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ABSTRACT

Accurate midterm forecasts of fossil fuel consumption are essential for effective energy planning, economic
management, and resource allocation. While machine learning models have demonstrated their efficacy
in handling large-scale nonlinear datasets, many, including Multilayer Perceptrons (MLPs), suffer from
performance degradation with increased depth. Fortunately, recent studies have revealed that Residual
Networks (ResNets) can mitigate or even overcome this challenge. In this paper, we propose a Weighted
Residual Network based on MLP to enhance predictive performance. We employ the Adam algorithm
for model training and utilize the Gridsearch algorithm for hyperparameter tuning. In the application section,
we develop predictive models using three case studies: natural gas, petroleum, and total fossil fuel consumption.
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We validate the effectiveness of our proposed model and compare it with ten other machine learning
models. Our findings demonstrate that our proposed model consistently outperforms others in all three cases,
underscoring its superior performance in midterm forecasting of fossil fuel consumption.

Keywords: Weighted residual network; multilayer perceptron; adaptive moment estimation; grid Search; fossil
energy consumption.

1 INTRODUCTION

Accurate mid-term forecasts of fossil energy
consumption are crucial for energy planning, economic
management, and resource allocation. Numerous
studies have shown the effectiveness of machine
learning models in handling large-scale nonlinear
datasets, such as NOA-LSTM[1], frequency-domain
MLPs[2], CNN-GRU[3].

Multilayer Perceptron (MLP) is a fundamental neural
network architecture in machine learning models.
Frank Rosenblatt introduced the concept of a layered
perceptron network in his seminal work ”Perceptron”
[4][5][6]. His perceptrons comprised an input layer, a
hidden layer with static weights, and an output layer with
trainable connections. However, this model was initially
perceived as an extreme learning machine rather than
a deep learning network [7]. Despite this classification,
Rosenblatt’s work laid the foundation for subsequent
advancements in neural network architectures. In
1965, Alexey Grigorevich Ivakhnenko and Valentin
Lapa published the pioneering Group Method of Data
Handling, representing the first instance of a deep-
learning feedforward network. Notably, this method did
not incorporate stochastic gradient descent [8][9]. Two
years later, Shun’ichi Amari introduced a deep-learning
network capable of classifying non-linearly separable
pattern classes, employing stochastic gradient descent
for the first time in such networks [10]. Amari’s
team also constructed a five-layered feedforward
network, underscoring the viability of deep learning
architectures. The modern backpropagation method,
a pivotal aspect of MLP training, was introduced by
Seppo Linnainmaa in 1970 [11]. This application of
chain-rule-based supervised learning revolutionized
neural network training by facilitating error propagation
for parameter updates. Subsequent enhancements to
the backpropagation algorithm, such as its formalization
by Paul Werbos in 1982 [12], and experimental
investigations by David E. Rumelhart et al. in 1985
[13], further underscored its significance in the realm of
deep learning. To date, MLP has undergone significant

development and finds widespread application in
energy consumption prediction[17][18][19].

The depth of the MLP model is constrained by
the vanishing gradient problem, posing challenges
in training deeper networks. In addressing this
issue, Sepp Hochreiter introduced skip connections,
also known as residual connections, within the
long short-term memory (LSTM) recurrent neural
network architecture in 1991 [14]. These connections
allow gradients to flow more effectively through the
network, mitigating the vanishing gradient problem.
Subsequently, in 2015, the concept of Highway
Networks emerged as a further refinement. Inspired
by the forget gates utilized in LSTM networks,
Highway Networks integrate similar mechanisms
into feedforward neural networks [15]. By enabling
information to propagate more freely through the
network, Highway Networks alleviate the challenges
associated with vanishing gradients. Building upon
the principles of Highway Networks, ResNet (Residual
Network) simplifies the architecture by eliminating
forget gates and directly employing simple skip
connections [16]. This approach enables signals
to bypass certain layers without the need for gating
mechanisms, facilitating the training of exceedingly
deep neural networks. The effectiveness of this
structure has been empirically demonstrated across
various domains. In recent years, numerous machine
learning models based on the ResNet architecture
have been extensively introduced, including ResNet-
LSTM [20], ResNet-ARIMA [21], attention-ResNet-
LSTM[36], Attention-ResNet-AR-LSTM[37], and
ResNet-LightGBM [22]. However, there remains a
paucity of ResNet-based models tailored specifically for
studying energy consumption time series forecasting,
particularly within the domain of U.S. fossil energy
consumption, with virtually no examples to date.

