficient projections. Projection enforces strict adherence to the constraints, but it can result 

in a lack of available information, and the iterative projection process consumes significant 

computational resources, leading to unacceptably long computation times. 

The continuation-based method generates the tangential space of an implicit mani-

fold from a known target configuration. By applying the projection to a configuration 

sampled within the tangential space, an efficient local motion can be generated. The tan-

gent spaces are grouped together to create piecewise linear approximations or continua-

tions of the manifold, resulting in a new configuration close to the target manifold [28]. 

The study utilized early manipulators constrained by general end-effectors [29] and re-

dundant manipulators constrained by curve tracking [30]. To compute the solution of a 

constrained manifold, some methods [31,32] combined with numerical continuation tech-

niques define the atlas as a piecewise linear approximation of a constrained manifold in 

the tangent space. This is achieved by gradually building an atlas interleaved with the 

space, allowing planners to explore or reuse the results of previous runs online. However, 

linear approximation, or continuation, also has clear disadvantages. In addition to the ex-

pensive calculation of the matrix, when the manifold becomes highly curved, the tangen-

tial motion quickly deviates from the surface of the manifold, and the tangential space 

will not be reasonable. 

In general, the above two algorithms can only be designed for or applied to relatively 

simple problems or specific robot arm structures, and it is difficult to provide general so-

lutions for general motion-planning problems. 

Therefore, this paper proposes an optimized off-line sampling-based motion-plan-

ning method for multi-constrained dual-arm cooperative systems. The offline sampling-

based approach [33–35] is a configuration that precomputes a set of constraints and then 

uses this set for sampling and local planning. At its core, it is possible to construct an ap-

proximation of a constrained manifold offline and then use this approximation to plan 

directly on the constrained manifold rather than in the entire configuration space. The 

advantage is that constrained manifolds can be quickly sampled online using data struc-

tures computed offline, rather than using relatively slow dedicated sampling algorithms 

to sample the configuration space. To address the issues of low sampling success rate and 

the slow generation speed of offline data sets, this paper proposes the idea of relaxing 
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constraints during the sample set generation process. The paper establishes constraint tol-

erances and task errors, and controllably relaxes the range of constrained manifold ap-

proximation. This approach increases the number of possible pre-sampling configura-

tions, resulting in an improved success rate of subsequent sampling. Secondly, local ran-

dom sampling is used instead of pure random sampling. Additionally, a random gradient 

descent method is employed to prioritize the presence of a matching new configuration 

within a certain range of collected target configurations. This helps to shorten the con-

struction time of the sample data set. In addition, this paper enhances the original Quick-

RRT* algorithm by combining the two-tree concept and multi-objective biasing expansion 

strategy. This optimization improves the initial path and accelerates the convergence 

speed while ensuring asymptotic optimization. Additionally, it enhances the algorithm’s 

adaptability to different obstacle environments. Finally, this paper analyzes the difference 

in task constraints in loosely constrained motion and tightly constrained motion (taking 

assembly and handling as examples, respectively) under collaborative tasks, and de-

scribes the influence of different task constraints on the motion planning of both arms in 

detail. In addition, under master–slave control, the optimized planning method based on 

advance sampling is used to realize the assembly and handling of dual robot arms.  

The structure of this thesis is as follows: The second section introduces a review of 

work related to constrained motion planning; the third section describes, in detail, how to 

optimize the motion-planning method based on offline sampling; the fourth section ana-

lyzes the task constraints present in collaborative systems, and the fifth section presents 

various experimental results and discusses our approach and other previous work. The 

sixth section contains the conclusion.  

2. Method 

2.1. Problem Description 

Since the constraints of the end pose of the manipulator and the obstacles in the en-

vironment are treated as separate entities during the motion-planning process, it is possi-

ble to acquire some prior knowledge about the constraint manifold formed by the con-

strained end pose before the motion planning. 

In this paper, we opt to create an offline sampling set beforehand, which includes 

numerous configurations of pose constraints, to provide an approximate description of 

the constraint manifold. The standard sampling-based motion-planning algorithm ex-

plores the high-dimensional configuration space through random sampling and collision 

detection to locate a collision-free path. In the unconstrained situation, a manipulator with 

six degrees of freedom, the sampling space for the entire configuration space, can be de-

fined as �. However, in the scene with final pose constraints, the configuration that satis-

fies both the pose constraints and the obstacle avoidance constraints is usually distributed 

over a lower-dimensional manifold.  

