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ABSTRACT 
 

The dung beetle optimization (DBO) algorithm is a newly swarm intelligence optimization algorithm 
inspired by the biological behaviors of dung beetles while it still has disadvantages of easy 
convergence to the local optimal, slow convergence speed, and poor global search capability. This 
paper proposes an adaptive dung beetle optimization algorithm with a golden sine algorithm (Gold-
SA), denoted as the Gold-SA-based adaptive DBO (GSDBO) algorithm. Firstly, the PWLCM chaotic 
mapping is introduced to generate population individuals to increase diversity of population and 
explore more search space. Secondly, the position update formula for the mathematical model of 
dung beetle ball-rolling behavior without obstacle is replaced by that of Gold-SA, which can 
accelerate the convergence speed and improve the convergence accuracy. Finally, the adaptive 
weight coefficients are used to improve the update stage of thief beetles. The strategy can boost 
and balance the exploration vs exploitation, simultaneously. Furthermore, the GSDBO is proved to 
be effective by comparing some intelligence optimization algorithms on benchmark functions of 
different characteristics. The results demonstrate that the GSDBO can improve optimization 
accuracy and stability. 
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1. INTRODUCTION 
 
“The swarm intelligence (SI) optimization 
algorithms inspired by the biological behaviors in 
nature have been extensive used on top of 
unconstrainted optimization problems due to their 
easy implementation and simple framework” [1-
4]. For example, the dung beetle optimization 
(DBO) algorithm which is based on the biological 
behaviors of dung beetles including ball rolling, 
egg laying, foraging, and stealing [5], tuna swarm 
optimization (TSO) which imitates the foraging 
behavior of tuna populations [6], the harris hawk 
algorithm (HHO) which simulates the harris hawk 
predation [7], whale optimization algorithm 
(WOA) which mimics the social behavior of 
humpback whales [8], grey wolf optimizer (GWO) 
based on the leadership hierarchy and hunting 
mechanism of grey wolves [9], and so on. 
“However, slow convergence speed and low 
convergence accuracy in the early stages of 
establishment are common drawbacks in SI 
optimization algorithms which prevent them from 
being applied well in other fields. Based on these 
drawbacks, a series of improved SI optimization 
algorithms by introducing several modification 
tactics to enhance the optimization performance 
have been proposed” [10-12]. 
 
“In recent years, The DBO studied in this paper 
suffers from not only the problems which most SI 
optimization algorithms have but also poor global 
search capability and premature convergence to 
the local optima. Hence, many scholars have put 
forward some improvement algorithms based on 
the DBO and successfully applied in different 
fields” [10,13]. “Thus, it is meaningful to draw 
several modification tactics into the DBO to 
address its problems. This paper proposes an 
adaptive dung beetle optimization algorithm with 
a golden sine algorithm (GSDBO), in which 
PWLCM chaotic mapping, Gold-SA and adaptive 
parameters are used in population individual 
initialization stage of the DBO, ball-rolling 
behavior without obstacle and stealing behavior 
of dung beetles in the DBO respectively to 
enhance the convergence performance including 
accuracy and speed” [14]. 
 
The paper is organized as follows: Section 2 
provides a brief introduction to the DBO; the 
PWLCM chaotic mapping, golden sine algorithm, 
adaptive parameters and how to combine three 
modification tactics with the DBO are explained 

at length in Section 3; the experiments that 
compare the DBO with other SI optimization 
algorithms on different types of benchmark 
functions are conducted for evaluating the 
efficacy of the proposed GSDBO in Section 4; 
the conclusions of this paper are made in Section 
5. 

 
2. THE DUNG BEETLE OPTIMIZATION 

(DBO) ALGORITHM 
 
“The DBO is a novel SI optimization algorithm 
inspired by the behaviors of dung beetle 
including ball-rolling, dancing, foraging, breeding, 
and stealing. The DBO is designed to handle 
both unconstrained and constrained optimization 
problems. The population of the DBO is 
composed of four subpopulations including ball-
rolling dung beetles, breeding dung beetles, 
small dung beetles, and stealing dung beetles. 
Four subpopulations own their unique updating 
rules which are described as follow at length” 
[10]. 
 

