
Citation: Tarhan, F.A.; Ure, N.K.

Genetic-Algorithm-aided Deep

Reinforcement Learning for

Multi-Agent Drone Delivery. Drones

2024, 8, 71. https://doi.org/10.3390/

drones8030071

Academic Editor: Emmanouel

T. Michailidis

Received: 10 December 2023

Revised: 10 February 2024

Accepted: 15 February 2024

Published: 20 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

Genetic-Algorithm-Aided Deep Reinforcement Learning for
Multi-Agent Drone Delivery
Farabi Ahmed Tarhan 1,*,† and Nazım Kemal Ure 2,†

1 Department of Aeronautics Engineering, Istanbul Technical University, ITU Ayazaga Campus,
34469 Istanbul, Turkey

2 Artificial Intelligence and Data Science Application and Research Center, Istanbul Technical University,
ITU Ayazaga Campus, 34469 Istanbul, Turkey; ure@itu.edu.tr

* Correspondence: tarhanf@itu.edu.tr
† These authors contributed equally to this work.

Abstract: The popularity of commercial unmanned aerial vehicles has drawn great attention from
the e-commerce industry due to their suitability for last-mile delivery. However, the organization of
multiple aerial vehicles efficiently for delivery within limitations and uncertainties is still a problem.
The main challenge of planning is scalability, since the planning space grows exponentially to the
number of agents, and it is not efficient to let human-level supervisors structure the problem for
large-scale settings. Algorithms based on Deep Q-Networks had unprecedented success in solving
decision-making problems. Extension of these algorithms to multi-agent problems is limited due
to scalability issues. This work proposes an approach that improves the performance of Deep Q-
Networks on multi-agent delivery by drone problems by utilizing state decompositions for lowering
the problem complexity, Curriculum Learning for handling the exploration complexity, and Genetic
Algorithms for searching efficient packet-drone matching across the combinatorial solution space.
The performance of the proposed method is shown in a multi-agent delivery by drone problem
that has 10 agents and ≈ 1077 state–action pairs. Comparative simulation results are provided to
demonstrate the merit of the proposed method. The proposed Genetic-Algorithm-aided multi-agent
DRL outperformed the rest in terms of scalability and convergent behavior.

Keywords: reinforcement learning; genetic algorithms; deep q-networks; delivery by drone; multi-agent
decision making

1. Introduction

In parallel with the increasing global popularity of commercial unmanned aerial
vehicles and the e-commerce industry, as well as the advancement of cellular networking
technology, drone delivery applications that involve transportation of medicines, food, and
postal packets in urban areas has attracted much attention [1]. With the increasing density
of drone operations, it is of paramount importance to plan the operations cooperatively
and effectively within urban airspace, since single drone operations are not sufficient to
meet the increasing demand for drone delivery operations.

Each member of this cooperative drone delivery team is simulated by an agent with
sequential dynamics and uncertainties due to imperfect vehicle models, environment dy-
namics, component failures, etc. Such multi-agent planning problems can be formulated
as multi-agent variants of Markov Decision Processes (MDPs) [2]. The main challenge of
solving an MDP in this context is scalability, since the planning space grows exponentially
with respect to the number of agents, and it is not efficient to have human-level super-
visors to structure the problem for such large-scale settings. With recent advancements,
modern artificial intelligence methods such as Deep Q-Networks (DQNs) combine the
representational capability of Deep Neural Networks (DNN) with Reinforcement Learning
(RL) [3] for computing how agents in a dynamic environment should act to maximize

Drones 2024, 8, 71. https://doi.org/10.3390/drones8030071 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones8030071
https://doi.org/10.3390/drones8030071
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-6268-9307
https://orcid.org/0000-0003-2660-2141
https://doi.org/10.3390/drones8030071
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones8030071?type=check_update&version=1

Drones 2024, 8, 71 2 of 32

the future cumulative rewards. Although DQN and its variants have shown promising
results when dealing with single-agent problems [4], extending these results to planning
for multi-agent problems that accommodate large state spaces is still an open research
area [5–8]. This paper proposes an approach that improves the performance of DQN on
multi-agent planning problems by utilizing decomposition of states, learning a correction
network, and prioritized experienced replay and Curriculum Learning techniques. The
performance of the proposed method is demonstrated on a large-scale drone delivery
problem, as traditional DQN techniques become intractable quickly at a large number of
agents within the context of delivery by drone problem.

The paper initially reveals that RL techniques such as DQN and Deep Correction strug-
gle with the multi-agent scenario’s high dimensionality, notably in coordinating numerous
drones and packages promptly. To mitigate this, a dual-phase strategy is introduced. The
first phase utilizes a Genetic Algorithm (GA) for efficient drone-to-package matching, sim-
plifying the problem. Following this, a sophisticated single-agent model harnesses DQN,
PER, and Curriculum Learning for effective decision making in drone delivery, where
GA assigns tasks. This approach enhances computational efficiency and showcases the
capabilities of multi-agent systems in managing intricate delivery operations.

The study benchmarks different strategies, highlighting the limitations of DQN in
larger settings and the effectiveness of advanced methods like deep correction algorithms
in managing scenarios with constraints such as no-fly zones and fuel limits. The results
demonstrate the model’s capacity to learn and adapt in uncertain environments, and
the effectiveness of reducing problem complexity with package distribution through GA.
Computational times across various multi-agent configurations in drone delivery scenarios
are also examined highlighting the intricate dynamics of agent scalability and efficiency.
In the dynamic realm of multi-agent systems, a comprehensive simulation environment
tailored for multi-agent drone delivery challenges is also presented. Through the captured
snapshots, simulation results within a 10 × 10 grid showed the synergy of the proposed
strategies. In light of the capabilities of modern publicly available commercial delivery
drones, capable of transporting payloads over distances exceeding 25 km [9], our model
gains significant practical relevance. Illustratively, when considering the urban layout of
London, the average distance of 32 km between the northern district of Enfield and the
southern district of Croydon supports the operational radius within which these drones
could effectively operate. The feasibility of covering such distances is further supported by
the strategic placement of charging stations, enhancing the drones’ operational endurance.
This context not only underscores the practicality of our model, but also aligns it closely with
the logistical demands and geographical challenges of real-world urban delivery systems.

This paper is structured as follows: Section 2 presents the related work and contribu-
tions. Section 3 presents the nomenclature and preliminary. Section 4 defines the problem
formulation. Section 5 applies the theory to the current delivery problem, presenting the
proposed architectures. In Section 6, the results are presented, while Section 7 summarizes
the work and concludes the paper.

2. Related Work

The proliferation of Unmanned Aerial Vehicles (UAVs) in the military and civil appli-
cations to substitute humans in mundane, dangerous, or risky missions has made UAVs
a very active research topic in many engineering fields. Control practices for a single
vehicle or an agent have had major progress in executing advanced techniques, such as
adaptive control, intelligent control, and robust control during the development of control
theory. Within the aerial payload transmission context, the model-based predictive control
(MPC) designs have demonstrated promising results in UAV settings where suspended
payloads are considered [10]. Robust flight observers with guaranteed stability through
H∞ criteria showed remarkable effectiveness for the UAVs under disturbance and uncer-
tainty [11]. In recent decades, the idea of utilizing interconnected multi-agent systems
has gained more popularity in the continuation of the former developments, since many

Drones 2024, 8, 71 3 of 32

benefits can be obtained when complex solo systems are replaced by their heterogeneous
and multiple counterparts. Multi-agent systems can be defined as a coordinated network
of problem-solving agents, which cooperate to find answers to given problems that are
otherwise impossible to accomplish or highly time-consuming jobs. In general, the required
capabilities of collaborative scenarios are beyond the capabilities of a single agent.

The most prominent reasons why multi-agent systems are advantageous when com-
pared with solo systems can be given in terms of collaboration, robustness, and quickness,
in addition to scalability, flexibility, and adaptivity [12]. Since each member of a multi-agent
system executes a small part of a complex problem, those given reasons occur inherently.
Especially surveillance-like missions exploit multiple robots simultaneously since a team of
robots obviously has a big return due to the geographic distribution over using just a single
robot [13]. While a single robot can execute the mission from just a single observation point,
multi-agent systems can perform the mission from various strategic points that are spread
over a large area.

Due to its promising benefits, multi-agent planning problems are becoming prevalent
in engineering as an emerging subfield of Artificial Intelligence. Since the applications range
across the control of robotic missions, computer games, mobile technologies, manufacturing
processes, and resource allocation, it is also a widely acknowledged interdisciplinary
engineering problem that draws the attention of researchers from distinct fields, including
computer science [13], aerospace engineering [14], operations research [15], and electrical
engineering [16].

Designing a multi-agent planning framework involves many challenges. This study focuses
on the challenges regarding uncertainty management and scalability of centralized systems.

2.1. Significance of Uncertainty

The common theme among the applications of multi-agent systems, including robotic
missions [17], distributed vehicle monitoring [18], resource allocation [19], and network man-
agement [20], is the uncertainty in stochastic agent dynamics and external disturbances [21].
Stochastic agent dynamics stem from sensor dynamics and model dynamics. An autonomous
robot that operates in the real world incorporates sensors to determine its state, which involves
errors that can be modeled with probabilistic models. Besides sensor dynamics, the model of
the system also comprises stochastic agent dynamics. Most of the planning algorithms suffer
from deficient system models. This deficiency is usually caused by inaccurate or even not
available models in many practical situations [22]. Taking into account the model uncertainty
while optimizing the decision-making process is a challenging issue even for a single agent. In a
multi-agent setting, an agent should consider the other agent’s dynamics in the team to reach
the best common goal [23], which further complicates the decision-making process. In order to
model uncertainties in our problem formulation, the MDPs [22] and its multi-agent variant will
be utilized in our proposed approach.

2.2. Significance of Scalability

Planning a multi-agent system is even more challenging since the planning space
increases exponentially with the number of agents [24]. Due to the exponential growth of
the size of the planning space with respect to the number of agents, scalability is recognized
as a crucial limitation for the application of multi-agent planning algorithms to real-world
scenarios [25]. Instead of using standard approaches such as domain-knowledge-supported
algorithms that require human-level intervention in the planning phase, more popular
techniques such as deep learning will be utilized. Exploiting the ability to learn a non-linear
function of such a technique with the reduced amount of parameters brings the skill of
resolving the scalability issues together. The collaborative systems also need resource
allocation and task assignment that leverage the strengths of each member to achieve
optimal performance and results [26,27].

Drones 2024, 8, 71 4 of 32

2.3. Centralized Solutions

This setting requires all the agents to communicate with each other and will be devel-
oped using Multi-agent Markov Decision Processes (MMDPs) as described in Section 3.2.
MMDPs are an extended version of standard MDP models to formulate multi-agent
decision-making problems. Most of the large-scale problems suffer from the curse of
dimensionality. Having high dimensional spaces such as multi-agent planning problems
impedes the convergence rate significantly. Centralized formulations also have large plan-
ning spaces since joint spaces of each agent are considered, and hence, these multi-agent
systems suffer from being exponential in the size of planning space as the number of agents
increases [28]. Therefore, classical Dynamic Programming (DP) methods are not practical
for such problems since they do not scale well. In order to reduce the computational
complexity of the problem, approximate dynamic programming methods are developed to
obtain at least near-optimal results. However, many of these algorithms depend on domain
knowledge and extensive tuning. Recent advances in applying deep structures to multi-
agent systems show encouraging results [29,30]. By utilizing deep networks, the problems
with large spaces can be solved by minor tuning that just comprises network topology.