The initial configuration space � is reduced to a two-dimensional surface, referred 

to as the constraint manifold. This surface has a volume almost equal to zero within the 

three-dimensional space. The function that evaluates whether q satisfies the constraint in 

the configuration space �  can be defined as �(�)  (when �(�) = 0 , q satisfies the con-

straint). The constraint manifold defined by the constraint function �(�) can be defined 

as X: 

� = {� ∈ �|�(�) = 0}. (1)

The problem of planning motion for a manipulator while taking into account the end 

pose constraint is defined as follows:  

The starting configuration is denoted as �start , whereas the target configuration is 

referred to as �goal . Both �start  and �goal  are on the constraint manifold X. A path is de-

termined on the constraint manifold X that leads from �start  to �goal , while ensuring that 

the manipulator remains collision-free as it traverses this path through the environment. 
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2.2. Constraint Tolerance and Task Error 

The main concept of this approach is to construct an offline sampling dataset that 

contains a significant number of configurations satisfying the constraints. This sampling 

dataset is then used to provide an approximate description of the constraint manifold. The 

key to judging whether the data set satisfies the constraint is how to correctly measure the 

concept of approximation. In this paper, this is measured by constraining the tolerance ϵ 

with the task error Δxerr. 

The constraint tolerance denotes the acceptable range for linear approximation. If the 

curvature of the constraint manifold is finite, the random expansion tree’s step length is 

relatively brief, and the constraint manifold can be approximated through piecewise lin-

ear approximation. However, it is crucial to ensure that the linear approximation falls 

within the acceptable range when transitioning from the previous configuration which 

meets the constraint to the subsequent configuration meeting the constraint in the con-

straint manifold. The range is defined as the tolerance ε, and the constraint manifold X 

changes accordingly: 

� = {� ∈ �|�(�) < �}.  (2)

The task error refers to the distance between the obtained configuration q
s
 and the 

defined constraint manifold. Typically, the manipulator’s end-effector’s degree of free-

dom is determined by rotation and translation. The transformation of the coordinate sys-

tem �� relative to the coordinate system �� can be expressed by the homogeneous ma-

trix TB
A: 

TB
A= �RB

A tB
A

0 1
� =

⎣
⎢
⎢
⎢
⎡
nx 0x ax p

x

ny 0y ay p
y

nz 0z az p
z

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

.  (3)

The six-dimensional vector de
0 of the end pose information of the manipulator can be 

expressed as: 

de
0 = [O R] = [x, y, z, R, P, Y]T.  (4)

Therefore, the end constraint of the manipulator � in the task space can be expressed 

as: 

� =

⎣
⎢
⎢
⎢
⎢
⎡
���� ����

���� ����

���� ����

���� ����

���� ����

���� ���� ⎦
⎥
⎥
⎥
⎥
⎤

, (5)

Then the task errors Δxerr between the configuration and the constraint manifold can 

be defined as: 

Δ�err(�) = �

��
�(�) − �����

 if ��
�(�) > �����

��
�(�) − �����

 if ��
�(�) < �����

0  otherwise 

. (6)

2.3. Construction of Offline Sampling Set 

In this paper, an offline sampling set containing a large number of pose constraint 

configurations is constructed in advance to approximately describe the constraint mani-

fold. The fundamental concept behind forming the sampling set is to randomly create the 

initial configuration q
rand

 in the joint space and assess whether or not it is a potential tar-

get configuration q
s
. By using the idea of continuous sampling and approximation of the 

Monte Carlo method, q
rand

  can be randomly generated as much as possible until the 
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whole configuration space is obtained, which ensures the probability completeness. When 

judging that the random mechanism type is not in the constraint manifold, in order to 

accelerate the random sampling rate in advance, this paper incorporates the idea of the 

stochastic gradient descent method to select a new configuration within a certain range 

near q
rand

 and re-judge it.  

The flowchart shown in Figure 1 can be broken down into five steps, as follows: 

Step 1: A random mechanism type q
rand

 is generated in the joint space and the task 

error Δ�err(�) of q
rand

 is calculated according to the task error formula. 

Step 2: To determine whether the q
rand

 is on the constrained manifold, if Δ�err(�) < �, 

then the q
rand

 is identified as the configuration q
s
 that satisfies the target constraint. 