2.1 The Mathematical Model of Dung 
Beetle Ball-rolling Behavior 

 
It should be noted that whether there are 
obstacles during the ball-rolling process will 
make dung beetles behave differently. When the 
dung beetles move forwards for search based on 
the navigation of sun without obstacle, the ball-
rolling dung beetles update their position 
information based on the following equation: 
 

xi
g+1

= xi
g
+ a × k × xi

g−1
+ b × |xi

g
− xworst

g
|      (1) 

 
where g represents the number of the current 

iterations, 𝑥𝑖
𝑔
 represents the position information 

of 𝑖𝑡ℎ  dung beetle in the population at the 𝑔𝑡ℎ 
iteration, 𝑘 ∈ (0,0.2]  represents an invariant 

quantity indicating the flexure coefficient, 𝑏 
represents a fixed parameter belonging to (0,1), 
𝑎 represents a natural coefficient assigned 1 or -
1 which indicates no deviation and deviation from 

the original direction respectively, 𝑥𝑤𝑜𝑟𝑠𝑡
𝑔

 

represents the global worst position at the 𝑔𝑡ℎ 

iteration, |𝑥𝑖
𝑔
− 𝑥𝑤𝑜𝑟𝑠𝑡

𝑔
|  is used to simulate the 

changes in light intensity.  
 

When there are obstacles preventing dung 
beetles from processing, they need to adjust 
rolling direction by dancing based on a tangent 
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function which is only considered to belong to 
[0, 𝜋]. At this point, the ball-rolling dung beetles 
update their position information based on the 
following equation: 
 

xi
g+1

= xi
g
+ tan(θ) |xi

g
− xi

g−1
|                          (2) 

 

where |𝑥𝑖
𝑔
− 𝑥𝑖

𝑔−1
|  represents the distance 

between 𝑖𝑡ℎ  dung beetle at 𝑔𝑡ℎ  iteration and at 

(𝑔 − 1)𝑡ℎ  iteration. When 𝜃  takes value of 

0,
𝜋

2
, or 𝜋, the position of dung beetle will not be 

updated. 
 

2.2 The Mathematical Model of Dung 
Beetle Breeding Behavior 

 
Inspired by the behavior that female dung 
beetles attach importance to choosing a suitable 
place for laying their eggs to provide a safe 
environment for their offspring, a frontier option 
strategy proposed to simulate the area where the 
eggs are produced can be described as follows: 
 

{
XLb

∗
= max{X∗ × (1 − R), XLb}

XUb
∗
= min{X∗ × (1 + R), XUb}

                         (3) 

 
where 𝑋∗  represents the current local optimal 

position, 𝑋𝐿𝑏
∗

 and 𝑋𝑈𝑏
∗

 represent lower and 

upper limits of the spawning region, 𝑋𝐿𝑏 and 𝑋𝑈𝑏 
represent the lower and upper bounds of 
optimization problem, 𝑅 = 1 − 𝑔/𝐺 , and 𝐺 
represents the maximum number of iterations. 
 
It should be noted that each female dung beetle 
generates only one egg in each iteration in the 
DBO. The position information of the female 
dung beetle laying eggs is dynamic for the 
reason that the boundary range is dynamically 
adjusted while the iteration progressing which 
can be described as follows: 
 

xi
g+1

= X∗ + b1 × (xi
g
− XLb

∗
) + b2 × (xi

g
− XUb

∗
)      (4) 

 

where 𝑥𝑖
𝑔

 represents the location information of 

the 𝑖𝑡ℎ  brood ball at the 𝑔𝑡ℎ  iteration, 𝑏1  and 𝑏2 
represent two random and independent vectors 
with the size of 1 × 𝐷 each, and 𝐷 represents the 
number of variables in the optimization problem.  
 

2.3 The Mathematical Model of Dung 
Beetle Foraging Behavior 

 

Mature dung beetles which emerge from ground 
for searching food are designated as small dung 
beetles. As the number of iterations increases, 

the optimal foraging area for small dung beetles 
is dynamically adjusted by the following formula: 
 

{
XLb

b
= max{Xb × (1 − R), XLb}

XUb
b
= min{Xb × (1 + R), XUb}

                              (5) 

 

where 𝑋𝑏  represents the global best position, 

𝑋𝐿𝑏
𝑏

 and 𝑋𝑈𝑏
𝑏

 represent the lower and upper 
bounds of the optimal foraging region. The 
formula for updating the position information of 
small dung beetles can be written as follows: 
 

xi
g+1

= xi
g
+ C1 × (xi

g
− XLb

b
) + C2 × (xi

g
− XUb

b
)     (6) 

 

where 𝑥𝑖
𝑔
 represents the position of the 𝑖𝑡ℎ small 

dung beetles at the 𝑔𝑡ℎ iteration, 𝐶1 is a random 
number with standard normal distribution, and 𝐶2 
represents a random vector within the range 
(0,1) with the size of 1 × 𝐷.  
 