2.4. Contributions

The contributions of this study mainly aimed to address the challenges described
above by solving Multi-agent MDPs with hybrid methods combining DQNs, Curriculum
Learning, Prioritized Experience Replay (PER), Utility Decomposition with Deep Correc-
tion, and GA. The main contribution of this study is the development of a framework for
centralized multi-agent planning problems that outperform Multi-Agent DQNs for solving
large-scale MMDPs and analysis of their performance. The second contribution of the study
is to apply the framework to the problem of delivery by drone where several agents need
to act collaboratively to pick up and deliver the packets to given positions with limited fuel
and limited cargo bays.

However, adapting these novel DQN methods to existing problems that are formulated
by MDPs is a non-trivial challenge, since deep neural networks have various topologies
and configurations [31]. As DQN is also a function approximator for a large-scale planning
problem, instead of trying to get optimal solutions that can be obtained in exact representa-
tion, near-optimal solutions are expected to be achieved. Understanding the dynamics of
DQN and finding the best topology and configuration among the vast majority of options
to obtain near-optimal solutions is another important focus of this study. It is also aimed
to develop decomposition-based methods to expedite the learning speed for multi-agent
settings. In this context, a custom decomposed deep q-network is designed and imported
into the multi-agent decision-making framework. The developed decomposition method is
applied to the delivery by drone problem that is highly aligned with the planning problem
of multi-agent delivery by drone.

In addressing the limitations imposed by the curse of dimensionality, a significant
contribution of this work lies in the application of a GA. This strategic integration capi-
talizes on the independent nature of the packet delivery problem, providing an efficient
means to distribute tasks effectively among agents. By leveraging the strengths of the GA,
this approach contributes to overcoming scalability challenges and enhancing the overall
performance of the multi-agent delivery by a drone system.

Initially, it has been shown that RL algorithms such as DQN and Deep Correction
suffered from the curse of dimensionality of the multi-agent framework, especially when
linking numerous drones and packages within a realistic timeframe. To address this
computational challenge, a two-fold strategy has been introduced. The first phase leverages
a Genetic Algorithm for efficient drone-to-package assignments, effectively reducing the
problem’s complexity to a one-to-one relationship. Subsequently, the application of a refined
single agent model, employing the strengths of DQN, PER, and Curriculum performed
efficiently on the decision making of drones in delivery problems where tasks are assigned
to agents by GA. This two-fold approach not only addresses computational feasibility, but

Drones 2024, 8, 71 5 of 32

also illuminates the potential of multi-agent systems in orchestrating complex delivery
tasks.

3. Preliminary

In this section, the preliminary methods utilized in the planning of the multi-agent
delivery by drone problem are briefly introduced, such as MDPs and its multi-agent
extension, reinforcement learning, deep Q networks, deep neural networks, experienced
replay and its prioritized extension, Curriculum Learning, utility decomposition, deep
correction, and Genetic Algorithm.

3.1. Markov Decision Processes

Markov Decision Processes are a common structure to analyze decision-making prob-
lems when outcomes are uncertain [32]. MDPs, the sequential decision-making formu-
lations, is an extension of Markov Processes with added an action choosing mechanism.
Likewise, Markov Processes have the Markov property, which requires a future state to be
dependent only upon the present state, not the series of previous states that led to having
the current state. Markov Processes have the following properties:

• Finite number of states and possible outcomes;
• The outcome at any state only depends on the outcome of the prior state;
• The probabilities are constant over time.

Figure 1 ordinarily shows the state transition probabilities between three states, i.e.,
S0, S1, and S2, and two actions, i.e., a0 and a1, along with some rewards.

Figure 1. Markov Process vs. Markov Decision Process

Many planning and decision-making problems require choosing a sequence of decisions [33].
The problems that are formulated by MDPs require a known model and a fully observable
environment. The MDP model consists of states, actions, rewards, transition probabilities, and
discount factors. Hence, MDP is a tuple defined by:

⟨S ,A, T ,R,γ⟩, (1)

where S is the state space, A is the action space, T : S ×A× S →[0, 1] is the transition
model, R : S →R is the reward model, and γ ∈ [0, 1) is the discount factor. Discount
factor balances current and future rewards and smoothly reduces the impact of prompt
rewards. It also enables to building of a strategy to maximize overall reward at the expense
of immediate rewards. T (s, a, s′) is the transition probability of getting the state s′ ∈ S by
applying the action a ∈ A when in the state s ∈ S . Let sk, ak, rk denote the state, the action,
and the reward at time step k. As MDP is a sequential control formulation, a trajectory can
be denoted as s0, a0, r0, s1, a1, r1, s2, a2, . . ., where the action ak ∈ A is chosen according to a
policy π : S → A [34].

Drones 2024, 8, 71 6 of 32

3.2. Multi-Agent Markov Decision Processes

Multi-agent Markov Decision Processes is an extended version of MDPs to adapt them
to multi-agent problems which consist of multiple agents trying to optimize a common
objective. The MMDP formulation has lots of similarities with the exception that possible
decisions, namely actions, are distributed among agents in the system [35]. This formulation
still requires each agent to observe the true state of the domain and coordinate on their
taken actions [36]. MMDP expands the above framework to a set of n agents. An MMDP is
also defined by a tuple:

⟨na,S ,A, T ,R,γ⟩ (2)

where na ∈ Z is number of agents and ⟨S ,A, T ,R,γ⟩ is a MDP with factorized action space:

A = A1 ×A2 × . . .Ana , (3)

whereAi denotes the local action sets of agent andA is the joint action set of the multi-agent
problem [37]. Note that the size of the action space is exponential in number of agents. In
many multi-agent problems, factorization of state space, transition models, and rewards of
the agents are possible. By exploiting that structural property, computationally efficient
algorithms can be developed [38].

State space S is factorized into individual state spaces of each agent as follows:

S = S1 × S2 × . . . Sna × S e
1 × S e

2 . . . S e
ne (4)

where Si denotes the individual states for ith agent, S e
j is the state of external variable j, and

ne is the dimension of the external states. Many real-life problems utilize this assumption,
such as multi-agent traffic regulation problems, where the states of the traffic lights are
associated with individual states and the position of the vehicles can be associated with
external states. Transition dynamics can also be factorized as follows:

T = T1 × T2 × . . . Tna × T e
1 × T e

2 . . . T e
ne (5)

where Ti : (Si × S e) × Ai × Si → [0, 1], i = 1, . . . , na, and T e
i : S × A × S → [0, 1],

i = 1, . . . , ne. Note that while the transition dynamics of each agent only depend on
the agent’s external states, individual states, and individual actions, external transition
dynamics depend on joint action space and joint space. Hence, the dynamics of the external
states are not decoupled from agents, they are influenced by actions of all agents. The
reward can also be decomposed as:

R = R1 +R2 + · · ·+Rna (6)

where each Ri : Si × S e ×Ai → R. Each local reward is individually dependent on the
local states, local actions, and joint space of external states. Since MMDP is basically an
MDP that has a specific structure that can be factorized, modeling multi-agent problems
becomes easier. Thus, MMDP problems can be solved as an MDP. However, even factorized
MMDPs have large state and action spaces that are exponential to the number of agents,
those classical approaches usually do not scale well for multi-agent problems.

3.3. Reinforcement Learning

Reinforcement Learning is a class of machine learning solution methods that is highly
effective with stochastic optimal control and decision-making problems which can be
formulated as MDP [22]. RL problems consist of an agent that is learning the best behavior
through a kind of trial–error interaction with a certain dynamic environment. It primarily
focuses on how an agent should develop a policy that leads to achieve goals in a complex
environment where uncertainties might exist. As RL does not always require scientists to
construct a model of the problem, it allows to development of generalized algorithms that
can be applied to various problems.

Drones 2024, 8, 71 7 of 32

At each time step, the agent, being in a state, performs an action, the environment
provides a reward, and the agent moves to the next state; this dataset includes state, action,
and reward, and the next state is called the experience through which the agent can learn
which actions lead to higher rewards [39]. A state st is descriptive information of a system
that covers all the information relevant to an agent’s decision-making process at a particular
time. As seen in Figure 2, the dynamic environment provides a new state st+1 and a reward
rt on each step of interaction the agent attempts with action at. The overall goal of the agent
is to maximize the total rewards so that the agent can optimize the policy π by mapping
the states to actions to perform better.

Figure 2. Agent interacts with the environment in a reinforcement setting.

The objective of the planning problem is to find a policy π∗ by maximizing the
cumulative discounted reward for a given initial state s0:

Rt = rt + γrt+1 + γ2rt+2 + . . . + γn−trn

= rt + γRt+1 =
T

∑
k=t

γk−trk
(7)

where rt is the reward at step t and γ ∈ [0, 1) is the discount factor. The value of taking
an action in a state under policy, Qπ(s, a), is the expected return starting from that state,
taking that action as given below:

Qπ(s, a) = E[Rt|st = s, at = a]

= E
[

T

∑
k=0

γk−trk|s0, a0 = a, ak = π(sk)

]
(8)

where E[.] is the expectation operator taking over the possible next states sk+1 and Qπ(s, a)
is the state–action value function under policy π.

The Bellman equation is an optimality condition associated with DP and is widely used
in RL to update the policy of an agent. The Bellman update only guarantees convergence to
the optimal state–action value function Qπ∗(s, a) if every state is visited an infinite number
of times and every action is tried an infinite number of times. It can be shown that Qπ(s, a)
satisfies the Bellman Equation [40]:

Qπ(s, a) = Es′
[
R(s, a, s′) + γQπ(s′, π(s′)

]
(9)

In particular, the optimal policy π∗ is defined as:

π∗(s) = arg max
a∈A

Qπ(s, a) (10)

Drones 2024, 8, 71 8 of 32

where, for a given state, the action with the biggest value in the value function is chosen
through all other action candidates. Training of RL is highly sensitive to several high-level
parameters including exploration–exploitation dilemma and how the q values are stored.

3.3.1. Exploration–Exploitation Dilemma

The exploration–exploitation trade-off dilemma emerges for RL and not in other kinds
of learning [22]. While the agent aims to maximize the cumulative discounted reward, it
exploits its policy and it probably leads the agent to get stuck at a local optima or makes
the agent never find a good policy, especially at the very beginning when the agent is
uneducated. However, the exploration is to find out which actions might lead to good
rewards, at the first place the agent must try actions out and run the risk of getting a penalty.
The majority of practical implementations are balancing exploitation and exploration by
utilizing the ϵ− greedy algorithm [41]. In this study, the ϵ− greedy algorithm has been
applied with a ϵ− rate so that the agent starts with exploration and as the learning advances
it shifts to exploitation since the environment is known better.