In this study, we propose a novel approach termed
Weighted ResNet with MLP, with the objective of
enhancing feature extraction from time series data and
improving forecast accuracy.
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The subsequent sections of the paper will delineate
the data collection process in Section 2, expound
upon the theory and solution methodology of WResNet-
MLP in Section 3, explore its application across three
cases involving natural gas, petroleum, and total fossil
fuel consumption in Section 4, and conclude with a
summary in Section 5.

2 DATA COLLECTION
Utilizing consumption data of natural gas, petroleum,
and total fossil fuels in the United States as the
contextual foundation for constructing and analyzing
time series forecasting models holds paramount
importance. Firstly, energy consumption stands
as a pivotal metric within a nation’s economic and
societal framework, with accurate forecasting serving
as a cornerstone for governmental departments in
formulating energy policies. Secondly, constructing and
analyzing time series forecasting models facilitates the
elucidation of inherent trends and cyclical variations
within energy consumption, thereby fostering a deeper
comprehension of the interplay between energy

utilization and economic development. Furthermore,
the application of forecasting models aids in assessing
factors such as energy supply-demand equilibrium,
resource efficiency, and environmental conservation,
thus furnishing a scientific basis for sustainable energy
development and environmental protection initiatives.
Lastly, by applying advanced time series forecasting
methodologies to actual energy consumption datasets,
there exists the potential to propel the advancement
and application of time series forecasting techniques,
thereby fostering progress in related academic
research endeavors. Consequently, employing the
consumption metrics of natural gas, petroleum, and
total fossil fuels in the United States as a backdrop
for time series forecasting model construction and
analysis bears profound significance in the realms of
energy management, environmental conservation, and
sustainable development.

The data collection originates from the U.S. Energy
Information Administration (EIA), encompassing
monthly records spanning from January 1973 to
December 2023. These data are visually depicted in
Fig. 1.

Petroleum
Natural
Gas

Fig. 1. Natural Gas, Petroleum, Total Fossil Fuels Consumption

3 RESEARCH METHODOLOGY

3.1 The Proposed Model and Its Mathematical Principles
At the heart of ResNet lies the skip connection, a structural feature that facilitates the transfer of information
from earlier layers directly to subsequent layers. This mechanism enables the network to effectively capture key
characteristics within the data, enhancing its ability to learn and generalize.
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The Weighted ResNet with MLP (WResNet-MLP) model
proposed in this study comprises a ResNet input layer
and an output layer. Positioned between these layers
are multiple blocks consisting of MLP units, the quantity
of which is determined by the chosen depth, denoted
as d, of the ResNet architecture. The schematic
representation of the WResNet-MLP structure, with an
input denoted as Z, is depicted in Fig. 2.

Let (Z, T ) denote the input of the model, comprising n
instances (Zi, Ti) for (i = 1, 2, · · · , n). The output value
s0 of the input layer is computed as follows:

s0 =W (1)Z + β(1), (3.1)

Subsequently, the output of the first block is determined
as: {

s1 =W (3)δ(W (2)s0 + β(2)) + β(3),

s2 = s0 +W
(4)
1 s1,

(3.2)

where s1 represents the output of the MLP, and s2
denotes the output of the first block. The symbol δ(·)
represents the activation function, with various options
available. In this paper, we adopt the sigmoid function
as δ(·) due to its favorable mathematical characteristics,
defined as:

σ(·) = 1

1 + e−·
(3.3)

Likewise, the output of the second block is obtained as
follows:{

s3 =W (3)δ(W (2)s2 + β(2)) + β(3),

s4 = s2 +W
(4)
2 s3,

(3.4)

Following the d layers of blocks, the output is
represented as:

s2d = s2d−2 +W
(4)
d s2d−1, (3.5)

Consequently, the output of the WResNet-MLP model
is expressed as:

T̂ =W (5)h2d + β(5). (3.6)

In the preceding equation, W (k) (for k = 1, 2, 3, 4, 5)
and β(k) (for k = 1, 2, 3, 5) denote the parameters of
the WResNet-MLP model.

3.2 Optimizing Model Training
Neural networks, including the WResNet-MLP model in
this study, typically lack analytical solutions. Hence,
optimization algorithms like Gradient Descent[23],
Stochastic Gradient Descent[24], and Adam[25] are
utilized. Here, we employ the Adam algorithm for its
efficiency, robustness, and adaptability.

Firstly, we define the training error ei at each point
(Zi, Ti) as follows:

ei = Ti −W (5)h2d + β(5), (3.7)

This yields the sum of training errors:

E(W ,β) =
1

n

n∑
i=1

e2i = eT e, (3.8)

Input
Layer MLP + MLP +

Output
Layer

BLOCK

MLP
Structure

Fig. 2. The structure of WResNet-MLP with the input Z

where W comprises W (k) and β comprises β(k). These parameters W and β are to be solved using the Adam
algorithm.
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Next, to complete the Adam optimization process, we
must compute the gradient of E(W ,β):

∇E = [
∂E

∂W
,
∂E

∂β
], (3.9)

where ∇E represents the gradient.

