
Research Article
Fixed-Point Theorems Involving Lipschitz in the Small

Christiana Rini Indrati

Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara,
Yogyakarta 55281, Indonesia

Correspondence should be addressed to Christiana Rini Indrati; rinii@ugm.ac.id

Received 10 December 2022; Revised 20 February 2023; Accepted 16 March 2023; Published 22 April 2023

Academic Editor: Paul Eloe

Copyright © 2023 Christiana Rini Indrati. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Lipschitz in the small is a generalization of the Lipschitz condition. The Lipschitz condition guarantees the uniqueness of the
solution of the initial value problems. A special Lipschitz condition in the small is a contraction in the small. Based on the
Lipschitz in the small in this paper, fixed-point theorems involving contraction in the small will be presented. The results will
be applied to develop Picard’s theorem.

1. Introduction

A Lipschitz condition is an interesting condition, both in
analysis and in its applications. In Picard’s theorem, the
Lipschitz condition guarantees the uniqueness of the solu-
tion of an initial value problem (IVP). Picard proved the
guarantee of the uniqueness by using the equivalency of
the solution of the IVP with the solution of its associated
integral problem.

Picard’s theorem can be proven by using the Banach
contraction theorem or by constructing a sequence of func-
tions that converges uniformly to the solution [1]. Contrac-
tion is a specific condition of the Lipschitz condition, where
its Lipschitz constant is in the interval ½0, 1Þ: Many
researchers generalized the concept of the Lipschitz function
to have fixed-point theorems, such as Hussain et al., Liu and
Xu, Pata, Xu and Radenović [2–5].

The concept of the Lipschitz condition has been devel-
oped as the Lipschitz in the small [6]. We recall the defini-
tion of Lipschitz in the small in Definition 1.

Definition 1. Let ðX, dÞ and ðY , ρÞ bemetric spaces. A function
G : X ⟶ Y is said to be Lipschitz in the small if there exist an
η > 0 and a K ≥ 0, such that for every x, y ∈ X, dðx, yÞ < η,
we have

ρ G xð Þ,G yð Þð Þ ≤ K d x, yð Þ: ð1Þ

The constant K is called the constant of Lipschitz in the
small of G on X.

From the definition, a Lipschitz function in the small is
uniformly continuous, but the converse is not always true.
Garrido and Jaramillo state that a uniformly continuous
function can be approached by the Lipschitz function in
the small or the local Lipschitz function.

A Lipschitz function is Lipschitz in the small but the
converse is not always true [6]. Based on that fact, Garrido
and Jaramillo define a small-determined metric space. A
small-determined metric space is a metric space with the
set of all the Lipschitz functions equal to the set of all
Lipschitz functions in the small. One of the examples of
a small-determined metric space is a quasiconvex metric
space.

A metric space V is called quasiconvex if there exists a
positive constant C, such that for every two points in
x, y ∈ V can be joined by a continuous path with its
length not greater than C times the distance between
those two points x and y.

Based on Garrido's results, Leung and Tang [7] give nec-
essary and sufficient conditions on a subset A of X such that
f jA is the Lipschitz for every function f that is Lipschitz in
the small on X [7].

In this paper, the influence of the Lipschitz in the small
condition in Picard’s theorem will be seen. After defining
the contraction in the small, its characteristics due to fixed-
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point theorems will be presented. The results will be applied
to develop Picard’s theorem using contraction in the small.
The proof of the uniqueness in Picard’s theorem will be pro-
vided by using Gronwall’s inequality.

We recall Gronwall’s inequality as in Theorem 2.

Theorem 2. (Gronwall’s inequality) [1]. Let g and h be two
continuous positive real-valued functions on an interval ½c,
d� and gðcÞ ≥ 0: If g satisfies

g xð Þ ≤ g cð Þ +
ðx
c
h tð Þ g tð Þ dt, ð2Þ

for every x ∈ ½c, d�, then

g xð Þ ≤ g cð Þe
Ð x

c
h tð Þdt , ð3Þ

for every x ∈ ½c, d�:

2. Results

Based on the definition of Lipschitz in the small it will be
defined as the contraction in the small. A fixed-point theo-
rem using contraction will be developed by using contrac-
tion in the small. Furthermore, it will be applied to develop
a new version of Picard’s theorem.