Step 3: Conversely, if the q
rand

 is not on the constrained manifold, then new configu-

rations q′
s
 are randomly selected within a specified range of the q

rand
, and their task er-

rors are calculated to determine whether the task errors of the q's are less than those of 

q
rand

. Then the q
rand

 is replaced by q′
s
. 

Step 4: The iterative process is repeated until the q's task error Δ�err(�) meets the con-

straint tolerance ϵ. In this case, the q's is identified as the configuration q
s
 that satisfies 

the target constraint. 

Step 5: If the task error Δ�err(�) of the obtained configurations q's is still greater than 

the constraint tolerance ϵ within the set number of iterations, it will fail and return to step 

1. 

 

Figure 1. Flow diagram of off-line data set construction. 

2.4. Informed Bidirectional Quick-RRT* Algorithm 

2.4.1. Multi-Objective Bias Strategy 

In the Bi-Quick-RRT* algorithm, the sampling points generated by double trees are 

random and single, and lack the ability to jump out of local traps when dealing with com-

plex obstacles; there is also the lack of search efficiency when dealing with simple obsta-

cles, which means there is the lack of adaptability to obstacles of different complexity. 

Because the multi-objective bias strategy is added to solve this problem, the core idea of 

the strategy is to extend the sampling process of random tree to three biased samples. 

Each biased sample has different effects. 
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1. Tree 1 and tree 2 randomly pick points in the whole map. The purpose is to enhance 

the ability to jump out of the obstacle area faster when facing more complex obstacles, 

reduce the number of invalid samples, and improve the sampling efficiency. 

2. Tree 1 takes the starting point of tree 2 as the biased target for sampling points, and 

tree 2 takes the starting point of tree 1 as the biased target for sampling points. The 

purpose is to ensure the overall direction of random sampling and ensure the effi-

ciency of the algorithm. 

3. Tree 1 uses the previous sampling point of tree 2 as a biased target for sampling 

points, and tree 2 uses the previous sampling point of tree 1 as a biased target for 

sampling points. The purpose is to speed up the connection of double trees and 

shorten the path process when facing simple and uncomplicated obstacles. 

Depending on the complexity of the obstacles in the environment, different purposes 

can be achieved by changing the probability of the occurrence of each mining point. The 

pseudo-code for the multi-target bias strategy is provided in Algorithm 1. 

Algorithm 1: InformedSampleFree Function. 

 

2.4.2. Informed Bidirectional Quick-RRT* algorithm 

To enhance the RRT exploration efficiency, the algorithm reduces the time spent solv-

ing the effective path. Informed-Bi-Quick-RRT* adds two optimization processes to the 

RRT algorithm: selecting the optimal parent node and pruning, and using the triangle 

inequality theorem to optimize the random tree structure [36]. This enlarges the traceabil-

ity range of the two optimization processes and enhances the initial path to a certain extent 

while ensuring asymptotic optimization [37].  

On this basis, the new algorithm incorporates the idea of double-tree expansion, 

starts randomly sampling from the starting point and the end point at the same time to 

find possible paths, and finally connects the two trees to determine a complete feasible 

path, which greatly improves the convergence speed [38]. 

However, since the randomly generated tree nodes are randomly distributed in the 

map, the generated random points are too sca�ered. In this paper, the sampling process 

of the random tree is extended to three-stage bias sampling in combination with the multi-

objective bias expansion strategy mentioned above, and the algorithm is improved. The 

optimized algorithm can adjust the probability of three-stage sampling according to the 

complexity of the actual environment, and the algorithm can be�er deal with simple or 

complex obstacle environments. 
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The pseudo-code for the Informed-Bi-Quick-RRT* algorithm is provided in Algo-

rithm 2. 

Algorithm 2: Informed-Bi-Quick-RRT*. 

 

The Informed-Bi-Quick-RRT* runs as follows: 

1. The InformedSampleFree(�) function is used to generate random sampling points for 

both trees. Algorithm 2 presents the pseudocode for the InformedSampleFree(�) func-

tion. In the exploration process, the two trees are consistent in steps 2 through 4, so 

the related steps use the same expression. 

2. Two new nodes are used: q
nearest

 and q
new

. The Nearest (q
rand

, T1) function should be 

used to produce q
nearest

, and the Steer (q
nearest

, q
rand

, δ) function should be used to cre-

ate q
new

. 