2.4 The Mathematical Model of Dung 
Beetle Stealing Behavior 

 
The position update equation for the thieves 
which steal dung balls from other dung beetles 
can be defined as follows: 
 

xi
g+1

= Xb + S × t × (|xi
g
− X∗| + |xi

g
− Xb|)        (7) 

 

where 𝑥𝑖
𝑔

 represents the location information of 

the 𝑖𝑡ℎ  thief at the 𝑔𝑡ℎ  iteration, 𝑡  represents a 
random vector obeying normal distribution with 
the size of 1 × 𝐷 , and 𝑆  represent a fixed 
parameter.  

 
3. ADAPTIVE DUNG BEETLE 

OPTIMIZATION ALGORITHM WITH 
GOLDEN SINE 

 
The limitations including weak ability of global 
search and premature convergence to the local 
optimal prevent the DBO from being applied on 
complex optimization problems. Hence, an 
adaptive dung beetle optimization algorithm with 
golden sine (GSDBO) has been proposed to 
overcome the existing deficiency. The GSDBO 
algorithm mainly includes three modification 
tactics: PWLCM chaotic mapping, Gold-SA and 
adaptive parameters.  

 
3.1 PWLCM Chaotic Mapping 
 
In DBO algorithm. initial population come from 
random initialization which can cause rapid 
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declines in population diversity and 
overconvergence in the subsequent iteration 
process. It has been confirmed that chaos 
models have significant improvement on diversity 
of population in SI optimization algorithms due to 
their randomness and ergodicity. The basic 
method of some common chaos models 
including Kent [15], Tent [16], Logistic [17], and 
Circle [18] are that they involve their 
corresponding mapping chaotic sequences into 
individual search spaces. Simplicity and 
ergodicity are two significant characteristics 
which must be considered when selecting a 
suitable chaotic mapping to generate a random 
sequence. Hence, this paper chooses PWLCM 
Chaotic Mapping whose equation can be written 
as follows:  
 

xi+1 =

{
 
 

 
 

    
xi
η
,   0≤xi<η

xi−η

0.5−η
,   η≤xi<0.5

1−η−xi
0.5−η

,   0.5≤xi<1−η

1−xi
η
,   1−η≤xi<1

                              (8) 

 

With the control parameter 𝜂 ∈ (0,0.5) , the 
system 𝑥𝑖 ∈ (0,1) is in a chaotic state. The initial 
population individuals in dung beetle optimization 
algorithm based on the random sequence 
obtained by PWLCM Chaotic Mapping improve 
diversity of population. The parameter 𝜂  in this 

paper is set to 0.4. To verify the superiority of 
PWLCM Chaotic Mapping, Logistic mapping and 
Circle mapping are used for comparison when 
setting the number of iterations to 5000 and the 
same initial value 𝑥0 . Fig. 1 presents the 
frequency distribution histograms of the three 
different chaotic mappings and Fig. 2 presents 
the population distribution scatter map of the 
three different chaotic mappings. It can be seen 
from above two figs that initial population 
individuals based on PWLCM Chaotic Mapping 
have higher degree of dispersion and fewer 
individuals on the boundary and overlapping 
individuals than other two chaotic mappings 
which can ensure population diversity and 
reduce the attraction of local optima. 

 
3.2 Golden Sine Algorithm 
 
In the DBO algorithm, equation (1) which is used 
to update ball-rolling dung beetle position without 
obstacle has poor capability of local search. 
Hence, this paper introduces population 
individuals update formula of golden sine 
algorithm into the GSDBO algorithm because it 
has strong ability of global search and meanwhile 
the golden partition coefficient is introduced to 
enhance the capability of local search [19]. The 
formula can be written as follows: 

   
 

Fig. 1. Chaotic Mapping Histogram. (a) Logistic mapping; (b) Circle mapping; (c) PWLCM 
mapping 

 

   
 

Fig. 2. Chaotic Mapping Scatter map: (a) Logistic mapping; (b) Circle mapping; (c) PWLCM 
mapping 
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xi
g+1