Definition 3. A function f : ðX, dÞ⟶ ðY , ρÞ is said to be a
contraction in the small if there exist r > 0 and K ∈ ½0, 1Þ,
such that for every x, y ∈ X, dðx, yÞ < r, we have

ρ f xð Þ, f yð Þð Þ ≤ K d x, yð Þ: ð4Þ

Contraction in the small is a special case of the Lipschitz
condition with its constant less than 1. It is clear that every
contraction function is a contraction in the small function.
The converse is not always true. For example, let us consider
the function g : ℕ⟶ℝ, where gðnÞ = ð1/4Þn2, n ∈ℕ. The
function g is a contraction in the small on ℕ, but it is not a
contraction on ℕ.

Lemma 4. If the function f is bounded and the Lipschitz in
the small with K in Definition 3 is less than 1, then f is a
contraction.

Proof. Since f is bounded and Lipschitz in the small then f is
Lipschitz.

Lemma 5. Let ðX, dÞ and ðY , ρÞ be metric spaces. If X is com-
pact and if the function f : X ⟶ Y is Lipschitz in the small
then f is Lipschitz.

Proof. The function f is Lipschitz in the small then f is uni-
formly continuous. Since X is compact, then f is bounded.
As a corollary, f is Lipschitz.

Corollary 6. Let ðX, dÞ and ðY , ρÞ be metric spaces. If X is
compact and if the function f : X⟶ Y is a contraction in
the small, then f is a contraction.

Proof. It is proven by Lemma 4.

The relationships between a contraction in the small
function and its fixed points will be discussed in Lemma 7
and Theorem 8.

Lemma 7. Let ðX, dÞ be a metric space and x0 ∈ X. If f : X
⟶ X is a contraction in the small and f ðx0Þ = x0, then there
exists a positive δ such that

f B x0, δð Þð Þ ⊆ B x0, δð Þ: ð5Þ

Proof. Since f is a contraction in the small, there exist a
positive K less than 1 and a positive r such that for
every p, q ∈ X, dðp, qÞ < r,

d f pð Þ, f qð Þð Þ ≤ K d p, qð Þ: ð6Þ

Put δ = r: Let y ∈ f ðBðx0, δÞÞ be an arbitrary point. There
is a point x ∈ Bðx0, δÞ with y = f ðxÞ: As a corollary, we have

d y, x0ð Þ = d f xð Þ, f x0ð Þð Þ ≤ K d x, x0ð Þ < d x, x0ð Þ: ð7Þ

This means that y ∈ Bðx0, δÞ.

The converse of Lemma 7 is not always true. For exam-
ple, let us consider the metric space X = ð0, 2Þ with its metric
defined by ðu, vÞ = ju − vj, for every u, v ∈ X. The function
f : X⟶ℝ, where f ðxÞ = ðx − 1Þ/3, is a contraction in the
small. For x0 = 1 and δ = 2,
f ðBð1, 2ÞÞ = ð0, 2/3 Þ ⊆ ð0, 2Þ = Bð1, 2Þ: However, f ðx0Þ ≠ x0:

Based on Lemma 7, it will be given a fixed-point theorem
involving the contraction in the small in Theorem 8.

Theorem 8. Let ðX, dÞ be a complete metric space and x0 ∈ X.
If f : X ⟶ X is a contraction in the small with constant r
such that f ðBðx0, rÞÞ ⊆ Bðx0, rÞ, then there exists u ∈ Bðx0, rÞ
as a fixed point of f . Moreover, if u ∈ Bðx0, rÞ, then u is a
unique fixed point of f on Bðx0, rÞ.

Proof. Since f is a contraction in the small, there exist
K ∈ ½0, 1Þ and r > 0 such that for every p, q ∈ X, dðp, qÞ < r,

d f pð Þ, f qð Þð Þ ≤ K d p, qð Þ: ð8Þ

Let us define x1 = f ðx0Þ and xn = f ðxn−1Þ, for every n ∈ℕ,
n > 1: From the hypothesis, xn ∈ Bðx0, rÞ for every n ∈ℕ. Let
us consider that for every n ∈ℕ,

d xn+1, xnð Þ = d f xnð Þ, f xn−1ð Þð Þ ≤ K d xn, xn−1ð Þ ≤ Kn d x1, x0ð Þ < Kn r:

ð9Þ

As a corollary, for N ≥ n, there is m ∈ℕ, with N = n +m.
Therefore,
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d xN , xnð Þ = d xn+m, xnð Þ < r Kn+m−1 + Kn+m−2+⋯+KnÀ Á
≤ r Kn 〠

∞

i=0
Ki:

ð10Þ

Since K ∈ ½0:1Þ, the sequence ðxnÞ is a Cauchy sequence in
X. The completeness of X implies the existence of u ∈ X such
that ðxnÞ converges to u in X. Since xn ∈ Bðx0, rÞ for every n,
then u ∈ Bðx0, rÞ. From the hypothesis, f ðuÞ ∈ Bðx0, rÞ.
Therefore,

d u, f uð Þð Þ ≤ d u, xn0
À Á

+ d xn0 , xn0+1
À Á

+ d xn0+1, f uð ÞÀ Á
≤ 1 + Kð Þd u, xn0

À Á
+ d xn0 , xn0+1

À Á
< 1 + Kð Þϵ + 2ϵ = K + 3ð Þϵ:

ð11Þ

This means that u is a fixed point of the function f .
Furthermore, if v ∈ Bðx0, rÞ with f ðvÞ = v, then

d v, uð Þ = d f vð Þ, f uð Þð Þ ≤ K d u, vð Þ: ð12Þ

Since K ∈ ½0, 1Þ, we have dðv, uÞ = 0. This means that
v = u.

Before we develop Picard’s theorem using Lipschitz in
the small let us consider that for every ðx, yÞ, ðx, y∗Þ ∈ℝ2,
the standard/usual metric in ℝ2 will bring dððx, yÞ, ðx, y∗ÞÞ
< r that is equal with jy − y∗j < r.

Definition 9. Let V ⊆ℝ2 = fðx, yÞ: x, y ∈ℝg. A function
f : V ⟶ℝ is said to be Lipschitz in the small in the second
component onV , if there exists a positive r > 0 and K ≥ 0 such
that for every ðx, yÞ, ðx, y∗Þ ∈ V , jy − y∗j < r, we have

f x, yð Þ − f x, y∗ð Þj j ≤ K y − y∗j j: ð13Þ

Let V ⊆ℝ2 = fðx, yÞ: x, y ∈ℝg. A function f : V ⟶ℝ is
said to be a contraction in the small in the second component
on V , if there exist a positive r > 0 and K ∈ ½0, 1Þ such that for
every ðx, yÞ, ðx, y∗Þ ∈ V , jy − y∗j < r, we have

f x, yð Þ − f x, y∗ð Þj j ≤ K y − y∗j j: ð14Þ

In the next discussion, the word domain refers to an open
connected set in ℝ2.

Let consider the initial value problem (IVP)

dy
dx

= f x, yð Þ,
y x0ð Þ = y0,

8<
: ð15Þ

with f is a continuous real-valued function on a domain.
Picard’s Theorem still holds if the condition of Lipschitz

is replaced by a contraction in the small. The important
thing in the proof is in choosing the value of α > 0 such that
the constructed sequence ðϕnÞ satisfies jϕn+1 ðxÞ − ϕn ðxÞj < r,

for every jx − x0j < α and for every n. In the discussion, the
function f is a nonzero function on the domain.

Theorem 10. Let D ⊆ℝ2 be a domain, ðx0, y0Þ be an interior
point of D, and f : D⟶ℝ. If the function f is continuous
on D and satisfies the contraction in the small in the second
component on D, then there exist a positive α and a unique
function

ϕ : x0 − α, x0 + α½ �⟶ℝ, ð16Þ

such that ϕ is a solution of the initial value problem in (15) on
½x0 − α, x0 + α�.

Proof. Since ðx0, y0Þ is an interior point of D, there exist pos-
itive numbers a, b ∈ℝ such that

E = x, yð Þ ∈ℝ2 : x − x0j j ≤ a, y − y0j j ≤ b
È É

⊆D: ð17Þ

Since f is continuous on E and E is compact, then j f j
attains its maximum. Put M =max fj f ðx, yÞj: ðx, yÞ ∈ Eg.
Since f is a contraction in the small in the second compo-
nent on D, there exist an r > 0 and K ∈ ½0, 1Þ such that for
every ðx, yÞ, ðx, y∗Þ ∈D, dððx, yÞ, ðx, y∗ÞÞ < r, we have

f x, yð Þ − f x, y∗ð Þj j ≤ K y − y∗j j: ð18Þ

Put α =min fa, b/ðb +MÞ, r/M, r2/ðr + 1ÞKg.
Let us define ϕðx0Þ = y0 and

ϕn xð Þ = y0 +
ðx
x0

f t, ϕn−1 tð Þð Þdt, x ∈ x0 − α, x0 + α½ �, for n = 1, 2, 3,⋯:

ð19Þ

By using the induction method, it can be proven that for
every jx − x0j < α, we have

ið Þ ϕn x0ð Þ − y0j j ≤
ðx
x0

f t, ϕn−1 tð Þð Þj jdt ≤M x − x0j j ≤Mα ≤ b,  for n = 1, 2,⋯,

ð20Þ

iið Þ ϕn+1 xð Þ − ϕn xð Þj j ≤ Kn M x − x0j jn+1
n + 1ð Þ! ≤ b

K x − x0j jð Þn
n!