3. Under the premise that there is no collision between q
nearest

 and q
new

, the path from 

�start  to �goal  is optimized. The Near (T1, q
new

, rnear) and Ancestry (T1, Q
near

, �near) 

functions are used to identify the potential parent node Q
P-near

  of q
new

 . Then, the 

ChooseParent (‘Q
near

 ∪ Q
P-near

, q
new

) function is used to select the parent node q
parent

 

in the potential parent node, so that the path distance from �start  to q
new

 is the small-

est; finally, the Link (q
parent

, q
new

) function is used to form T1. 

4. The path from �start  to the midpoint of Q
near

 is optimized. The Ancestry (T1, q
new

, 

�new) function is used to find the parent node Q
P-near

 of q
new

; the q
new

 and q
parent

 are 

used as the potential parent nodes of the midpoint of Q
P-near

, and the Rewire (Q
near

, 

q
new

 ∪ Q
P-near

) function is used to find the parent node at the potential parent node, 

so that the T1 path distance is minimized. 
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5. The Connect (T2, q
new1

) function is used to connect T2 and q
new1

. Firstly, the nodes 

closest to q
new1

  in T2 : q'newest1  are determined, and then q'newest  continuously ad-

vances δ with q
new1

 as the goal until they encounter obstacles or link to q
new1

. 

6. The FillPath (T1, T2) function is used to stitch paths. In the case of a link between T2 

and q
new1

, T1 traces the parent node from q
new1

 to �start1 , thus forming the final T1. 

T1 begins to trace the parent node to �goal  from the node connected to q
new1

, thus 

forming the final T2. 

7. The Swap (T1, T2) function is used to exchange the contents of two trees, so that the 

number of nodes of the two trees remains balanced after several iterations. 

3. Different Task Constraints in Dual-Arm Cooperative Systems 

In the trajectory planning of heterogeneous two-arm collaboration, in order to ensure 

the relative consistency of the end-effector postures in collaboration so that the heteroge-

neous two-arm collaboration system is able to meet higher task requirements, this paper 

investigates the relative motion of the end-postures in different types of collaborative mo-

tions, and realizes the adaptive planning from the trajectory of the robot arm through the 

establishment of different kinematic constraint relations. According to the different mo-

tion constraint relationships between the arms, the two-arm cooperative motion can be 

broadly categorized into loose-constraint cooperative motion and tight-constraint cooper-

ative motion. 

3.1. Collaborative Movement with Loose Constraints 

There are relatively strict constraints in the coordinated motion of the two arms un-

der loose constraints. The two arms and the manipulated object will form a semi-closed 

chain system with a certain constraint relationship but not completely closed. In the typi-

cal pine cooperative assembly task [39], the dual-arm end-effector is required to perform 

relative motion on the same horizontal line with a fixed a�itude, as shown in Figure 2. 

 

Figure 2. Axle hole assembly relative pose diagram. 

Suppose that the pose matrix of any point on the end-effector trajectory of the master 

robot is �,; then, ���  is the pose transformation matrix from the base coordinate of the 

master robot to the point on the end-effector trajectory. Therefore, the pose matrix of the 

end-effector trajectory point at any time can be obtained as: 

�(�) =  ��(�).  (7)

Let  ��� be the pose transformation matrix from the base coordinate of the manip-

ulator to the base coordinate of the main manipulator, and  �� be the pose matrix of the 

trajectory point of the end-effector of the manipulator under the base coordinate of the 

main manipulator.  �� is the pose matrix of the trajectory point of the end-effector of the 

slave manipulator under the base coordinate of the slave manipulator. Then the pose 
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matrix of the trajectory point of the end-effector of the slave manipulator under the base 

coordinate of the main manipulator can be obtained as follows: 

 �� =  ��� ⋅  ��.  (8)

According to the constraint between the trajectory points at the end of the master–

slave manipulator, the pose matrix of the trajectory points at the end of the slave manip-

ulator under the base coordinate of the master manipulator is solved: 

 �� = ( ��)�� ⋅  ���.  (9)

Among them:  ��� is the pose matrix of the trajectory from the end point of the robot 

actuator under the base coordinate of the main manipulator. 