3.3.2. Representations

The way of storing the values for state and action pairs is called representation.
Representation is separated into two main groups as tabular representations and compact
representations [42]. In tabular representation, each state and action pair is stored in a
look-up table. This way of representation offers optimal decisions. However, due to the
curse of dimensionality for large state–action spaces, this type of representation requires
huge memory in practical applications [43]. This drawback pushed the researchers to
move away from tabular representations to more compact representations. In compact
representations, the value of each state–action pair is estimated implicitly using given
features. One possibility as a compact representation is to use multilayer perceptrons such
as deep neural networks to overcome the drawbacks of the curse of dimensionality to
some extent.

3.4. Deep Q-Networks

Deep Q-Networks is a technique that adapts neural networks into RL to address
otherwise intractable problems [44]. It is a generalizing approximation function across
the state and action pairs to reduce dependency on the domain knowledge of large-scale
problems with efficient use of computational resources. Recent studies on machine learning
and, in particular, on deep learning have demonstrated very promising successes in solving
problems with complex and high dimensional spaces [41]. DQN is capable of representing
non-linear functions that RL requires to store mappings of state–action pairs to Q values.
Deep neural networks are exceptionally good at coming up with good features for highly
structured data. DQN could represent the Q-function with a neural network, which takes
the state as input and outputs the corresponding Q-value for each action. DQN also utilizes
the Experience Replay concept to successfully approximate the q values.

3.4.1. Deep Neural Networks

The Deep Neural Network is a technique inspired by how the human brain works
to make it possible for machines to learn from data [45]. DNNs became more popular
since they outperformed most of the current machine learning algorithms. The most
significant reasons cause that neural networks can represent any smooth function at all
with enough training samples [46], the back-propagation algorithm enables training the
network just using simple operations over derivatives [47], and being able to get trained
through GPU thus doing it outperforms CPU by far [48]. In contrast to customary neural
network applications, in the reinforcement learning context, there is no readily available
training set to train the algorithm. Each training label should be inferred during iterative
value updates.

Drones 2024, 8, 71 9 of 32

The network is modeled by the output function y(x, w), where x is a vector of inputs
and w is a vector of weights. The output function y varies with changes in the weights. Our
goal is to find the weight vector that minimizes the error. The error is due to the improper
values of weights resulting from a difference between the desired output and the network
output for that training data pair. That pair includes an input vector x and a label vector y.
Define a topology:

T = {L1, L2, . . . , Lm} (11)

where m is the number of total layers and Li is the ith layer of the network.

3.4.2. Training with Back Propagation

Training of a network is done by following the steps given below.

1. Given a training set:
D = {(x(1), y(1)) . . . (x(t), y(t))} (12)

where t is the total number of training pairs.
2. For each element of the training set, feed-forward the input x(d) and obtain output

y(d), then calculate the error:

E(d)(w) =
1
2

|Lm |

∑
i=1

(y(d)i − o(d)i)2 (13)

where d stands for dth training data and |Lm| stands for number of neurons in the
mth layer.

3. Then, calculate the gradient:

∇E(d)(w) =

[
∂E(d)

∂w1
11

,
∂E(d)

∂w1
12

, ...,
∂E(d)

∂wm
ij

]
(14)

4. Update the weight using gradient descent:

∆w = −η∇E(w)

w = w + ∆w

wi = wi − η
∂E
∂wi

,

(15)

3.4.3. Experience Replay

The fully connected network used in Deep-Q-Networks tends to forget the previous
experiences as new samples are collected. As the importance of batch data processing
mentioned before, the experience replay technique addresses the issue of how the elements
should be selected from memory into the batch list [41]. To perform experience replay, the
agent’s experiences are stored as et = (st, at, rt, st+1) in a memory buffer. These experience
elements consist of state, action, reward, and next state. The populated memory is used to
select the elements of the batch using a uniform distribution. Then, the batch list is replayed
when training the network. This randomized mechanism allows the learning algorithm
to be more stable by removing the correlations in the observation sequence. It also brings
together a smoother convergence over the changes in the experienced data distribution.

4. Problem Description

This section introduces the definition of the delivery by multiple drone problems
and investigates the details of the operation as this problem is challenging enough to
demonstrate the proposed methods. The drone delivery problem has been treated as a
grid-world problem. The primitive setting of the grid world problem consists of an agent,
a partitioned area closed with walls, at least one reward point, and some non-compulsory
blocked and penalty partitions. Our agent can move one step at a time and have five

Drones 2024, 8, 71 10 of 32

actions, including do nothing, up, down, left, and right. In order to experience uncertainty,
the outcome of each action is modeled as a stochastic process [33]. As seen in Figure 3, if
the agent tries to go up, it will move to the desired position with a probability of 0.8, but
there is also a substantial chance it finds itself in left or right grids with a probability of
0.2. This kind of movement can be influenced by external factors, such as wind, actuator
variability, and sensor precision. Therefore, the next movement can inadvertently align
with the result of one of the adjacent actions (e.g., a drone moving ’left’ might drift ’up’
or ’down’ in the cell representation). This adjacency in action outcomes reflects the real-
world challenges of precise control in a dynamic environment. Acknowledging these
sources of uncertainty, our model aimed to capture the unpredictable dynamics, providing
a simplified yet representative framework for the analysis.

If the agent bumps itself into the outer walls or blocked grids, it will stay in the same
position. While reaching the goal state has a positive reward, such as +1, reaching the
penalty states have a negative reward, such as −1. Since there is a small yet effective
movement penalty, such as −0.04, the main object of the problem is to reach the goal state
with the smallest number of steps. The row and column position of the agent represents a
state for the problem. The initial state can be selected either fixed or randomly depending
on the requirements of the method that will generate a solution to the planning problem.

The assumptions made during modeling the problem in this study are listed as follows:

• Any drone can travel only along the grid (not diagonally);
• Each cell in the grid is large enough to fit multiple drones, and therefore, collision is

not considered;
• Take-off and landing durations are not considered;
• Only distance traveled is considered during fuel consumption, the time spent is ignored;
• Reaching out to the associated cell is sufficient for a drone to fuel up, pick up, or

deliver the package;
• The agents can independently move on the grid.

(a) (b)

Figure 3. Illustrative examples of primitive environments with action uncertainty utilized as a
baseline in both delivery by drone simulations and evaluating hyper-parameters for the methods,
i.e.,the single-agent and multi-agent grid world. (a) Single-agent grid world problem illustrating
cells that can be blocked, rewarded, and penalized along with the uncertainty of the action “up”.
(b) Simplified multi-agent grid world problem where agents are rewarded once agents meet the high
reward cell.

4.1. Formulation

The multi-agent delivery by drone planning problem is derived from the single-agent
grid world problem. The configuration is almost identical except for the number of agents
and refuel stations. This planning problem is designed to evaluate the performance of
algorithms that support multi-agent decision making. The main goal of such a setting
is to generate such a policy that allows the agents to collaboratively seek to maximize
cumulative rewards using multi-agent MDPs. Due to the multi-agent setting, each agent in
fact is represented by a decision-maker agent and occupies a position in a grid. Each agent
can take any of five actions to change its current position toward a goal.

Drones 2024, 8, 71 11 of 32

In addition to primitive settings, the delivery by drone setting introduces new di-
mensions to the state due to the package pick-up position, delivery point, and battery
consumption. Both the package and its destinations are also represented by another po-
sition in the grid. The prominent properties of the delivery by drone problems that have
been considered when modeling the environment are such as refueling stations, blocked or
no-fly zones, packets waiting to be picked, and the delivery point for each specific packet.
In order to let the agent learn to deliver a package, a positive reward of +1 can be provided
for successfully flying to a delivery position with the packet has been picked. The notations
used throughout the problem formalization section are listed in Table 1.

Table 1. Notations used for delivery by drone problem.

N Number of agents
e Length of episode
t Step number within the episode (t ∈ {1, . . . , e})

Fmax Maximum fuel capacity of an agent
∆ f Discrete fuel consumption upon each action
R Row count of gridTable (X Coordinate)
C Column count of gridTable (Y Coordinate)
ni ith agent (i ∈ {1, . . . , N})
st State of multi-agent problem at step t
sn

t State of nth agent
xn

t X coordinate of nth agent in the grid (x ∈ {0, . . . , R− 1})
yn

t Y coordinate of nth agent in the grid (y ∈ {0, . . . , C− 1})
f n
t Fuel status of nth agent

pxn
t X coordinate of packet

pyn
t Y coordinate of packet

dxn
t X coordinate of delivery target

dyn
t Y coordinate of delivery target

p′ The state scalar showing packet picked up
d′ The state scalar showing packet delivered
An Action space for nth agent
an

t Action selected for nth agent at step t
pact Probability for the environment to apply the selected action

4.1.1. State Space S
The global state of the problem for multi-agent case st = {s1

t , s2
t , . . . , sn

t }, where st can
be decomposed as in Equation (16):

st = (x1
t , y1

t , f 1
t , px1

t , py1
t , dx1

t , dy1
t ; . . . ; xn

t , yn
t , f n

t , pxn
t , pyn

t , dxn
t , dyn

t)
T (16)

The overall state st comprises individual states sn which are identical in terms of
structure among all the agents. The state of each agent is given by several scalar variables
describing the vehicle‘s position, fuel state, the position of the package assigned to the
vehicle, and the delivery point that the vehicle should visit with the packet. Each element
in the state is given by scalar variables describing the status of vehicle and packages, where
xn

t , yn
t , f n

t are the position and the fuel status of the nth vehicle, pxn
t and pyn

t are the position
of package to be picked which is already assigned to the nth vehicle, and lastly dxn

t and dyn
t

are the delivery points denoting the vehicle should visit just after picking up the package
as listed in Table 1.

In a delivery by drone setting an agent will not be able to endlessly deliver the
packages due to having limited battery capacity. With every movement of the agent the
charge of the battery will decrease slightly. With the limited battery capacity, running out of
power keeps the agent out of service, which results in having no more rewards. Therefore,
the environment improved by placing a charging station or refueling station on the grid.
Thus, the agent can fly towards the station to recharge its battery to be able to deliver
more packages to have more reward. The multi-agent scenario of the delivery by drone

Drones 2024, 8, 71 12 of 32

problem has been depicted in Figure 4. The agent needs to take appropriate actions towards
frequently visiting the charging stations when the battery is low even though the charging
station is not on the optimal path between the agent, packet, and delivery point. If the fuel
state reaches zero before visiting the refuel station, the vehicle will ignore any action and
keep its last state resulting in an ineffective agent. Therefore, the fuel state f n

t at step t for
the nth vehicle can be give formalized as:

f n
t ∈ {0, ∆ f , 2∆ f , . . . , Fmax − ∆ f , Fmax} (17)

where ∆ f is the decrements each time an action is taken and Fmax is the max fuel state just
after the initialization or refuel station is visited.

(a) (b) (c)
Figure 4. Illustrative example of the delivery by drone problem. The agents, fuel stations, blocked
cells, packages, and delivery points are randomly spread out to the grid at the beginning of the
problem. As steps move forward, each agent makes a decision and takes an action. As a result of
this, agents interact with the environment in the following ways: refuel, pick up package, deliver
previously picked-up package, or cannot move anywhere due to empty fuel. (a) Randomly initialized
delivery by drone problem at step t = 0 with 2 sets of agents and packages, the blocked cells and
fuel stations that will max out the fuel are fixed. (b) The status of the environment at step t = 5 after
taking optimum actions towards a collaborative goal ends up less energy left as the fuel station is not
visited yet. (c) Legend for delivery by drone problem.