Unlike traditional gradient descent methods, Adam
introduces the notion of modified bias-corrected first
moment estimate m̂i and bias-corrected second
moment estimate v̂i to accelerate convergence. Before
computing these, we require the values of the first-
order moment estimate mi and second-order moment
estimate vi, which are expressed as follows:

mi = µ1 ·mi−1 + (1− µ1) · ∇E, (3.10)

vi = µ2 · vi−1 + (1− µ2) · ∇E2, (3.11)

where µ1 and µ2 denote decay rates controlling the
speed of decay for the first and second moments of the
gradients, respectively.
Then, the m̂i and v̂i could be obtained:

m̂i =
mi

1− µi
1

, (3.12)

v̂i =
vi

1− µi
2

, (3.13)

Finally, the iterative formula is derived as:[
W i+1

βi+1

]
=

[
W i

βi

]
− r · m̂i√

v̂i + ε
. (3.14)

Here, r represents the learning rate of Adam, and ε is a
small constant.

Algorithm 1: Adam Training for WResNet-MLP
Input: E(W ,β) (Eq.(3.8)), Learning rate r, max iterations
Output: [W ,β]← random();
µ1 ← 0.9; µ2 ← 0.999;
m0 ← 0; v0 ← 0;
iteration← 0;

1 while iteration ¡ max iterations do
2 iteration = iteration + 1 ;
3 ∇E ← Eq.(3.9);
4 m̂i, v̂i ← Eq.(3.12)(3.13);

5

[
W i+1

βi+1

]
← Eq.(3.14);

6 end
7 return [W ,β]

Following Adam training, parameters such as depth (d), learning rate (r), and the number of neurons in the MLP
still require tuning. This is accomplished using the Grid Search algorithm.

4 APPLICATIONS
In this section, we employ the proposed model to develop prediction models for three distinct datasets: natural
gas consumption, oil consumption, and overall fossil fuel consumption. Each of the three datasets comprises 612
data points. The initial 80% of the data is allocated for training purposes, while the remaining 20% is reserved for
testing. To enhance stability during model training, we preprocess the data using min-max scaling.

Furthermore, this study utilizes the Mean Absolute Percentage Error (MAPE) as a key metric to assess the model’s
performance. The represention of the MAPE is shown in Eq.(4.1). Additionally, we conduct comparative analyses
with 10 machine learning models to validate the efficacy of our proposed approach, and their specific information
is shown in Table 1.

MAPE =
1

s

∑
k∈U

|T̂ (k)− T (k)|
|T (k)| (4.1)

where s is the length of U , and U is the training dataset or testing dataset.
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Table 1. The specific information of comparsion machine learning models

Full Name Abbreviation Reference Year

Gated Recurrent Unit gru [26] 2017

Random Forest Regression rf [27] 2001

Extreme Gradient Boosting xgb [28] 2015

Long Short-Term Memory lstm [29] 2000

Support Vector Regression svr [30] 1996

Convolution Neural Network cnn [31] 2015

Multilayer Perceptron mlp [32] 2009
CNN-LSTM cnnlstm [33] 2019

Convolutional LSTM convlstm [34] 2017
General Regression Neural Network grnn [35] 2004

4.1 Case 1:Natural Gas Consumption

Natural gas is pivotal in shaping the United States’
energy landscape, influencing its energy supply,
economic growth, and environmental stewardship.
Accurately forecasting future natural gas consumption
trends is instrumental in optimizing energy resource
utilization and fostering sustainable national economic
development.

The MAPE evaluation for training and testing across
all models in Case-1 is presented in Table 2, while
the prediction curves for both training and testing are
depicted in Figs. 3 and 4, respectively.

Upon examination of Table2, it becomes evident that
the proposed WResNet-MLP model exhibits the most
favorable test MAPE value. While the rf model displays
the best train MAPE value, its test MAPE value is among
the least satisfactory. Although the cnn model’s MAPE
closely resembles that of the proposed model, its train
MAPE is inferior to that of WResNet-MLP.

Furthermore, upon reviewing Figs. 3 and 4, it is
apparent that the prediction curve of the proposed
model closely aligns with the true curve in both training
and testing phases. Conversely, the testing forecasting
curves of models such as gru, rf, xgb, and grnn exhibit

an overall upward shift when compared to the original
curve.

4.2 Case 2:Petroleum Consumption
Petroleum is a pivotal energy resource in modern
industrial society, extensively utilized in transportation,
energy production, chemical engineering, and other
sectors. Therefore, accurately forecasting future trends
in petroleum consumption holds significant implications
for national energy security, economic development,
and environmental conservation.