By using Formulas (8) and (9), we can obtain: 

 �� =  ��� ⋅ ( ��)�� ⋅  ���,  (10)

Therefore, the pose matrix of the end point of the slave manipulator under the base 

coordinate of the slave manipulator can be obtained as follows: 

 ��(�) =  ��� ⋅ � ��(�)�
��

⋅  ���.  (11)

From Equation (11), it can be seen that the end point pose of the slave manipulator 

can be solved under the condition of obtaining the base coordinate pose relationship ma-

trix of the master–slave manipulator and the relative motion pose constraint of the end 

point and the end point pose of the master manipulator, so as to realize the adaptive plan-

ning of the slave manipulator trajectory according to the trajectory of the master manipu-

lator. 

3.2. Collaborative Movement with Tightly Constraints 

The dual-arm cooperative motion under tight constraints has the strictest constraints 

on the motion process, which means that the dual arms and the operated object form a 

closed chain system with complete constraints [39]. In a typical tight cooperative task han-

dling task [40], there is no relative motion between the dual-arm end-effector and the ob-

ject to be carried, and the relative pose of the dual-arm end-effector is required to remain 

unchanged, as shown in Figure 3. 

 

Figure 3. Handling relative pose diagram. 

The key point is to ensure that when the end-effector of the main arm moves from 

the ��  point to the ��  point, the pose relationship between the ��  point and the �� 

point is equal to that between the �� point and the �� point in the process of moving the 

end-effector of the manipulator from �� to ��. The specific kinematics derivation is as 

follows: 

When the pose transformation matrix from the robot base coordinate to the master 

robot base coordinate is set as  ��� , the pose relationship fromthe  ��  point to the �� 

point is  �����
, and the pose relationship from �� to �� is  �����

. 
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Since the relative pose relationship between the main manipulator and the end-effec-

tor of the slave manipulator remains unchanged at all times, the following relationship is 

satisfied: 

 �����
=  �����

.  (12)

Then: 

 ��� =  �����
⋅  ���,  (13)

 ��� =  �����
⋅  ���. (14)

Let  ��� and  ��� be the pose matrix of the �� and �� points in the master arm 

coordinate system, and  ��� and  ��� be the pose matrix of the �� and �� points in the 

slave arm coordinate system. Then the coordinates of the ��  and ��  points under the 

base coordinates of the main manipulator are: 

 ��� =  ��� ∗� ��,  (15)

 ��� =  ��� ∗� ��. (16)

Since  ���,  �����
,  ���, and ��� constitute a complete closed chain of motion rings, 

they are obtained using Formulas (12) and (13): 

 �����
 =  ��� ⋅ ( ���)��

 =  ��� ⋅ ( ��� ⋅  ���)��

 =  ��� ⋅ ( ���)�� ⋅  ���

,  (17)

 �����
=  ��� ⋅ ( ���)�� ⋅  ���. (18)

From Formulas (14), (17) and (18), the following can be obtained: 

 ��� =  ��� ⋅ ( ���)�� ⋅  ��� ⋅  ��� ⋅  ��� 
          =  ��� ⋅ ( ���)�� ⋅  ���. 

(19)

The position of the slave manipulator in the base coordinate is: 

 ��� =  ��� ⋅ ( ���) �� ⋅  ���.  (20)

By solving the inverse solution of  ���, the angle value of each joint of the slave ma-

nipulator can be obtained. The slave manipulator can achieve the specified pose and po-

sition of the end point, so as to realize the adaptive planning of the slave manipulator 

trajectory according to the trajectory of the main manipulator. 

4. Experiment 

This research focuses on the dual-arm cooperation system composed of UR5 and 

UR10. MATLAB 2022b was used as the simulation software to complete the simulation of 

the algorithm and the system model construction. 

The Informed-Bi-Quick-RRT* algorithm proposed in this paper was simulated with 

the RRT*, Quick-RRT*, and Bi-Quick-RRT* algorithms in different two-dimensional envi-

ronments. It has been demonstrated that the new algorithm exhibits fast convergence 

speed, a short search path, and adaptability to various obstacle environments. 

The simulation of both loose and close collaboration tasks in a 3D environment 

demonstrates the effect of the pre-sampling planning algorithm on the horizontal con-

straints of different end-effectors, as well as the rationality of adaptive planning for dual-

arm trajectories. 

Finally, the simulation environment for close cooperative motion includes the addi-

tion and simulation of obstacles. The simulation results demonstrate the ability of the In-

formed-Bi-Quick-RRT* algorithm, based on advanced sampling, to handle the horizontal 
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and obstacle avoidance constraints of the end-effector. The results also prove the adapta-

bility of the new algorithm to multi-constraint environments. 