The packet position variables pxn
t and pyn

t , and delivery points dxn
t and dyn

t can take
p′ and d′, respectively, as a value unlike the other position values. It has a special meaning
decoded into the state space to indicate to the algorithms that the package was picked or
delivered. Both pxn

t and pyn
t will take p′ when the package is picked; otherwise, both will

point out the exact location of the package in the grid. Both dxn
t and dyn

t will take d′ when
the package is delivered; otherwise, both will point out the exact location of the delivery
point for the package in the grid.

pxn
t , pyn

t ∈
{
{(0, . . . , C− 1), (0, . . . , R− 1)}, not picked up
{(p′, p′)|p′ < 0}, picked up

dxn
t , dyn

t ∈
{
{(0, . . . , C− 1), (0, . . . , R− 1)}, not delivered
{(d′, d′)|d′ < 0}, delivered

(18)

4.1.2. Action Space A
The action space for nth agent depends on the status of agent‘s, package‘s, delivery

point‘s position, and fuel remaining for the vehicle. The action space for An is determined
as follows:

• If packet is not delivered yet, Ai ∈ {up, down, le f t, right};
• If packet is delivered and no more available, Ai ∈ {donothing};

Drones 2024, 8, 71 13 of 32

• If fuel is empty, Ai ∈ {donothing}.

4.1.3. State Transition Model T
The state transition model T covers the qualitative description of problem dynamics

given at the start of this section. It captures the probability of certain results happening
after a given action thus creates uncertainty. The model given here can be partitioned into
dynamics for each individual agent [49]. The dynamics for the operation of delivery by
drone problem are described by the following rules:

• If the fuel f n
t is not zero, the agent moves toward the direction of action selected with

a probability of pact by only one unit away from where it is located or moves toward
the direction of one of the adjacent action indicates with a probability of (1−pact)

2 .
• If the resulting action makes the agent move towards a blocked state, the agent remains

in its previous state.
• If the fuel f n

t is zero, the agent remains in the same position forever with Ai ∈
{donothing}.

• If the agent reaches a position where a refueling station exists f n
t is maxed out to Fmax.

• If the agent moves to a different cell than where it is located, the fuel variable f n
t

decreases by ∆ f for each step.
• If the agent reaches a position where the package exists (xn

t ,yn
t)=(pxn

t , pyn
t), the agent will

continue to transition to another cell selecting an action fromAi ∈ {up, down, le f t, right}
in the next step and the packet states will be equal to (p′,p′) to indicate that packet is
picked up.

• If the agent reaches a delivery point with a package, the agent does not transition from
this state and continues to apply Ai ∈ {donothing} and both packet state and delivery
point state will be set to p′ and d′, respectively.

4.1.4. Reward ModelR
The reward model primarily promotes delivering packages. Besides that, in order to

encourage picking package, achieve goals with fewer actions, and travel with fuel levels
far from staying in the middle of nowhere, there are other rewards. These rewards are
minor as they can cause to stuck at local maxima. Minor rewards can be achieved when
fuel stations are visited and packets are picked up.

R(st, at) = Rd ∗ ndelivered(st)

+ Rp ∗ npicked(st)

+ R f ∗ n f ueled(st, st−1)

+ Rm ∗ nmoves(st, at)

(19)

where:

• ndelivered(st): number of packages delivered;
• npicked(st): number of packages picked;
• n f ueled(st, st−1): number of visits to the fuel station;
• nmoves(st, at): number of moves taken.

Moreover, Rd, Rp, R f , and Rm are the relative rewards of delivering a package, picking
up a package, visiting the fuel station, and penalty for taking too many actions to achieve a
global goal, respectively.

5. Methodology

This section describes the methods that have been applied to the delivery by drone
problem and the methods are compared in the following section. These methods are
deep reinforcement learning, deep correction, and the proposed package distribution that
combines the Genetic Algorithm with reinforcement learning and Curriculum Learning.

Drones 2024, 8, 71 14 of 32

5.1. Application of Deep Reinforcement Learning

The application of Deep Reinforcement Learning (DRL) in the multi-agent delivery by
drone problem is the baseline for the following enhanced methods. It is a pivotal method
for enabling intelligent decision making and action selection. The network structure, as
illustrated in Figure 5, serves as the foundation for this application, encompassing neural
layers that facilitate the learning and representation of complex relationships within the
environment.

The input to the DQN consists of a comprehensive cascaded state vector, capturing
essential elements crucial for informed decision making by each agent. This state vector
includes the positional information of the agent within the environment, the remaining
fuel levels, the coordinates of the packet to be picked up, and the delivery destination
for each agent. This holistic representation ensures that the network is equipped with a
comprehensive understanding of the current environmental context and the specific tasks
assigned to each agent.

The hidden layers embedded within the network structure play a vital role in captur-
ing the intricate dependencies and patterns present in the multi-agent delivery drone
problem. Through a process of supervised learning and reinforcement learning, the
DQN adjusts the weights and biases of these hidden layers to approximate the optimal
action–value function.

The network’s output is a set of Q-values, each corresponding to a possible action for
each agent. The available actions typically encompass fundamental movements, such as
up, down, left, and right, along with a ’do nothing’ option. These Q-values quantify the
expected cumulative rewards associated with each possible action, providing a basis for
the agent to make intelligent decisions that maximize its long-term objectives.

During the training phase, the DQN utilizes a combination of experiences from the
environment and the rewards obtained through delivery by drone environment to up-
date its parameters. The objective is to learn a collaborative policy that guides agents
in selecting actions that lead to the maximization of cumulative rewards over time. The
depicted network structure in Figure 5 exemplifies how Deep Q-Networks are applied to
address the multi-agent delivery drone problem. By incorporating comprehensive input
representations, hidden layers for learning complex relationships, and output Q-values
guiding action selection, the DQN framework enables agents to navigate the environment
and fulfill their delivery objectives up to a certain amount of agents within reasonable
learning steps.

5.2. Prioritized Experience Replay

Prioritized Experience Replay is an extension of replay memory, which addresses
which experiences should be replayed to make the most effective use of experience storage
for learning [50]. Since most of the problems included in RL exhibit sparse rewards,
reaching these rare rewards and making inferences about the problem requires different
novel techniques. Coping with sparse rewards is one of the biggest challenges in RL [51].
One can classify the state transitions as ’surprising’ when an agent happens upon a positive
reward and ’boring’ when an agent gets nothing different as the outcome of an action
[52]. Therefore, some transitions have importance over the others. The learning algorithm
should focus on the experiences that are more important using the prioritized experience
learning to be able to learn faster.

In order to differentiate the surprising and boring transitions, PER uses the temporal
difference (TD) error that simply computes the difference between target network prediction
and q-network prediction to assign a priority over the received experiences [53]. A big TD
error results in a higher priority:

TDerror = |Q(s, a)−Q∗(s, a)| (20)

Drones 2024, 8, 71 15 of 32

This TD error can be transformed into a priority:

pi = [TDerror(i)− ϵ]α (21)

where i is the index of experience, pi represents the proportional priority of experience i,
and ϵ is a small positive constant that prevents transitions not being revisited once their
error is zero. The exponent α determines how much prioritization is used, with α = 0
corresponding to the uniformly selected experience as in Experience Replay. Then the pi
priority can be translated to a probability, so one can simply sample it from the replay
memory using its probability distribution. An experience i has the following probability of
being picked from the replay memory:

Pi =
pi

∑ kpk
(22)

When a problem requires large datasets and memory buffers, searching from memory
for the element that has the highest priority can be intractable in practice with usual data
structures. The sum-tree is a commonly used data structure for PER and it offers the search
to be completed at O(logN) complexity. In sum-tree, the value of a parent node is the sum
of its children. Only leaf nodes store the transition priorities and the internal nodes store
the sums of their own child. To sample a minibatch of size k, the range [0, ptotal] is divided
into k ranges [50]. Then, a value is uniformly sampled from each range.

Figure 5. An example of the network structure for multi-agent delivery drone problem with hidden
layers. The input is the cascaded state vector elements including the position of the agent, remaining
fuel, the position of the packet to be picked up, and the delivery point of each agent. The output is
the q-value of each possible action for each agent including up, down, left, right, and do nothing.

5.3. Utility Decomposition with Deep Correction Learning

In the past, decomposition methods were suggested as a way to estimate solutions
for complex decision-making problems that occur sequentially [54]. In situations where
an agent interacts with multiple entities, a technique called utility decomposition can be
utilized. This approach considers each entity separately, calculating their individual utility
functions. These individual functions are then combined in real time to solve the overall

Drones 2024, 8, 71 16 of 32

problem while sacrificing optimality. Deep-neural-network-based correction methods are
then applied to learn correction terms to improve the performance [55].

5.3.1. Utility Decomposition

Utility decomposition consists of the process of breaking down the complex formula-
tion of a problem into simple decision-making tasks. Each subtask is then solved separately
in isolation. As solving the global problem suffers from the curse of dimensionality, solving
each isolated subtask requires exceptionally less computation power [55]. At the end of
the process each solution is combined through an approximate function f , also named the
utility fusion function, such as:

Q∗(s, a) ≈ f (Q∗1(s1, a), . . . , Q∗n(sn, a)) (23)

where Q∗ is the optimal value function of the global problem and n denotes the subtask id.
According to [55], for the independent agents two approximation functions, max-sum and
max-min, can be utilized to combine the subtask solutions:

Q∗(s, a) ≈∑
i

Q∗i (si, a) (24)

This approach equally weighs the Q-Values of each agent. Instead, another strategy is
to consider taking the minimum as follows:

Q∗(s, a) ≈ min
i

Q∗i (si, a) (25)

In this study, the first approach is focused on the sake of simplicity and evaluated the
performance of the decomposition method with respect to regular deep q-networks.

5.3.2. Deep Correction

This technique makes use of the decomposed utility functions to guide the RL agent
toward an ideal policy while using less training data [55]. The architecture of the deep
correction method is depicted in Figure 6. The method is inspired by the multi-fidelity
optimization [56]. The composed model is evaluated as Qlo and the model that takes into
account the deep correction network is considered as a part of Qhi, as given in Equation (26).
The deep correction network is the additive part that is nothing but another DQN.

Figure 6. Architecture of decomposed deep correction network. The global state is decomposed into
substates that represent each agent, and the substates are fed into pre-trained single-agent networks.
In order to approximate the global Q-function, the output of the utility fusion is combined with the
output of the deep correction network.