Table 3 displays the MAPE evaluation results for training
and testing across all models in Case-1. Additionally,
Figs. 5 and 6 illustrate the prediction curves for both
training and testing phases, respectively.

Upon examining Table 3, it’s evident that the proposed
WResNet-MLP model demonstrates the most promising
test MAPE value. While the rf model boasts the best
train MAPE value, its test MAPE value falls short in
comparison. Upon reviewing Figs. 5 and 6, it becomes
apparent that in scenarios with significant fluctuations
between adjacent data points, the proposed model
exhibits robust performance. Additionally, models such
as gru, lstm, cnn, and convlstm also perform admirably
under similar conditions.

Table 2. MAPE Evaluation for Training and Testing Across All Models: Case-1

Model WResNet-MLP gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn
Train 10.572 7.412 2.960 4.051 5.600 8.699 10.699 8.375 5.017 6.862 5.023
Test 8.447 12.914 17.704 20.203 14.717 14.033 8.609 16.063 14.316 16.273 18.105
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Fig. 3. Forecasted Natural Gas Consumption Values: Training Set
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Fig. 4. Forecasted Natural Gas Consumption Values: Testing Set

Table 3. MAPE Evaluation for Training and Testing Across All Models: Case-2

Model WResNet-MLP gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn
Train 3.638 3.624 2.481 3.091 3.615 3.623 3.499 3.610 3.141 3.559 3.069
Test 3.460 3.740 3.761 3.677 3.652 3.539 3.699 3.507 3.796 3.764 3.540
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Fig. 5. Forecasted Petroleum Consumption Values: Training Set
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Fig. 6. Forecasted Natural Gas Consumption Values: Testing Set

4.3 Case 3:Total Fossil Fuels
Consumption

Fossil fuels, as one of the primary energy sources, are
extensively utilized in electricity generation, industrial
production, transportation, and other sectors. Hence,
accurately forecasting future trends in total fossil
fuels consumption is crucial for national energy policy
formulation, economic planning, and environmental
conservation efforts.

The table below (see Table 4) presents the MAPE
evaluation results for training and testing across all
models in Case-1. Additionally, Figs. 7 and 8 depict
the prediction curves for both training and testing
phases, respectively. In line with the preceding cases,
WResNet-MLP continues to exhibit the optimal test
MAPE value, while RF demonstrates the superior train
MAPE value. Furthermore, the proposed model’s
prediction curve aligns closely with the true curve in
both the training and testing phases.
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Table 4. MAPE Evaluation for Training and Testing Across All Models: Case-3

Model WResNet-MLP gru rf xgb lstm svr cnn mlp cnnlstm convlstm grnn
Train 4.434 3.713 2.136 2.732 3.919 4.277 4.104 5.235 3.360 4.143 3.220
Test 4.464 4.816 4.900 4.848 4.822 4.621 4.466 5.730 4.801 4.959 4.742

Fig. 7. Forecasted Total Fossil Fuels Consumption Values: Training Set

23



Hao and He; J. Energy Res. Rev., vol. 16, no. 6, pp. 13-26, 2024; Article no.JENRR.117020

Fig. 8. Forecasted Total Fossil Fuels Consumption Values: Testing Set

4.4 Disscusion

The WResNet-MLP model, as proposed, demonstrates
a notable performance divergence between its
performance on the training set and its efficacy during
testing. While its performance on the training set
may not be particularly outstanding, across three
distinct cases, it emerges as the top performer during
testing, closely aligning with the raw data through its
predictive curve. This notable performance in testing
highlights the model’s robust generalization capability

and its accuracy in predictions, thereby demonstrating
its reliability and stability when applied to real-world
scenarios.

Conversely, the Random Forest (RF) model, despite
achieving the highest Mean Absolute Percentage Error
(MAPE) value during training, frequently displays
suboptimal performance during testing phases. This
discrepancy could potentially stem from either the
model’s insufficient complexity or its susceptibility to
overfitting, wherein the model excessively fits to the
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training data and struggles to generalize well to unseen
data points.
mm]

5 CONCLUSIONS
This paper presents the WResNet-MLP model
alongside its comprehensive theoretical framework and
model training methodologies. Additionally, we applied
this model to construct models for total natural gas,
oil, and fossil fuel consumption in the United States.
While the model’s performance on the training set
was moderate compared to 10 other machine learning
models, it exhibited superior predictive performance on
the test set.

The research demonstrates that the WResNet-MLP
model holds promise as a dependable decision support
tool for future energy forecasting. The integration of
ResNet and MLP notably enhances prediction accuracy
and applicability. We firmly believe that this approach
holds significant potential for further exploration in future
research endeavors.
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