= xi
g
× |sin(R1)| − R2 × sin(R1) × |m1 × Pi

g
−m2 × xi

g
|(9) 

 
where 𝑅1 represents a random number belonging 

to [0,2𝜋]  which determines the movement 

distance of 𝑖𝑡ℎ individual in the next iteration, 𝑅2 
represents a random number belonging to [0, 𝜋] 
which determines the movement direction of  𝑖𝑡ℎ 
individual in the next iteration,  𝑚1  and 𝑚2 
represent golden partition coefficients which are 
used to reduce the search space and guide the 
current individual to the global optimal. The 
coefficients 𝑚1 and 𝑚2 can be calculated by the 
equations as follows: 
 
𝑚1 = ℎ1 × 𝜏 + ℎ2 × (1 − 𝜏) 
𝑚2 = ℎ1 × (1 − 𝜏) + ℎ2 × 𝜏                             (10) 

𝜏 = (√5 − 1)/2 

 
where 𝑎  and 𝑏  represent initial golden values, 

and  𝜏 represents the golden ratio. 
 

3.3 Adaptive Weight Coefficients 
 
“In order to address the drawbacks of the 
equation (7) which is easy to fall into local 
optima, the paper newly proposed a set of 
adaptive weight coefficients is introduced to 
extend the search space and keep a balance 
between global exploration and local exploitation” 
[13]. The formula can be rewritten as follows: 

 
xi
g+1

= φ1 × X
b + φ2 × S × t × (|xi

g
− X∗| + |xi

g
− Xb|)      (11) 

𝜑1 = 1 −
𝑔

𝐺

𝜑2 =
𝑔

𝐺

                                                       (12) 

 

3.4 The Pseudo Code of GSDBO 
 
By introducing the above three modification 
tactics in the DBO, the pseudo code of GSDBO 
can be presented in Algorithm 1. 

 
4. NUMERICAL EXPERIMENT AND 

ANALYSIS 
 

In this section, a series of experiments on some 
benchmark functions have been conducted to 
evaluate the efficacy of the proposed GSDBO 
algorithm. 
 

4.1 Comparison Algorithm and 
Experimental Parameters Settings 

 

Some other SI optimization algorithms including 
GWO [9], HHO [7], and DBO [5] are selected to 
compare with GSDBO algorithm under the same 
condition where the size of population was 𝑁 =
30 and the number of maximum iterations were 
𝐺 = 500 . The parameter settings of different 
algorithms are presented in Table 1 according to 
their respective paper. The experiment was 
conducted on Windows 10 operating system, 64-
bit OS, Intel(R) Xeon(R) Silver 4210 CPU @ 
2.20GHz, 96GB. The simulation software was 
Matlab 2018a. 

 
Table 1. The parameters setting of the compared algorithms 

 

Algorithm Parameter Setting 

WOA 𝑏 1 

GWO 𝑎 Uniformly lowered from 2 to 0 
HHO Interval of 𝐸0 [−1,1] 
DBO 𝑘, 𝜆, 𝑏, and 𝑆 0.1, 0.1, 0.3, and 0.5 

GSDBO ℎ1, ℎ2 −𝜋, and 𝜋 

 

Algorithm1 The Pseudo Code of the GSDBO algorithm. 
Input: The size of population N, the number of maximum iterations G, the objective  
function f, the problem bounds 𝐿𝑏 and 𝑈𝑏, the problem dimension 𝐷. 
/* Initialization */ 
1: Initialize population 𝑖 = 1,2,⋯ ,𝑁 and define relevant parameter of algorithm. 

2: Calculate the fitness of every individual and obtain the optimal solution 𝑋𝑏. 
/* Main loop */ 
3: while (𝑔 ≤ 𝐺) do 

4:   for 𝑖 = 1:𝑁 
/* The ball-rolling behavior */ 
5:     if 𝑖 == ball-rolling dung beetle  

6:       if 𝛿1 < 0.9 
7:         Update the position according to Eq. (9) 
8:       else 
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9:         Update the position according to Eq. (2) 
10:      end if  
11:    end if  
/* The breeding behavior */ 
12:    if 𝑖 == brood ball 
13:        Update the position according to Eq. (4) 
14:    end if 
/* The foraging behavior */ 
15:    if 𝑖 == small dung beetle 
16:        Update the position according to Eq. (6) 
17:    end if  
/* The stealing behavior */ 
18:    if 𝑖 == thief 
19:        Update the position according to Eq. (11) 
20:    end if  
21:   end for 
22:   if the newly generated position is better than previous position  
23:     Accept the new position. 
24:   else 
25:     Accept the previous position. 
26:   end if  
27: 𝑔 = 𝑔 + 1; 
28: end while 

Output: Optimal position 𝑋𝑏 and its corresponding fitness value. 
 