Drones 2024, 8, 71 17 of 32

The global Q∗ functıon can be given as the sum of low fidelity model and the correction
term as follows:

Q∗(s, a) ≈ Qlo(s, a) + δ(s, a; θ) (26)

The cost function that needs to be optimized with respect to θ will be:

J(θ) = Es′ [(Q
∗+(s, a)−Q∗(s, a))2] (27)

where Q∗+ can defined as the updated value as:

Q∗+(s, a) = r + γ max
a′

Q∗(s, a′) (28)

The gradient of the cost function can be derived with respect to the network parameters
of the correction network:

∇θ J(θ) = −(Q∗+(s, a)−Q∗(s, a))∇θQ∗(s, a) (29)

Substituting Equation (28) into gradient will give:

∇θ J(θ) = −(r + γ max
a′

Q∗(s, a′)−Q∗(s, a))∇θQ∗(s, a) (30)

Substituting Equation (26) makes the gradient as given below:

∇θ J(θ) = −(r + γ max
a′

(Qlo(s, a′) + δ(s, a′; θ))

− (Qlo(s, a) + δ(s, a; θ))∇θ(Qlo(s, a) + δ(s, a; θ))
(31)

As ∇θQlo(s, a) does not change with θ, the resulting gradient function will become:

∇θ J(θ) =− (r + γ max
a′

(Qlo(s, a′) + δ(s, a′; θ))− (Qlo(s, a) + δ(s, a; θ))∇θδ(s, a; θ) (32)

The gradient descent update rule will optimize parameter θ as given below:

θ ← θ − α∇θ J(θ) (33)

Therefore, taking the gradients with respect to trainable parameters, the update rule
becomes as following:

θ ← θ + α[r + γ max
a′

(Qlo(s, a′) + δ(s, a′; θ))− (Qlo(s, a) + δ(s, a; θ)]∇θδ(s, a; θ) (34)

5.4. Curriculum Learning

Curriculum learning is a technique in RL that involves gradually increasing the
difficulty of the tasks or environments faced by an RL agent as it learns and improves.
By starting with simpler tasks and gradually moving on to more complex ones, the agent
can learn more effectively and generalize faster. The gradual increase in difficulty allows
the agent to build up its skills and knowledge gradually, rather than being overwhelmed
by trying to learn too much at once. When the given task is complex due to opponents,
suboptimal representations or sparse reward settings learning can be remarkably slow [57].
It also allows the agent to focus on specific aspects of the task at a time, which can help
prevent overfitting and ensure that the agent generalizes well to new situations. It would be
beneficial to have the learning process focus on examples that are more valuable and neither
too challenging nor too simple [58]. Therefore, this technique helps an RL agent to learn
and adapt to new environments and tasks, and can be particularly useful in scenarios where
the agent needs to operate in complex or dynamic environments [59]. In the end, all the
knowledge is transferred to the learning task that is targeted at learning the main problem.

Drones 2024, 8, 71 18 of 32

Agents in standard reinforcement learning start to learn the environment through
random policies to find a policy that is close to the optimal policy for a given task. In the
curriculum learning setting, instead of directly learning a difficult task, the agent is exposed
to simplified versions of the main problem [60]. In the context of a planning problem,
Curriculum Learning could involve starting with a simple environment where the agent
has to navigate simple, straightforward routes and deliver packages to fixed locations. As
the agent learns to perform this task well, the environment could be made more complex,
for example by introducing obstacles or dynamic elements such as moving vehicles.

For the delivery by drone problem, there are several levels that can be exploited for
Curriculum Learning. These levels can be as given below:

• Navigating around the map: Initially, the agent learns to navigate the spatial layout
efficiently, mastering the basics of pathfinding and map traversal.

• Picking up the packet and providing delivery: The curriculum then advances to
include the intricate tasks of package pickup and delivery. This step builds on the
navigation skills acquired in the previous level, introducing additional complexity.

• Consuming fuel or energy during the operation: The final level involves incorporating
the consideration of fuel or energy consumption, further augmenting the challenge.
This aspect becomes critical in addressing real-world constraints and optimizing the
drone’s operational efficiency.

5.5. Package Distribution with Genetic Algorithms

Genetic Algorithms are a type of optimization algorithm inspired by natural evolution
and can be used to solve a wide range of decision-making problems, including those in
the field of reinforcement learning [61]. GAs are used to find approximate solutions to
complex problems that are difficult or impossible to solve using traditional methods. GAs
start with a population of potential policies (i.e., sets of rules or decision-making criteria)
for the decision maker to follow. It would then evaluate the performance of each policy
by simulating the actions in the environment and measuring the rewards they receive
through fitness functions. The GA would then use this information to determine which
policies are the most successful and select those for reproduction and further optimization.
Over time, the GA would iteratively improve the policies through a process of selection,
crossover (i.e., combining elements of successful policies to create new ones), and mutation
(i.e., making small random changes to the policies to introduce new ideas and avoid getting
stuck in local optima). The ultimate goal would be to find a policy that allows the agents
to maximize their rewards and achieve their global objectives as efficiently as possible.
Using a GA in this way can be particularly useful in situations where the decision-making
policies for the agents are complex and there are many possible actions they can take, as
it allows the algorithm to explore and optimize a large search space in an efficient and
effective manner.

In the context of the delivery by drone problem, the GA could be used to optimize the
decision-making policies of multiple drones operating in the same environment. This could
involve using the GA to search for the best possible actions for each drone to take at each
time step, based on the current state of the environment and the rewards being received
by the drones. In case the number of packets and drones is limited to a few numbers, the
calculation of permutation that is required to assign each packet to a drone is tractable. On
the other hand, if the number of agents increases the number of fitness values that need to
be calculated increases exponentially as well. For instance, the number of fitness values that
need to be calculated is 10! if the number of agents is 10 for each single simulation of packet
assignment. In this case, an efficient packet distribution becomes intractable if all fitness
values are considered. Therefore, the packet distribution has been optimized with GA as
given in Figure 7. As Genetic Algorithms provide optimization over large space states, they
simulate the process of natural selection to find high-quality solutions for optimization and
search problems.

Drones 2024, 8, 71 19 of 32

In order to resolve the packet distribution with a Genetic Algorithm for a high number
of agents, key components of the algorithm, including genome, chromosome, and pop-
ulation, should be represented by the problem [62]. For our packet delivery problem, a
chromosome is mapped into nth permutation of the vector, which reflects which drone will
carry which packet. In this case, a genome becomes just a number that reflects the id of the
packet and the population becomes a set of random chromosomes with a predefined length
which is 20 for this problem. The very first input and the optimal output of the Genetic
Algorithm can be expressed as given below:

p = [1, 2, . . . , N]′

p∗ = [pi|pi is unique, pi ∈ N1, 0 < pi ≤ N]′
(35)

There are other operators of Genetic Algorithms, such as Fitness, Selection, Crossover,
and Mutation, that need to be represented as well. For the fitness operator, the cumulative
reward of the simulation has been utilized. The selection operator is the one that aims to
find two parents that will generate offspring chromosomes through the crossover. Parents
have been found by ordering the population by their fitness values. As this packet dis-
tribution problem is represented by permutation, conventional crossover operators lead
to inadmissible solutions. Therefore, Order One Crossover has been utilized to keep the
properties of permutation valid. In order to avoid premature convergence, Single Swap
Mutation has been applied.

Figure 7. Genetic-algorithm-aided packet distribution framework combined with pre-trained deep
reinforcement learning agents. The input of the framework is the cascaded states of each agent,
which includes packets and delivery points randomly assigned to agents. GA permutes the package
delivery tasks between agents and seeks the optimal permutation through a loop that includes
selection, crossover, and mutation. The resulting permutation gets converted into a cascaded state
again with each packet delivery task optimally assigned to each agent. Finally, the agents carry out
their delivery task independently towards a global reward.

Each simulation starts with a certain amount of agents and packages. Since the packets
and agents are distributed randomly, the performance of the overall simulation will likely
be poor due to various factors such as the distance to the agent and refueling stations.
Before starting the simulation with randomly assigned drone pairs, a package distribution
algorithm runs. It basically permutes the candidates of the package, agent pairs, and then
calculates the fitness value for each pair. The state and fitness values are placed into a
dictionary. At the end of visiting each state, the state with highest fitness value within the
dictionary is returned.

Drones 2024, 8, 71 20 of 32

5.6. Execution

The execution of the proposed system’s workflow can be described with distinct
phases. This segmentation clarifies the overall operational framework and highlights
the efficiency embedded in each stage. The process is divided into three main phases:
the Initial Training Phase, the Packet Distribution Phase, and the Execution of Delivery
Tasks Phase. While the Initial Training Phase involves a one-off, more time-consuming
computational process, the subsequent phases are optimized for speed and efficiency,
ensuring real-time responsiveness in the dynamic environment of drone delivery. Each
phase contributes to the system, balancing the upfront computational investment with
real-time operational capabilities.

• Initial Training Phase: The model incorporates DQN, PER, and Curriculum Learning,
which require a significant amount of computational time for the initial training.
However, this is a one-time process, taking substantial amount of hours to complete
for the map that incorporates no-fly zones and refuel stations. Once the training is
finalized, the model does not need to be retrained unless there is a substantial change
in the operational environment.

• Packet Distribution: After the initial training, the model employs a Genetic Algorithm
for packet distribution among agents. This step is computationally efficient and takes
seconds to minutes to complete depending on the setting. It is designed to quickly
adapt to the dynamic requirements of real-time delivery tasks.

• Execution of Delivery Tasks: Each drone independently executes its delivery tasks
based on the pre-trained model called the inference model. This inference phase is
extremely fast, occurring in milliseconds. Hence, once the delivery tasks are assigned,
agents can promptly carry out their operations, ensuring the real-time responsiveness
of the system.

By separating the computationally intensive training phase from the real-time oper-
ational phase and employing efficient algorithms for packet distribution, the proposed
solution maintains real-time efficiency in defining and executing routes. This architecture
ensures that while the very initial setup for the environment requires time, the actual
operational phase aligns with the real-time constraints of delivery by drone systems.

6. Simulation Results

In this section, results of the simulations conducted to evaluate the performance of
various methods in addressing the delivery by drone problem are presented. The methods
considered are DQN, prioritized experienced replay, decomposition with correction, and
GA-aided packet distribution methods. To provide a comprehensive analysis, the results
are presented in order of increasing complexity, offering insights into the efficacy of each
method under varying conditions.

6.1. Grid World Rendezvous Problem

The DQN algorithm is validated on a multi-agent setup on 5 × 5 grid world where
agents are expected to meet at rendezvous point to reach a global goal with different neural
network parameters under uncertainty. The two DQN‘s with different hidden layers have
successfully learned how to act on the environment. When compared with the tabular
representation, which is optimal but not tractable for bigger environments with more
interactions between high number of agents, the first DQN had 56% parameters and the
next had 15% parameters of the tabular representation to be able to capture the learning
task. The weights, biases, and neurons in the layers are the major factors that identify the
number of parameters needed to be trained. Figure 8 shows that the DQN with fewer
parameters can also learn the task but converges with an acceptable delay.

The hyper-parameters, such as batch size, replay buffer size, hidden layers, and
epochs, play a crucial role in the training process [41]. Table 2 lists the parameters that
are utilized within a grid search to find optimal values along with the Mean Squared
Error (MSE). The MSE is a measure of the quality of convergence to 1 and lower MSE

Drones 2024, 8, 71 21 of 32

indicates that the learning performance with given hyper-parameters is better. Figure 9
shows multi-agent simulation results in a 5× 5 rendezvous environment. The visualization
presents a comparison of the convergence rates of 36 different learning algorithms through
their mean squared error (MSE) values, using a logarithmic scale for enhanced clarity
to focus better on lower values. This scale allows us to identify differences among the
lower values, which are critical for evaluating model performance. The Model #2 with the
lowest MSE, highlighted in red, clearly stands out as the best performer among the group,
indicating the most accurate predictions. The logarithmic scale emphasizes the substantial
variance in performance across models, with some models having significantly higher
errors, depicted through the use of exponential y-ticks to accommodate the wide range
of MSE values. The 5 × 5 environment has been utilized as a benchmark environment
to validate the implementation of various components of DQN, as the larger settings are
computationally expensive to run in gridsearch for multiple agents. Upon demonstrating
the implementation works as expected, the abovementioned components are challenged
with the 10 × 10 setting with the same hyper-parameters captured in a 5 × 5 environment,
such as batch size, replay buffer, and epocs. The hidden layers have been increased to
improve the learning capacity of the model.