4.1. Algorithm Comparison 

To demonstrate the adaptability of the new algorithm to complex obstacle environ-

ments, the experiment compared its performance in two environments: one simple and 

one complex. To reduce the impact of random sampling, the experiment recorded and 

summarized the average results of each algorithm after 20 runs, including path length, 

running time, and number of sampling nodes. 

4.1.1. Simple Environment 

The results of algorithm comparison in a simple environment are shown in Figure 4, 

The simple environment shows a 1400 mm × 1400 mm environment containing four ma-

trices and three circular obstacles. The start point is located in the upper right corner and 

the end point is located in the lower left corner. The red line represents the last viable path 

generated, while the green and blue lines represent the branches generated by the two 

trees, respectively. 

  

(a) RRT* (b) Quick-RRT* 

  
(c) Bi-Quick-RRT* (d) Informed-Bi-Quick-RRT* 

Figure 4. Algorithm comparison in a simple environment. 

Table 1 provides the specific statistics in a simple environment. As can be seen in 

Figure 4a), the RRT* algorithm performs a large number of random samples in the envi-

ronment and has a large number of redundant calculations, resulting in a very pro-

nounced inflection point in the final trajectory. Figure 4b) shows the effect of the Quick-

RRT* algorithm on the optimization of node links. Compared to the RRT* algorithm, the 

number of path nodes is reduced by 28.8%, the generation of prominent inflection points 



Actuators 2024, 13, 75 12 of 21 
 

 

is reduced, and the final trajectory is clearer and smoother. In addition, the computational 

cost is greatly reduced and the overall execution time is correspondingly reduced by 64%. 

The Bi-Quick-RRT* algorithm in Figure 4c) generates two trees simultaneously on the ba-

sis of the above, further improving the search efficiency of the algorithm and reducing the 

running time by 28.2%. Figure 4d) shows the planning effect of the Informed-Bi-Quick-

RRT* algorithm. In a simple environment, according to the multi-objective bias strategy, 

the probability of the third segment is increased to speed up the connection speed and 

shorten the path length. It is not difficult to find in Table 1 that the new algorithm has 

fewer redundant nodes and branches, and shorter path length. Compared with the basic 

algorithm, the search efficiency of the new algorithm is improved by 94.3%, which meets 

the actual working requirements of the robot arm and proves the superiority of the new 

algorithm. 

Table 1. Simple environment algorithm comparison table. 

Algorithm 
Average Path Length 

(mm) 

Average Running 

Time (s) 
Average Iterations 

RRT* 245.90 11.09 877 

Quick-RRT* 244.74 3.97 624 

Bi-Quick-RRT* 240.35 2.85 605 

Informed-Bi-Quick-

RRT* 
229.25 0.17 480 

4.1.2. Complex Environment 

Figure 5 depicts a more complex environment, which includes two rectangular and 

four circular obstacles. This change in the position of the obstacles results in a more wind-

ing possible driving path.  

  

(a) RRT* (b) Quick-RRT* 

 
 

(c) Bi-Quick-RRT* (d) Informed-Bi-Quick-RRT* 

Figure 5. Algorithm comparison in a complex environment. 



Actuators 2024, 13, 75 13 of 21 
 

 

Table 2 provides specific statistics in a complex environment. When analyzing Figure 

5a–c, it becomes apparent that in a more complex environment, the Quick-RRT* and Bi-

Quick-RRT* algorithms have significant advantages over RRT*. Specifically, the number 

of path nodes is reduced by 25.6% and 27.4%, respectively, and the time is shortened by 

72.3% and 76.7%, respectively. 

Table 2. Algorithm comparison in complex environment. 

Algorithm 
Average Path Length 

(mm) 

Average Running 

Time (s) 
Average Iterations 

RRT* 234.157 37.34 986 

Quick-RRT* 225.80 10.31 733 

Bi-Quick-RRT* 222.47 8.70 715 

Informed-Bi-Quick-

RRT* 
214.41 5.52 590 

In the face of a complex environment, the new algorithm improves the probability of 

occurrence of the first paragraph according to the multi-objective bias strategy to improve 

the ability of the random tree to jump out of the obstacle area and reduce the generation 

of redundant nodes, as shown in Figure 5d). According to Table 2, the running time of the 

new algorithm is further reduced by 36.5%, the number of path nodes is further reduced 

by 17.4%, and the comprehensive search efficiency is increased by 85.2%. This shows that 

the algorithm has a strong ability to deal with complex obstacles. 