4.2 Benchmark Functions 
 
“The 10 benchmark functions including unimodal 
function ( 𝑓1~𝑓4 ) which only one single global 
optimum solution utilized to test the speed and 
exactness of convergence of the algorithm and 
multimodal benchmark functions (𝑓5~𝑓6 ) which 
contain a global optimum solution and several 
local optimum solutions used to gauge the 
performance of the algorithm to overstep the 
local optimum are selected to validate capacity 
for optimization of the GSDBO” [13]. The detail 

information of benchmark functions are 
presented in Table 2. 
 

4.3 Experimental Results and Discussion 
 

In order to reduce the impact of randomness, it is 
necessary to repeat the proposed GSDBO 
algorithms and some other compared algorithms 
for 30 times independently. Three different 
statistical tools including best-seeking optimum 
(Best), the mean value (Mean), and the standard 
deviation (Std) are selected as performance 
indicators. 

 

Table 2. Detail information of benchmark functions 
 

Function name Function Dim Range 𝒇𝒎𝒊𝒏 

Sphere 
𝑓1(𝑥) =∑𝑥𝑖

2

𝑛

𝑖=1

 
30 [−100,100] 0 

Schwefel 1.2  
𝑓2 =∑(∑𝑥𝑗

𝑖

𝑗=1

)

2
𝑛

𝑖=1

 
30 [−100,100] 0 

Cjgar 
𝑓3(𝑥) = 𝑥1

2 + 106∑𝑥𝑖
2

𝑛

𝑖=2

 
30 [−100,100] 0 

Zakharov 
𝑓4(𝑥) =∑𝑥𝑖

2

𝑛

𝑖=1

+ (∑𝑖𝑥𝑖

𝑛

𝑖=1

)

2

+ (∑𝑖𝑥𝑖

𝑛

𝑖=1

)

4

 
30 [−5,10] 0 

Rastrigin 
𝑓5(𝑥) =∑[𝑥𝑖

2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1

 
30 [−5.12,5.12] 0 

Apline 
𝑓6(𝑥) =∑|𝑥𝑖 sin(𝑥𝑖) + 0.1𝑥𝑖|

𝑛

𝑖=1

 
30 [−10,10] 0 
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Table 3. The experimental results of unimodal and multimodal benchmark functions 
 

Function Indicator GSDBO DBO HHO GWO WOA 

𝑓1 Best 0.00E+00 1.41E-156 2.98E-111 7.24E-30 7.56E-89 
Mean 0.00E+00 7.11E-110(+) 4.86E-94(+) 1.58E-27(+) 1.59E-73(+) 
Std 0.00E+00 3.48E-109 2.54E-93 3.43E-27 6.93E-73 

𝑓2 Best 0.00E+00 7.99E-149 3.76E-102 1.16E-08 2.16E+04 
Mean 0.00E+00 2.28E-50(+) 2.02E-71(+) 2.27E-05(+) 4.85E+04(+) 
Std 0.00E+00 1.25E-49 1.10E-70 7.28E-05 1.31E+04 

𝑓3 Best 0.00E+00 5.56E-173 1.82E-104 1.80E-23 7.91E-79 
Mean 0.00E+00 2.14E-102(+) 3.42E-88(+) 1.10E-21(+) 5.49E-66(+) 
Std 0.00E+00 1.17E-101 1.57E-87 2.12E-21 1.69E-65 

𝑓4 Best 0.00E+00 3.45E-97 1.35E-87 6.81E-10 3.37E+02 
Mean 0.00E+00 6.84E-27(+) 8.25E-48(+) 1.69E-07(+) 4.96E+02(+) 
Std 0.00E+00 3.74E-26 4.23E-47 3.65E-07 9.07E+01 

𝑓5 Best 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 
Mean 0.00E+00 8.56E+00(=) 0.00E+00(=) 4.19E+00(+) 2.17E+00(=) 
Std 0.00E+00 3.26E+01 0.00E+00 4.97E+00 1.19E+01 