Figure 8. Multi-agent simulation with two different deep q networks compared against each other
with different numbers of neurons configured relative to tabular approach.

Figure 10 shows a comparison of different experience replay settings for the same
multi-agent grid world problem with DQN. As the α value goes from 0 to 1 as given
in Equation (22), the prioritization becomes more effective than the uniform selection of
experiences. Prioritized Experience Replay demonstrates that it is highly efficient for
learning tasks to converge to an optimum state faster. Figure 10 shows that PER converges
dramatically faster than the Uniform Experience Replay.

In order to evaluate the performance of the DQN and deep correction method with
PER in a multi-agent setting, the delivery by drone problem formalized in previous sections
has been utilized as a more complex task. The performance of the method has been
delivered through the evolution of the policy during training. The evolution can be easily
followed by a graph that shows the cumulative reward with respect to the number of
Bellman updates. Several types of environments have been experimented with to find the
capabilities and limits of each method in terms of scalability against number of agents. The
major parameters taken into account during the simulations are the size of the grid and the
number of agents.

6.2. Delivery by Drone Problem

To run the deep correction network, a single agent policy should be generated through
DQN, as given in Figure 11 for the grid with size of 5 × 5. The single agent with DQN
can successfully reach a good policy at a reasonable Bellman Updates for delivery by
drone problem. The deep correction network has been enabled for the multi-agent settings

Drones 2024, 8, 71 22 of 32

and other agents have been invited into the game. As can be seen in Figure 11, the
method performed well and maintained good learning stability at acceptable Bellman
updates. Hereby, it is also demonstrated that learning a successful policy in the multi-agent
setting with the corrective factor can be done with far fewer training samples. Otherwise,
traditional methods such as DQN could take several orders of Bellman updates to reach
the same performance since it directly learns the value function of the full-scale problem at
once, as can be seen from the bad performance of DQN even with PER in Figure 12b (red)
for the three-agent case.

Table 2. Hyper-parameters sought in a grid search in a 5 × 5 rendezvous setting to have insight
into the sensitivity of the parameters. The parameter set that made the learning converged fastest is
indicated with *.

Index Batch Buffer Hidden Epoch MSE

1 32 128 64 1 0.7455
2 32 128 64 16 0.2825 *
3 32 128 32 1 2.5689
4 32 128 32 16 0.5461
5 32 128 16 1 3.8998
6 32 128 16 16 0.4613
7 32 512 64 1 1.1756
8 32 512 64 16 0.6032
9 32 512 32 1 3.0012
10 32 512 32 16 0.3521
11 32 512 16 1 4.5958
12 32 512 16 16 0.3281
13 32 4096 64 1 2.7679
14 32 4096 64 16 2.5461
15 32 4096 32 1 6.8827
16 32 4096 32 16 4.6802
17 32 4096 16 1 7.3062
18 32 4096 16 16 4.7441
19 16 128 64 1 8.009
20 16 128 64 16 5.0631
21 16 128 32 1 12.8408
22 16 128 32 16 10.7525
23 16 128 16 1 14.6726
24 16 128 16 16 9.042
25 16 512 64 1 7.2972
26 16 512 64 16 11.5811
27 16 512 32 1 13.081
28 16 512 32 16 7.0676
29 16 512 16 1 16.8648
30 16 512 16 16 7.0541
31 16 4096 64 1 13.7296
32 16 4096 64 16 12.1081
33 16 4096 32 1 24.4414
34 16 4096 32 16 16.0901
35 16 4096 16 1 28.1531
36 16 4096 16 16 17.0721

The same problem with higher state and action space could also utilize the deep
correction method. The environment of delivery by drone in 10× 10 grid with a single agent
already has around 107 states. The multi-agent version of the delivery by drone problem
exponentially grows in state space, which is intractable with traditional reinforcement
learning techniques. For example, while the delivery by drone problem with two agents
has 1014 states, the same environment with five agents will have 1035 states. Figure 12a
shows the learning performance of a single agent delivery by drone problem in a 10 × 10
grid. The DQN algorithm required 1.2 × 109 Bellman updates to converge.

Drones 2024, 8, 71 23 of 32

Figure 12b (orange) shows the multi-agent simulation with deep correction enabled
for three agents. In the three-agent cases, the learning process has been completed with less
than 2 × 106 Bellman updates given the single agent learning has already been completed.
The capacity issue observed in the environment with 10 × 10 size. As can be seen in
Figure 12b (green), the learning process performed poorly for five agents in a 10 × 10
environment.

Figure 9. Grid search results to find the best hyper-parameters of DQN with experience replay in 5 ×
5 Rendezvous setting with two agents. The hyper-parameters of Model #2 performed best against
MSE.

Figure 10. Simulations results with different alpha parameters of prioritized experience replay:
as alpha goes to 1, the prioritized experience replay becomes more effective than the traditional
experience replay.

Figure 11. Learning performances of delivery drone in 5 × 5 environment for one agent (57 states),
two agents (514 states), three agents (521 states), and four agents (528 states)

Drones 2024, 8, 71 24 of 32

Figure 12b (green) shows the good learning performance of five agents. The learning
capacity has been improved by increasing the hidden neurons from 64 × 256 × 64 to
256 × 1024 × 2048. For the five-agent case, where the size of the state space is around 1035,
the learning progress has been completed around 3.5 × 107 Bellman updates. It can be
seen that the utilization of the deep correction method, ultimately increased the learning
performance. Its impact on the performance can be understood better when compared to
the number of Bellman updates required to complete single-agent systems and multi-agent
systems, although the state and action space increases exponentially.

Figure 13 shows the learning performance of Curriculum Learning and the traditional
DQN. While Model#1 (blue line) depicts the performance of Curriculum Learning, Model#2
(orange line) demonstrates the performance of the agent trained by DQN. Each notch in
the curriculum case shows the switches between the levels mentioned above. It can be seen
that the Curriculum Learning performs better than the other. It reaches the levels that the
naive DQN will reach sooner after seeing many more experiences.

(a)

(b)
Figure 12. Learning performances of delivery by drone in a 10 × 10 environment. (a) Single agent
with DQN. One agent (107 states) with DQN with PER converges to a good reward but took a
substantial amount of time. (b) Deep Correction vs. DQN for multiple agents. Three agents (1021

states) and five agents (1035 states) with the Deep Correction method along with three agents with
the DQN method and PER. The deep correction method outperforms the DQN method for the
three-agent case and converges a high cumulative reward for five agents as well.

Figure 14 shows the performance of the package distribution algorithm given at
Section 5.5 along with the initial state without any modification and randomly distributing
the packages. It can be clearly seen that distributing packages through calculating the
fitness value of each agent and packet pair outperforms all other combinations. The (blue)
data that show packet-as-given is the default permutation mapping that maps the first
agent to the first packet task and so on, which is not different from randomly assigning
each packet to agents.

Drones 2024, 8, 71 25 of 32

Figure 15 depicts the comparison of packet distribution setting and standard initializa-
tion for two and four agents. It can be seen from the simulation results that the fitness-based
packet distribution with Genetic Algorithm converges faster than the standard initialization
for both two- and four-agent settings.

Figure 16 shows the performance of the 10 agents trained by DQN with curriculum,
PER, and packets distributed by Genetic Algorithm. Applying the Genetic Algorithm to
10 agents showed practical improvements of around 15%, which was not possible with
previous methods investigated in this study for 10 agents.

Figure 17 illustrates the computational time analysis of various multi-agent approaches
investigated for a 10 × 10 drone delivery environment. The convergence times varied on a
computing environment with Intel i7 CPU and Geforce GTX 1080 GPU. (Both components
were acquired through project funding, as detailed in the appendix. Intel Corporation,
headquartered in Santa Clara, California, USA, manufactures the CPU, and the GPU is
produced by Nvidia Corporation, also based in Santa Clara, California, USA.) Figure 17a
illustrates the convergence time in hours for various configurations of agents using DQN
and Deep Correction. It highlights the scalability and efficiency challenges when increasing
the number of agents, with a clear 24-h time limit, under which certain complex configu-
rations failed to converge. The single-agent DQN model with curriculum enhancement
presented a baseline for the computational time needed and other algorithms. The training
of DQN configuration with the three-agent setup immediately failed to converge within
the 24-h threshold. Although the configurations of three agents and five agents with the
Deep Correction approach demonstrated promising convergence times, the 10-agent setting
could not provide a solution within the time limit.

Figure 17b shows the completion time of GA for packet distribution and inference time
spent for decision making for 10-agent settings. Multi-agent configurations with Packet
Distribution through GA demonstrated balanced performance, indicating an efficient
synergy between agent count and algorithmic complexity. The GA utilizes the underlying
curriculum-based single-agent model and completes the packet distribution task in a
reasonable time amount of 5.74 minutes for a 10 × 10 environment. On the other hand, the
inference element in the figure demonstrates that agents can leverage the pre-trained model
for swift decision making, with inference times in milliseconds even for a complex 10-agent
system. This underscores the practical applicability and real-time responsiveness of our
model, making it highly suitable for dynamic and time-sensitive drone delivery operations
in urban environments. This pattern underlines the critical balance between the number
of agents and the chosen algorithm, illuminating the complexities in scaling multi-agent
systems for drone delivery tasks.

The simulation environment for the multi-agent delivery by drone problem is visu-
alized in Figure 18, with detailed snapshots captured at t = 0, t = 5, and t = 14. Within
the confines of a 10 × 10 grid, 10 agents collaboratively navigate, picking up packets,
making deliveries, and consider fuel consumption. The simulation incorporates advanced
techniques, including DQN with prioritized experience replay, Curriculum Learning, and a
Genetic Algorithm for efficient packet distribution. Notably, the decision-making model
developed through Curriculum Learning, illustrated in Figure 13, plays a crucial role in
guiding the agents. Additionally, the Genetic Algorithm ensures optimal packet distri-
bution, as demonstrated in Figure 16. The snapshots at t = 5 and t = 14 showcase the
synchronized efforts of the multi-agent decision maker, effectively advancing towards the
global goal of delivering every package with efficiency.

Drones 2024, 8, 71 26 of 32

Figure 13. Curriculum learning performance for the delivery by drone problem (the pointer shows
the snapshot model that is used in Figure 18).

However, upon closer inspection of the agents’ trajectories, it becomes apparent that
certain agents, specifically those highlighted in red, magenta, green, and blue, deviate from
the optimal path due to inherent action uncertainties. Notably, despite all agents success-
fully picking up packets, challenges arise as a consequence of unoptimized and randomly
distributed fuel stations. This results in some agents, initially equipped with a fuel capacity
of 10, failing to reach their delivery destinations due to premature fuel depletion.