To summarize, in comparison with traditional planning algorithms, the Informed-Bi-

Quick-RRT* algorithm has clear advantages in terms of convergence speed, path length, 

and quality, and performs well in various obstacle environments. In straightforward en-

vironments, this technique can significantly accelerate path generation. In more compli-

cated environments, it can assist branches in avoiding obstacles more effectively. 

4.2. Three-Dimensional Simulation Considering Horizontal Constraints 

The UR5 and UR10 manipulators used in the laboratory are both six-degree-of-free-

dom serial manipulators. They are widely used in mechanical operations because of their 

programming simplicity, high flexibility, and high safety. The actual working environ-

ment of the dual-arm cooperative system is shown in Figure 6. A is the UR5 manipulator, 

and B is the UR10 manipulator. 

 

Figure 6. Real environment of the two-arm collaboration system. 
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According to the Denavit–Hartenberg (DH) parameters shown in Tables 3 and 4, the 

UR5 and UR10 manipulator models are defined respectively, as shown in Figure 7. 

Table 3. UR5 D-H Table. 

Joint/� ��/(°) ��/�� ��/�� ��/(°) 

1 90 0 89.2 �� 

2 0 −425 0 �� 

3 0 −392 0 �� 

4 −90 0 109.3 �� 

5 −90 0 94.75 �� 

6 0 0 82.5 �� 

Table 4. UR10 D-H Table. 

Joint/� ��/(°) ��/�� ��/�� ��/(°) 

1 90 0 128 �� 

2 0 −612.7 0 �� 

3 0 −571.6 0 �� 

4 90 0 163.9 �� 

5 −90 0 115.7 �� 

6 0 0 92.2 �� 

UR5, UR10 manipulator in the initial position: �� = 0°, �� = 90°, �� = −90°, �� = −90°, �� = 0°, �� 

= 90°. 

 

Figure 7. Initial pose of two−arm collaboration system. 

According to the transformation principle of the coordinate system and the establish-

ment rule of the D–H coordinate system, the forward transformation matrix between ad-

jacent joint coordinate systems can be derived, that is, the D–H transformation matrix, as 

shown in Formula (21). 

��
���  =  �

 ��� −��� ∗ ���

 ��� ��� ∗ ���

��� ∗ ��� �� ∗ ���

−��� ∗ ��� �� ∗ ���

 0  ���

 0  0
���  ��

0  1

�  � = 1, 2, … , 6 .  (21)

The transformation matrix that is homogeneous between the UR series manipulator 

base and the end-effector in the Cartesian coordinate system is as follows: 
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��
� = ��

���
���

���
���

���
� =  �

�� ��

�� ��

�� ��

�� ��

�� ��

0 0
�� ��

0 1

�.  (22)

We take the two-arm collaborative model built in the laboratory environment as the 

research object, with UR5 as the main robot arm and UR10 as the slave robot arm, and 

perform the assembly task and the handling task, respectively, through the master–slave 

control. In both tasks, the horizontal constraint of the end-effector and the dynamic con-

straint between the two arms are considered. We use a series of postures taken at fixed 

time intervals to show the movement of the task, and a joint position graph to show the 

changes of all joints. 

4.2.1. Loose Collaborative Motion: Assembly Task 

The objective of the assembly task is to hold objects horizontally and assemble them 

on a level plane. Throughout the assembly process, it is necessary for the end-effector of 

the two arms to maintain a horizontal a�itude constantly, whilst the joint motion is 

smooth.  

The simulated diagram of the dual-arm collaborative system’s pose is depicted in 

Figure 8. Specifically, the poses at 0 s, 2 s, 4 s, 6 s, 8 s, and 10 s were selected for observation. 

The steady convergence of the arms during the assembly process, while the end-effector 

maintains a Y-axis level, can be observed. This conforms to the a�itude relationship 

required during the said assembly process. 

   

 
  

Figure 8. Cooperative system's position of assembly task. 

Further, Figures 9 and 10 display the joint position variations of the two arms. From 

the green dot on the diagram, it is evident that the end-effector remains at a constant po-

sition of 150 mm whilst maintaining the same horizontal line and smooth joint changes. 
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Figure 9. Z−axis position of UR5 in assembly task. 

 

Figure 10. Z−axis position of UR10 in assembly task. 