, for every n:

ð21Þ

From (20) and by considering that K ∈ ½0, 1Þ and α < 1,
by using the induction method, we can deduce that for every
jx − x0j < α and for every n,

ϕn+1 xð Þ − ϕn xð Þj j ≤ Kn M x − x0j jn+1
n + 1ð Þ! ≤Mααn ≤Mα < r:

ð22Þ
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Let us consider that

ϕ1 xð Þ − ϕ0 xð Þj j ≤
ðx
x0

f t, ϕ0 tð Þð Þj jdt ≤M x − x0j j,

ϕ2 xð Þ − ϕ1 xð Þj j ≤
ðx
x0

f t, ϕ1 tð Þð Þ − f t, ϕ0 tð Þð Þj jdt

≤
ðx
x0

K ϕ1 tð Þ − ϕ0 tð Þj jdt

≤
ðx
x0

KM t − x0j jdt = KM
1
2 x − x0j j2:

ð23Þ

Let assume the formula is held for n =m, i.e.,

ϕm+1 xð Þ − ϕm xð Þj j ≤ KmM x − x0j jm+1

m + 1ð Þ! : ð24Þ

Therefore,

ϕm+2 xð Þ − ϕm+1 xð Þj j
≤
ðx
x0

f t, ϕm+1 tð Þð Þ − f t, ϕm tð Þð Þj jdt

≤
ðx
x0

K ϕm+1 tð Þ − ϕm tð Þj jdt ≤
ðx
x0

K
Km M t − x0j jm+1

m + 1ð Þ! dt

= K
Km M x − x0j jm+2

m + 2ð Þ! = Km+1 M x − x0j jm+2

m + 2ð Þ! :

ð25Þ

The induction method gives the formula which holds for
every n.

Moreover, for every jx − x0j < α and for every n,

ϕn+1 xð Þ − ϕn xð Þj j ≤ Kn M x − x0j jn+1
n + 1ð Þ! ≤ b

K x − x0j jð Þn
n!

≤ b
Kαð Þn
n!

:

ð26Þ

Therefore,

ϕn+1 xð Þ − ϕ0 xð Þj j = 〠
n

i=0
ϕi+1 xð Þ − ϕi xð Þð Þ

�����
����� ≤ 〠

n

i=0
b

K x − x0j jð Þi
i!

≤ 〠
n

i=0
b

Kαð Þi
i!

:

ð27Þ

Since the series ∑∞
n=0ðKαÞn/n! is convergent, via the

Weierstrass M-test, then the sequence ðϕnÞ converges uni-
formly to a function, say ϕ, on ½x0 − α, x0 + α�.

Since ðϕnÞ converges uniformly to ϕ on ½x0 − α, x0 + α�,
and for every n, ϕn is continuous on ½x0 − α, x0 + α�, and
the function ϕ is continuous on ½x0 − α, x0 + α�. Further-
more,

lim
n⟶∞

ðx
x0

ϕn tð Þdt =
ðx
x0

lim
n⟶∞

ϕn tð Þdt: ð28Þ

Therefore, for every x ∈ ½x0 − α, x0 + α�,

ϕ xð Þ = lim
n⟶∞

ϕn+1 xð Þ = y0 + lim
n⟶∞

ðx
x0

f t, ϕn tð Þð Þdt

= y0 +
ðx
x0

lim
n⟶∞

f t, ϕn tð Þð Þdt:
ð29Þ

This means that

ϕ xð Þ = y0 +
ðx
x0

f t, ϕ tð Þð Þdt, ð30Þ

for every x ∈ ½x0 − α, x0 + α�.
Since f is continuous, then ϕ is differentiable on

½x0 − α, x0 + α�.
Moreover, ϕðx0Þ = y0. This means that ϕ is a solution of

the IVP (15) on ½x0 − α, x0 + α�.
Uniqueness. Let ϕ and ψ be two solutions of the IVP (15)

on ½x0 − α, x0 + α�,

ϕ xð Þ = y0 +
ðx
x0

f t, ϕ tð Þð Þdt,

ψ xð Þ = ϕ xð Þ = y0 +
ðx
x0

f t, ψ tð Þð Þdt,
ð31Þ

for every x ∈ ½x0 − α, x0 + α�:

ϕ xð Þ − ψ xð Þj j =
ðx
x0

f t, ϕ tð Þð Þdt −
ðx
x0

f t, ψ tð Þð Þdt
�����

�����
≤
ðx
x0

K ϕ tð Þ − ψ tð Þd edt:
ð32Þ

By using Gronwall’s inequality with gðxÞ = jϕðxÞ − ψðxÞj
and hðxÞ = K for every x ∈ ½x0, x0 + α�, we get 0 ≤ jϕðxÞ −
ψðxÞj ≤ 0: This means that ϕðxÞ = ψðxÞ for every x ∈ ½x0,
x0 + α�.