Figure 14. The performance of the package distribution enabled setting versus the standard initializa-
tion for three agents.

Figure 15. Comparison of two- and four-agent settings with packet distribution and standard
initialization.

Drones 2024, 8, 71 27 of 32

Figure 16. Performance of Genetic Algorithm within packet delivery with 10 agents (the pointer
shows the snapshot model that is used in Figure 18).

(a) (b)

Figure 17. Convergence time and packet distribution completion time analysis for multi-agent
approaches investigated in a 10 × 10 delivery by drone environment underscores the trade-offs
between agent count and algorithmic sophistication. (a) Computational time spent during training
of each algorithm in hours, the base model reused in Deep Correction and GA showed with an
asterisk. (b) Completion of packet distribution showed in minutes, inference for decision making
took only milliseconds.

Drones 2024, 8, 71 28 of 32

(a) (b) (c)

(d) (e)

Figure 18. Detailed visualization of the simulation environment and the snapshots at t = 0, t = 5, and
t = 14. The delivery problem is simulated within a multi-agent setting of 10 agents working towards
picking the packets and making the delivery to the target cells with fuel consumption considered
within the 10 × 10 grid. The deep correction with prioritized experience replay, Curriculum Learning,
and Genetic Algorithm for packet distribution are enabled. The agents are getting the benefit of the
decision maker developed upon Curriculum Learning as frozen in Figure 13. The Genetic Algorithm
handles the packet distribution efficiently as given in Figure 16. As can be seen in the snapshots
of t = 5 and t = 14, the multi-agent decision maker performing towards the global goal of getting
every package delivered efficiently. (a) 10 × 10 grid template that agents are trained on with fixed
fuel stations and blocked positions. (b) Ten randomly spawned packets, delivery points, and drones,
agents are not assigned to a delivery task yet. (c) Agents are assigned to a delivery task by Genetic
Algorithm at t = 0 with 10 unit of initial fuel. (d) Snapshot of the environment upon collaborative
actions taken by each individual agent at t = 5, where nine packets have been collected (where only
the agent with cyan color is very close to capturing the packet, as it had to go around the blocked
cells), none of the packets have been delivered yet, and 3 agents (blue, magenta, and cyan) visited fuel
stations already and filled their fuel to the maximum unit of 10 at the time of visit. (e) Snapshot of the
environment at t = 14, where all 10 packets have been captured, 8 agents successfully delivered the
package and completed their task, 7 agents visited fuel stations one time, and only the yellow agent
visited two fuel stations, and one agent with cyan color and one agent with pink color ran out of fuel
before reaching the delivery point.

Drones 2024, 8, 71 29 of 32

7. Conclusion and Future Work

In this paper, the challenges of multi-agent planning problems have been investi-
gated in terms of domain knowledge, uncertainty, and scalability and a decision-making
framework for autonomous packet delivery by drone has been presented. In order to
mitigate the effects of the mentioned challenges, several methods including DQN, state
decomposition, deep correction, Curriculum Learning, prioritized experience replay, and
Genetic Algorithm have been explored and simulation results have been depicted. Each
component mentioned resulted in better performance and contributed to the success rate
of the learning agent and achieving a global task collaboratively. The research undertaken
on the 10 × 10 grid for drone delivery has demonstrated promising potential for scalability
and adaptability to various urban environments. This structured approach, investigated
within the confines of a manageable yet comprehensive grid size, paves the way for its
application on a broader scale. It is envisioned that this model can be conceptually placed
onto diverse urban landscapes, effectively mirroring the logistics and spatial dynamics of
cities in a practical manner.

While the naive DQN method cannot reach a solution even for three agents in a 10
× 10 delivery by drone setting within a reasonable amount of steps, the deep correction
method successfully converged after ≈ 106 Bellman updates. Moreover, utilizing the deep
correction method increased the learning capacity to five agents and converged around
≈ 3.5 × 107 Bellman update. However, the deep correction method cannot converge
within the 10 agents setting in a tractable manner. Utilizing a robust computing setup, it
reveals that while single-agent models establish a foundational computational benchmark,
increasing agent count introduces complexity, as evidenced by the immediate convergence
challenges in a three-agent DQN setup. While three- and five-agent configurations using
Deep Correction show promise, the 10-agent model exceeds the 24-h convergence threshold,
underlining the critical balance between agent quantity and computational feasibility.

The delivery by drone simulation results in complex settings, such as no-fly-zones,
limited fuel, and the pick-and-place scenario, which showed that the proposed method
with packet distribution through the GA can effectively reduce the problem to resolve the
task for 10 agents in 5.74 min. The reduced problem was then executed by DQN infer-
ence models aided with Curriculum Learning and PER in milliseconds. The two-folded
proposed method learned the dynamics of the delivery problem without any need for
domain knowledge input in an uncertain environment where actions can be altered by the
environment. It is also shown through the snapshots taken in various time steps during
execution that with the help of the packet distribution component realized by the Genetic
Algorithm, the proposed base DQN model with Curriculum Learning and PER framework
could scale to 10 agents, which was impossible with the other explored solutions within an
acceptable time frame and computing resources. The proposed approach demonstrated
substantial progress in multi-agent delivery by drone systems, yet our solution has limita-
tions, particularly when it comes to addressing more complex constraints, such as extreme
environmental conditions on drone reliability, dynamic packet distribution, and obstacle
and collision avoidance. The framework’s robustness against certain uncertainties falls
short in scenarios involving mechanical failures or operational disruptions. Moreover, the
need for incorporating maintenance and repair logistics for drones, alongside investigat-
ing more intricate operational challenges, underscores the importance of further research.
These areas of focus are vital for advancing drone delivery technologies to handle the
complexities of real-world applications, thereby improving their scalability, efficiency, and
reliability in urban environments.

The paper presents a nuanced exploration of multi-agent drone delivery systems,
analyzing algorithms such as DQN, Deep Correction, and GA. It highlights the differences
in learning performance, noting the advantages of Curriculum Learning and PER over
traditional DQN. The computational time analysis underlines the limitations of current
approaches and the necessity of efficient algorithms for real-time decision making, crucial
for practical urban delivery scenarios. The analysis of a 10 × 10 grid which can be stretched

Drones 2024, 8, 71 30 of 32

as required, considering the capabilities of commercial drones and infrastructure such
as charging stations, mirrors the logistical realities of metropolitan areas, showcasing
the model’s scalability and practical applicability in urban contexts. This work explored
a specific subset of the possible multi-agent applications, and the proposed decision-
making framework offers promising directions for more complex settings. The complexities
introduced by uncertainties in actions and fuel distribution underscore the significance of
fuel-focused strategies and optimization algorithms in addressing real-world challenges
within the multi-agent delivery by drone problem. The future work includes applying our
methodology to a problem where continuous state and action spaces exist, refueling, and
no-fly zones can be dynamic and agents collaboratively exchange some amount of fuel
during the operation.

Supplementary Materials: The code used for analysis is provided in a repository at doi: https:
//doi.org/10.6084/m9.figshare.25114223.

Author Contributions: Conceptualization, writing—original draft, F.A.T.; supervision, N.K.U. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by ‘Bilimsel Araştırma Projeleri Birimi, İstanbul Teknik Üniver-
sitesi‘, with grant number MDK-2018-41070.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle
MPC Model-Based Predictive Control
DP Dynamic Programming
MDP Markov Decision Processes
MMDP Multi-Agent Markov Decision Processes
RL Reinforcement Learning
DRL Deep Reinforcement Learning
DQN Deep Q-Network
DNN Deep Neural Networks
PER Prioritized Experience Replay
GA Genetic Algorithm
MSE Mean Squared Error

References
1. Jonas, A.; Shanker, R.; Liwag, K.; Sharpe, M.; Kovanis, B. eVTOL/Urban Air Mobility TAM Update: A Slow Take-Off, However,

Sky’s the Limit. 2021. Available online: https://advisor.morganstanley.com/the-busot-group/documents/field/b/bu/busot-
group/Electric%20Vehicles.pdf (accessed on 22 November 2023).

2. Buşoniu, L.; Babuška, R.; De Schutter, B., Multi-agent Reinforcement Learning: An Overview. In Innovations in Multi-Agent
Systems and Applications-1; Srinivasan, D., Jain, L.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 183–221. https:
//doi.org/10.1007/978-3-642-14435-6_7.

3. Hessel, M.; Modayil, J.; van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:
Combining Improvements in Deep Reinforcement Learning. arXiv 2017, arXiv:1710.02298. https://doi.org/10.48550/ARXIV.17
10.02298.

4. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M. Playing Atari with Deep
Reinforcement Learning. arXiv 2013, arXiv:1312.5602. https://doi.org/10.48550/ARXIV.1312.5602.

5. Zhang, K.; Yang, Z.; Başar, T. Multi-Agent Reinforcement Learning: A Selective Overview of Theories and Algorithms. arXiv
2019, arXiv:1911.10635. https://doi.org/10.48550/ARXIV.1911.10635.

6. Zhu, P.; Dai, W.; Yao, W.; Ma, J.; Zeng, Z.; Lu, H. Multi-Robot Flocking Control Based on Deep Reinforcement Learning. IEEE
Access 2020, 8, 150397–150406. https://doi.org/10.1109/ACCESS.2020.3016951.

https://doi.org/10.6084/m9.figshare.25114223
https://doi.org/10.6084/m9.figshare.25114223
https://advisor.morganstanley.com/the-busot-group/documents/field/b/bu/busot-group/Electric%20Vehicles.pdf
https://advisor.morganstanley.com/the-busot-group/documents/field/b/bu/busot-group/Electric%20Vehicles.pdf
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.1007/978-3-642-14435-6_7
https://doi.org/10.48550/ARXIV.1710.02298
https://doi.org/10.48550/ARXIV.1710.02298
https://doi.org/10.48550/ARXIV.1312.5602
https://doi.org/10.48550/ARXIV.1911.10635
https://doi.org/10.1109/ACCESS.2020.3016951

Drones 2024, 8, 71 31 of 32

7. Tang, J.; Song, J.; Ou, J.; Luo, J.; Zhang, X.; Wong, K.K. Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A
Deep Reinforcement Learning Method. IEEE Access 2020, 8, 9124–9132. https://doi.org/10.1109/ACCESS.2020.2964042.

8. Pan, Y.; Jiang, H.; Yang, H.; Zhang, J. A Novel Method for Improving the Training Efficiency of Deep Multi-Agent Reinforcement
Learning. IEEE Access 2019, 7, 137992–137999. https://doi.org/10.1109/ACCESS.2019.2942635.

9. FlyCart 30. 2024. Available online: https://www.dji.com/global/flycart-30 (accessed on 28 January 2024).
10. Urbina-Brito, N.; Guerrero-Sánchez, M.E.; Valencia-Palomo, G.; Hernández-González, O.; López-Estrada, F.R.; Hoyo-Montaño, J.A.