4.2.2. Tightly Collaborative Motion: Handling Task  

The goal of the handling task is to carry objects with two arms. During the motion, 

the end-effector of the two arms must maintain the same level of posture at all times; then, 

the joint motion is smooth. 

The position of the dual-arm cooperative system during the handling task is depicted 

in Figure 11, showcasing six different moments: 0 s, 2 s, 4 s, 6 s, 8 s, and 10 s. As demon-

strated, the arms move synchronously throughout the handling process, and the end-ef-

fector stays levelled along the Y-axis, thus adhering to the required a�itude relationship. 
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Figure 11. Cooperative system's position of handling task. 

Moreover, Figures 12 and 13 present the handling task variations in the joint position 

of the main–slave manipulator. From the end-effector joint represented by the green com-

ponent in the figure, it can be observed that the end-effector remains at a fixed position of 

175 mm whilst maintaining the same horizontal alignment and smooth joint movement.  

 

Figure 12. Z-axis position of UR5 in handling task. 
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Figure 13. Z-axis position of UR10 in handling task. 

In summary, the above two motion processes realized by the offline sampling-based motion-

planning method preliminarily demonstrate the effectiveness of this method in dealing with end-

effector constraints and horizontal direction constraints.4.3. Three-Dimensional Simulation 

Considering Multiple Constraints 

In Section 4.2, we simulate the two tasks of assembly and handling, focusing on the 

directional constraints. The experimental results show that the directional constraints of 

the end-effector have been well handled. Based on this, we now need to consider addi-

tional obstacle avoidance constraints for the handling task. To test the motion-planning 

effect of the Informed Bi-Quick RRT* algorithm, we set up a 3000 mm × 4000 mm × 4500 

mm map and placed five dark blue spherical obstacles with different radii on the 3D map. 

We set the right side as the start point of the moving task and the left side as the end point 

of the moving task. Throughout the handling process, we needed the two-armed end-

effectors to maintain a horizontal position and be able to avoid obstacles and collisions. 

As shown in Figure 14, the two-arm collaborative system obtains a collision-free and 

smooth path after running the simulation. In the actual handling process, the end-effector 

of both arms can complete the handling task by following this collision-free path. 

Figure 14 shows the complete process of moving both arms from the predetermined 

start point to the target end point, confirming that the algorithm is efficient and feasible 

as there is no collision with surrounding obstacles and the end-effector direction obeys 

horizontal holding constraints throughout the movement. 
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Figure 14. Cooperative system's position. 

5. Conclusions 

This paper presents an Informed Bi-Quick RRT* algorithm for rational motion plan-

ning of two-arm cooperative systems under multiple constraints. The algorithm is based 

on offline sampling and rich data sets, and the offline sampling time is reduced by incre-

mental construction and random gradient descent. However, the traditional Quick-RRT* 

algorithm is enhanced by integrating a two-tree concept and a multi-objective bias expan-

sion strategy. In this paper, simulation experiments are conducted in two obstacle envi-

ronments with different complexity levels. The results show that compared with other 

traditional algorithms, the computation time of the proposed algorithm is reduced by 

about 70% and the number of path nodes is reduced by about 40%, which proves the su-

periority of the new algorithm. In addition, the directional constraints in the two-arm co-

operative system are analyzed in detail, and the adaptive planning effect of the two-arm 

trajectory is demonstrated through the three-dimensional simulation of the assembly and 

transportation tasks, and it is verified that the loosely constrained cooperative motion al-

gorithm and the tightly constrained cooperative motion algorithm can accurately describe 

the nonlinear kinematic constraints between the two arms. Finally, in the handling task, a 

three-dimensional motion simulation of the two-arm cooperative system is performed 

considering obstacle avoidance and directional constraints. The system runs stably and 

avoids possible collisions while maintaining the level of the end-effector, demonstrating 

the feasibility and effectiveness of the proposed algorithm. 

In summary, the motion-planning technology based on offline sampling can shorten the 

subsequent planning time by sampling the basic constrained manifolds in advance and gen-

erating sample databases that satisfy the constraints. However, although the offline sampling 

process is optimized in this paper, a large number of offline computations are inevitably re-

quired to satisfy more constraints. Second, although the offline database can be continuously 

supplemented and improved, it is not as flexible as the real-time planning method. In order to 

adapt to a changing external environment, the method based on offline sampling needs to 

introduce some online planning elements to cope with the changing obstacle configuration 

and possible fault edges in the offline calculation roadmap. 
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