𝑓6 Best 0.00E+00 3.79E-80 8.22E-61 6.36E-17 1.79E-58 
Mean 0.00E+00 4.77E-04(+) 1.92E-52(+) 4.51E-04(+) 2.53E-47(+) 
Std 0.00E+00 1.53E-03 6.07E-52 6.22E-04 1.39E-46 

+/-/=  5/0/1 5/0/1 6/0/0 5/0/1 

 

4.4 Experimental Results and Discussion 
 
“It should be noted that the proposed GSDBO 
and several compared algorithms need to be 
repeated for 30 times independently for the 
purpose of reducing the influence of 
randomness. This section selects three different 
statistical tools which include best-seeking 
optimum (Best), the mean value (Mean), and the 
standard deviation (Std) as the performance 
indicators” [13]. 
 
The three performance indicators for the GSDBO 
and its comparative algorithms are presented in 
Table 3. As shown in Table 3, the GSDBO 
demonstrates significant improvement for all six 
test functions. It can be seen that only the 
GSDBP proposed in the paper can find the 
theoretical optimal value 0 and the value of ‘Best’ 
and ‘Std’ are 0 for the unimodal benchmark 
functions 𝑓1~𝑓4  which indicate that the GSDBO 
possesses excellent robustness and stability. For 
multimodal benchmark functions 𝑓5 , the 
performance of GSDBO and HHO are 
comparable and they can achieve theoretical 
optimal value 0 while remaining algorithms only 
occasionally realize. For multimodal benchmark 
functions 𝑓6, the GSDBO achieves 100% of the 
optimal search effect which is significantly 
superior to other compared optimization 
algorithms. In view of the reason that the 
GSDBO proposed in the paper is an 
improvement based on the DBO, it is necessary 
to conduct the performance comparison between 

the GSDBO and DBO. According to the 
experimental results in Table 3, the GSDBO has 
improved the convergence accuracy and stability 
of the DBO. In addition, results of Wilcoxon sign-
rank test with a significant level α=0.05 are 
presented in Table 3 to find out whether the 
proposed GSDBO has a significant performance 
difference compared with other four algorithms. 
The symbol ‘+’ indicates the GSDBO is superior 
to the compared algorithms; the symbol ‘-’ 
indicates the GSDBO is inferior to the compared 
algorithms and the symbol ‘=’ indicates the 
GSDBO is similar to the compared algorithms. 
The last row of the Table 3 displays the total 
number in the form of "+/-/=". It can be concluded 
that the convergence performance of GSDBO is 
superior to that of the comparative algorithms. 
 
Fig. 3 where the horizontal axis denotes the 
number of iterations and the vertical axis 
represents the average fitness values expressed 
in logarithmic form with the base of 10 to better 
display the trend of convergence presents 
convergence curves for the GSDBO and 
comparative algorithms. As shown in Fig. 3, 
proposed GSDBO exhibits faster convergence 
rate and higher convergence accuracy than the 
compared algorithms. “For unimodal benchmark 
functions, the convergence curves of the GSDBO 
present a near-linear descent to the theoretical 
optimal values indicating that the GSDBO can 
determine the region immediately where the 
global optimal solution may exist and move 
towards it. For multimodal benchmark functions, 
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Fig. 3. Average convergence curve of the benchmark function 
 
the GSDBO converges with a sharp decline in a 
straight line to obtain theoretical optimal values 
which suggest that the proposed GSDBO can 
jump out of the local optima effectively” [13]. In 
general, the three modification tactics adopted to 
enhance the convergence performance of the 
DBO are useful. 
 
5. CONCLUSION 
 
To address the existing problems of the DBO 
including the poor capability to conduct global 
search and escape the local optimum, this paper 
introduces PWLCM chaotic mapping, Gold-SA 
and adaptive weight coefficients into the DBO to 
form a new algorithm called adaptive dung beetle 
optimization algorithm with a golden sine 
algorithm (GSDBO). The effectiveness of the 
proposed algorithm is verified by comparing it 
with other four comparative algorithms on six 
different type of benchmark functions. The 
evaluating indicators used in the paper include 
best-seeking optimum, the mean value, the 
standard deviation and Wilcoxon sign-rank test. 
The experiment results show that the proposed 
algorithm has best convergence performance 
and enhances the capability of jumping out of the 
local optima. In future research work, the 
convergence performance of the GSDBO could 
be further improved and we can consider 
combing the GSDBO with BPNN to perform 

structural damage identification, image 
enhancement, and so on. 
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