A predictive control strategy for aerial payload transportation with an unmanned aerial vehicle. Mathematics 2021, 9, 1822.
11. Hernández-González, O.; Targui, B.; Valencia-Palomo, G.; Guerrero-Sánchez, M. Robust cascade observer for a disturbance

unmanned aerial vehicle carrying a load under multiple time-varying delays and uncertainties. Int. J. Syst. Sci. 2024, 1–17.
https://doi.org/10.1080/00207721.2023.2301496

12. Clement, B. Multi-Agent Planning; Artificial Intelligence Group, Jet Propulsion Laboratory: Pasadena, CA, USA, 2004.
13. Stone, P.; Veloso, M. Multiagent Systems: A Survey from a Machine Learning Perspective. Auton. Robot. 2000, 8, 345–383.
14. Tomlin, C.; Pappas, G.J.; Sastry, S. Conflict resolution for air traffic management: A study in multiagent hybrid systems. IEEE

Trans. Autom. Control 1998, 43, 509–521.
15. Swaminathan, J.M.; Smith, S.F.; Sadeh, N.M. Modeling supply chain dynamics: A multiagent approach. Decis. Sci. 1998,

29, 607–632.
16. Glavic, M. Agents and Multi-Agent Systems: A Short Introduction for Power Engineers; Technical Report; Electrical Engineering and

Computer Science Department, University of Liege: Liege, Belgium, 2006.
17. MacKenzie, D.C.; Arkin, R.C.; Cameron, J.M. Multiagent mission specification and execution. Auton. Robot. 1997, 4, 29–52.
18. Crammer, K.; Kearns, M.; Wortman, J. Learning from multiple sources. J. Mach. Learn. Res. 2008, 9, 1757–1774.
19. Chevaleyre, Y.; Dunne, P.; Endriss, U.; Lang, J.; LemaÃŽtre, M.; Padget, J.; Phelps, S.; Rodrigues-Aguilar, J.; Sousa, P.; et al. Issues

in Multiagent Resource Allocation. 2005. Informatica 2005, 30, 3—31.
20. Boyan, J.A.; Littman, M.L. Packet routing in dynamically changing networks: A reinforcement learning approach. In Proceedings

of the 6th International Conference on Neural Information Processing Systems, Denver, CO, USA, 29 November–2 December
1993; pp. 671–678.

21. Thrun, S.; Burgard, W.; Fox, D. Probabilistic Robotics; Massachusetts Institute of Technology: Cambridge, MA, USA, 2005.
22. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
23. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent Cooperation and

Competition with Deep Reinforcement Learning. arXiv 2015, arXiv:1511.08779. https://doi.org/10.48550/ARXIV.1511.08779.
24. Busoniu, L.; Babuska, R.; De Schutter, B. A comprehensive survey of multiagent reinforcement learning. IEEE Trans. Syst. Man

Cybern. Part C Appl. Rev. 2008, 38, 156.
25. Zhan, G.; Zhang, X.; Li, Z.; Xu, L.; Zhou, D.; Yang, Z. Multiple-uav reinforcement learning algorithm based on improved ppo in

ray framework. Drones 2022, 6, 166.
26. Yin, Y.; Guo, Y.; Su, Q.; Wang, Z. Task Allocation of Multiple Unmanned Aerial Vehicles Based on Deep Transfer Reinforcement

Learning. Drones 2022, 6, 215.
27. Ding, C.; Zheng, Z. A Reinforcement Learning Approach Based on Automatic Policy Amendment for Multi-AUV Task Allocation

in Ocean Current. Drones 2022, 6, 141.
28. Redding, J.D. Approximate Multi-Agent Planning in Dynamic and Uncertain Environments. Ph.D. Thesis, Massachusetts

Institute of Technology, Cambridge, MA, USA, 2011.
29. Hausknecht, M.; Stone, P. Deep recurrent q-learning for partially observable mdps. arXiv 2015, arXiv:1507.06527.
30. Tampuu, A.; Matiisen, T.; Kodelja, D.; Kuzovkin, I.; Korjus, K.; Aru, J.; Aru, J.; Vicente, R. Multiagent cooperation and competition

with deep reinforcement learning. PLoS ONE 2017, 12, e0172395. https://doi.org/10.1371/journal.pone.0172395.
31. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010,

9, 249–256.
32. Puterman, M.L. Markov Decision Processes: Discrete Stochastic Dynamic Programming; John Wiley & Sons: Hoboken, NJ, USA, 2014.
33. Kochenderfer, M.J. Decision Making under Uncertainty: Theory and Application; MIT Press: Cambridge, MA, USA, 2015.
34. Toksoz, T. Design and Implementation of an Automated Battery Management Platform. Master’s Thesis, Massachusetts Institute

of Technology, Cambridge, MA, USA, 2012.
35. Boutilier, C. Sequential optimality and coordination in multiagent systems. IJCAI 1999, 99, 478–485.
36. Amato, C.; Chowdhary, G.; Geramifard, A.; Ure, N.K.; Kochenderfer, M.J. Decentralized control of partially observable Markov

decision processes. In Proceedings of the 52nd IEEE Conference on Decision and Control, Florence, Italy, 10–13 December 2013;
pp. 2398–2405.

37. Proper, S.; Tadepalli, P. Solving multiagent assignment markov decision processes. In Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10–15 May 2009; pp. 681–688.

38. Boutilier, C.; Dean, T.; Hanks, S. Decision-theoretic planning: Structural assumptions and computational leverage. J. Artif. Intell.
Res. 1999, 11, 94.

39. Kaelbling, L.P.; Littman, M.L.; Cassandra, A.R. Planning and acting in partially observable stochastic domains. Artif. Intell. 1998,
101, 99–134.

40. Bellman, R. Dynamic programming and stochastic control processes. Inf. Control 1958, 1, 228–239.

https://doi.org/10.1109/ACCESS.2020.2964042
https://doi.org/10.1109/ACCESS.2019.2942635
https://www.dji.com/global/flycart-30
https://doi.org/10.1080/00207721.2023.2301496
https://doi.org/10.48550/ARXIV.1511.08779
https://doi.org/10.1371/journal.pone.0172395

Drones 2024, 8, 71 32 of 32

41. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533.

42. Geramifard, A.; Walsh, T.J.; Tellex, S.; Chowdhary, G.; Roy, N.; How, J.P. A Tutorial on Linear Function Approximators for
Dynamic Programming and Reinforcement Learning. Found. Trends Mach. Learn. 2013, 6, 375–454.

43. Nguyen, T.T.; Nguyen, N.D.; Nahavandi, S. Deep reinforcement learning for multiagent systems: A review of challenges,
solutions, and applications. IEEE Trans. Cybern. 2020, 50, 3826–3839.

44. Nguyen, N.D.; Nguyen, T.; Nahavandi, S. System design perspective for human-level agents using deep reinforcement learning:
A survey. IEEE Access 2017, 5, 27091–27102.

45. Shrestha, A.; Mahmood, A. Review of deep learning algorithms and architectures. IEEE Access 2019, 7, 53040–53065.
46. Csáji, B.C. Approximation with Artificial Neural Networks. M.Sc. Thesis, Faculty of Sciences, Etvs Lornd University, Budapest,

Hungary, 2001; Volume 24, p. 48.
47. Williams, R.J. On the use of backpropagation in associative reinforcement learning. In Proceedings of the ICNN,

San Diego, CA, USA, 24–27 July 1988; pp. 263–270.
48. Shi, S.; Wang, Q.; Chu, X. Performance modeling and evaluation of distributed deep learning frameworks on gpus. In Proceedings

of the 2018 IEEE 16th International Conference on Dependable, Autonomic and Secure Computing, 16th International Conference
on Pervasive Intelligence and Computing, 4th International Conference on Big Data Intelligence and Computing and Cyber
Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, Greece, 12–15 August 2018; pp. 949–957.

49. Bethke, B.; Bertuccelli, L.; How, J. Experimental demonstration of adaptive MDP-based planning with model uncertainty. In
Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Honolulu, HI, USA, 18–21 August 2008;
p. 6322.

50. Schaul, T.; Quan, J.; Antonoglou, I.; Silver, D. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
51. Andrychowicz, M.; Crow, D.; Ray, A.; Schneider, J.; Fong, R.; Welinder, P.; McGrew, B.; Tobin, J.; Abbeel, O.P.; Zaremba, W.

Hindsight experience replay. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
Long Beach, CA, USA, 4–9 December 2017; pp. 5055–5065.

52. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285.
53. Dong, Z.; Wu, Q.; Chen, L. Reinforcement Learning-Based Formation Pinning and Shape Transformation for Swarms. Drones

2023, 7, 673.
54. Russell, S.J.; Zimdars, A. Q-decomposition for reinforcement learning agents. In Proceedings of the 20th International Conference

on Machine Learning (ICML-03), Washington, DC, USA, 21–24 August 2003; pp. 656–663.
55. Bouton, M.; Julian, K.; Nakhaei, A.; Fujimura, K.; Kochenderfer, M.J. Utility Decomposition with Deep Corrections for Scalable

Planning under Uncertainty. arXiv 2018, arXiv:1802.01772.
56. Eldred, M.; Dunlavy, D. Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models.

In Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Portsmouth, VA, USA,
6–8 September 2006; p. 7117.

57. Narvekar, S.; Stone, P. Generalizing curricula for reinforcement learning. In Proceedings of the 4th Lifelong Learning Workshop
at the International Conference on Machine Learning (ICML 2020), Vienna Austria, 18 July 2020.

58. Bengio, Y.; Louradour, J.; Collobert, R.; Weston, J. Curriculum learning (icml). In Proceedings of the 26th Annual International
Conference on Machine Learning, Montreal, QC, Canada, 14–18 June 2009.

59. Narvekar, S.; Peng, B.; Leonetti, M.; Sinapov, J.; Taylor, M.E.; Stone, P. Curriculum learning for reinforcement learning domains: A
framework and survey. arXiv 2020, arXiv:2003.04960.

60. Wang, C.; Wang, J.; Wei, C.; Zhu, Y.; Yin, D.; Li, J. Vision-Based Deep Reinforcement Learning of UAV-UGV Collaborative Landing
Policy Using Automatic Curriculum. Drones 2023, 7, 676.

61. Gan, X.; Guo, H.; Li, Z. A new multi-agent reinforcement learning method based on evolving dynamic correlation matrix. IEEE
Access 2019, 7, 162127–162138.

62. Lin, M.; Lyu, J.Y.; Gao, J.J.; Li, L.Y. Model and Hybrid Algorithm of Collaborative Distribution System with Multiple Drones and
a Truck. Sci. Program. 2020, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Significance of Uncertainty
	Significance of Scalability
	Centralized Solutions
	Contributions

	Preliminary
	Markov Decision Processes
	Multi-Agent Markov Decision Processes
	Reinforcement Learning
	Exploration–Exploitation Dilemma
	Representations

	Deep Q-Networks
	Deep Neural Networks
	Training with Back Propagation
	Experience Replay

	Problem Description
	Formulation
	State Space S
	Action Space A
	State Transition Model T
	Reward Model R

	Methodology
	Application of Deep Reinforcement Learning
	Prioritized Experience Replay
	Utility Decomposition with Deep Correction Learning
	Utility Decomposition
	Deep Correction

	Curriculum Learning
	Package Distribution with Genetic Algorithms
	Execution

	Simulation Results
	Grid World Rendezvous Problem
	Delivery by Drone Problem

	Conclusion and Future Work
	References