Similarly, for x ∈ ½x0 − α, x0�,we get ϕðxÞ = ψðxÞ for every
x ∈ ½x0 − α, x0�. Therefore, we have ψ = ϕ on ½x0 − α, x0 + α�.

Remark 11. Theorem 10 still holds if the condition contrac-
tion in the small in the second component on D is replaced
by the contraction in the small.

The α in Theorem 10 may be extended as stated in The-
orem 12.

Theorem 12. Let a, b ∈ℝ and D = fðx, yÞ ∈ℝ2 : a < x < b,
y ∈ℝg. If ðx0, y0Þ is an interior point of D and f : D⟶
ℝ is a continuous function on D and satisfies the contrac-
tion in the small in the second component on D, then there
exists a unique function ϕ as a solution of the initial value
problem in (15) on ða, bÞ. Moreover, if a = −∞ and b =∞,
then the unique solution ϕ of the initial value problem in
(15) exists on ð−∞,∞Þ.
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Proof. From Theorem 10, there exist an α0 > 0 and a
unique solution φ0 of the initial value problem in (15)
on ½x0 − α0, x0 + α0�.

(i) Put x1 = x0 − α0 and y1 = φ0ðx0 − α0Þ. It is clear that
ðx1, y1Þ is an interior point of D. By Theorem 10,
there exist an α1 > 0 and a unique solution φ1 on
½x0 − α0 − α1, x0 − α0� of the initial value problem

dy
dx

= f x, yð Þ,
y x1ð Þ = y1:

8<
: ð33Þ

(ii) Put x2 = x0 + α0 and y2 = φ0ðx0 + α0Þ. It is clear that
ðx2, y2Þ is an interior point of D. Based on Theorem
10, there exist an α2 > 0 and a unique solution φ2 on
½x0 + α0, x0 + α0 + α2� of the initial value problem

dy
dx

= f x, yð Þ,
y x2ð Þ = y2:

8<
: ð34Þ

Continuing the process, we have αk > 0, k ∈ℕ, x2k+1 =
x2k−1 + α2k−1, x2k = x2ðk−1Þ + α2ðk−1Þ, k = 1, 2, 3,⋯, and

(i) a unique solution φ1 on ½x0 − α0 − α1, x0 − α0�
(ii) unique solutions φ2k on ½x0 +∑k−1

i=0 α2i, x0 +∑k
i=0α2i�,

k ∈ℕ

(iii) φ2k+1 on ½x0 − α0 −∑k
i=0α2i+1, x0 + α0 +∑k−1

i=0 α2i+1�, k
∈ℕ

As a corollary, we have a unique solutionφ, where

φ xð Þ =

φ0 xð Þ, x ∈ x0 − α0, x0 + α0½ �,
φ1 xð Þ, x ∈ x0 − α0 − α1, x0 − α0½ �,

φ2k xð Þ, x ∈ x0 + 〠
k−1

i=0
α2i, x0 + 〠

k

i=0
α2i

" #
, for some k ∈ℕ,

φ2k+1 xð Þ, x ∈ x0 − α0 − 〠
k

i=0
α2i+1, x0 + α0 + 〠

k−1

i=0
α2i+1

" #
, for some k ∈ℕ,

8>>>>>>>>>>><
>>>>>>>>>>>:

φ x0ð Þ = y0:

ð35Þ

For every k = 1, 2, 3,⋯,

x0 − α0 − 〠
k

i=1
α2i−1, x0 + α0 + 〠

k

i=1
α2i

" #

⊆ x0 − α0 − 〠
k+1

i=1
α2i−1, x0 + α0 + 〠

k+1

i=1
α2i

" #
:

ð36Þ

Let ak = x2k−1 and bk = x2k, k = 1, 2, 3,⋯. We have

lim
k⟶∞

ak = a, lim
k⟶∞

bk = b: ð37Þ

3. Concluding Remarks

Theorem 8 has given a fixed-point theorem involving a contrac-
tion in the small. The proof of the developed Picard’s Theorem
has been provided in Theorem 10 by constructing a sequence of
functions as in Picard approximation. The key is to have an α
such that the contraction condition still holds for every n,
jϕn+1ðxÞ − ϕnðxÞj < r, for every x ∈ ½x0 − α, x0 + α�.
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