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ABSTRACT 

 
The epidermal growth factor receptor (EGFR) protein tyrosine kinase (PTK) is a crucial target in the 
pursuit of anti-tumor drug discovery. This study investigates 305 phytochemicals from five known 
anticancer plants (Anacardium occidentale, Annona muricata, Spondias mombin, Ocimum 
gratisimum, and Zingiber officinale) for their potential as EGFR kinase domain inhibitors. Through 
Virtual High Throughput Screening (vHTS), lead compounds were identified and subjected to 
ADMET filtering. A Quantitative Structure-Activity Relationship (QSAR) model was developed using 
bioassay data from the ChEMBL database, exhibiting strong statistical robustness and external 
validation. Molecular docking studies revealed interactions of lead compounds with critical residues 
within the EGFR ATP kinase domain. Actinidine, berberine, and corydaline demonstrated 
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adherence to Lipinski's rule of five, indicating drug-likeness. Notably, actinidine forms hydrophobic 
interactions with Phe-856, while berberine establishes hydrogen bonds with Asp-855. Corydaline 
engages in extensive hydrophobic and hydrogen bond interactions within the ATP pocket of the 
EGFR kinase domain. These findings underscore the potential of actinidine, berberine, and 
corydaline as EGFR kinase domain inhibitors, supported by a robust QSAR model, marking 
progress in the search for novel anticancer agents targeting EGFR inhibition. 
 

 
Keywords: EGFR kinase domain; anti-tumour; vHTS; QSAR. 
 

Abbreviations 
 
EGFR : Epidermal Growth Factor Receptor 
PTK : Protein Tyrosine Kinase 
vHTS : Virtual High Throughput Screening 
QSAR : Quantitative Structure-Activity Relationship 
ATP : Adenosine Triphosphate 
HER2 : Human Epidermal Growth Factor Receptor 2 
EGF : Epidermal Growth Factor 
PDB : Protein Data Bank 
SDF : Structure-Data File 
MWT : Molecular Weight 
CDK : Cyclin-Dependent Kinase 
RMSD : Root-Mean-Square Deviation 
ADME : Absorption, Distribution, Metabolism, Excretion 
H.B.A : number of Hydrogen Bond Acceptors 
H.B.D : number of Hydrogen Bond Donors 
R.B : number of Rotatable bonds 
XLogP : Octanol-water Partition Coefficient 
M.W : Molecular Weight 
P.S.A : Polar Surface Area  
 

1. INTRODUCTION 
 
“The epidermal growth factor receptor (EGFR; 
also known as erbB1) is a member of the 
tyrosine kinase receptor family, which includes 
other members like HER2/neu (erbB2), erbB3, 
and erbB4” [1]. Upon binding with ligands such 
as epidermal growth factor (EGF) and 
transforming growth factor-alpha (TGF-a), EGFR 
initiates a multitude of intracellular signal 
transduction pathways that regulate critical 
aspects of tumor cell behavior, including growth, 
proliferation, survival, metastasis, and 
angiogenesis [2] Ligand binding leads to the 
formation of homo- or hetero-dimeric complexes, 
subsequently activating the tyrosine kinase 
domain [3]. This activation results in the 
phosphorylation and activation of various 
intracellular proteins, ultimately modulating gene 
transcription [4]. 
 
The targeting of EGFR at various stages of 
cancer development is a promising strategy, with 
one approach focusing on the inhibition of the 
receptor's tyrosine kinase (RTK) domain [1]. 

“Receptor tyrosine kinase inhibitors, typically 
small molecules, compete with ATP for the 
intracellular orthosteric site of EGFR” [5]. An 
extensive array of cancer therapies developed 
thus far leverages plant-derived products, as 
plants have demonstrated significant anti-cancer 
properties [6,7,8,7]. These plants serve as a 
valuable resource, potentially yielding new drugs 
due to their reservoir of natural chemicals with 
chemoprotective potential against cancer [9]. 
 
Despite the advances in EGFR-targeted cancer 
therapies, there remains a critical need for the 
development of innovative treatment strategies 
that effectively inhibit the EGFR tyrosine kinase 
domain [10]. This is particularly crucial given the 
role of EGFR in governing various aspects of 
tumor development and progression. To address 
this gap, this study explores the potential of 
phytochemicals sourced from five widely 
recognized medicinal and antitumor plants: 
Anacardium occidentale, Annona muricata, 
Spondias mombin, Ocimum gratisimum, and 
Zingiber officinale [11]. By conducting a 
comprehensive analysis of these phytochemicals 
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and their interactions with the EGFR kinase 
domain, this study aimed to contribute to the 
development of new and effective EGFR kinase 
domain inhibitors for potential integration into 
cancer treatment strategies. The research seeks 
to bridge the existing gap in knowledge regarding 
the utility of plant-derived compounds as targeted 
therapies for EGFR-associated malignancies. 
 

2. METHODOLOGY 
 

2.1 Data Collection and Preparation 
 
Phytochemicals characterised from Anacardium 
occidentale, Annona muricata, Spondias 
mombim, Oscimum gratisimum, and Zingiber 
officinale were obtained from literature [12]. A 
total of three hundred and five (305) 
phytochemicals were downloaded in SDF 
(Structural data format) from the PubChem 
database (https://pubchem.ncbi.nlm.nih.gov). 
The SDF were converted to PDB format by Open 
Babel, and finally converted to PDBQT using 
ligprep command lines. The EGFR4 oncoprotein 
structure with PDB ID: 3BEL and crystallographic 
resolution of 2.30Aº was downloaded from the 
protein data bank (http://www.rcsb.org). 
 

2.2 Virtual High Throughput Screening 
and molecular docking 

 
Virtual High Throughput Screening, a 
computational screening technique was used to 
screen a pool of compounds library to probe the 
binding affinity of the target receptor with the 
library compounds [13]. The downloaded EGFR4 
from the protein data bank (http://www.rcsb.org), 
was uploaded in Pymol, the grid coordinate was 
set as in the co-crystallized compound, X= 16.1 
Y= 34.65 Z= 91.68. The phytochemicals were 
converted to PDB and PDBQT, using command 
lines.  The protein-ligand docking was carried out 
using Autodock Vina [14]. The phytochemicals 
were docked into 3BEL catalytic site as occupied 
by the co-crystalized ligand [15]. 
 

2.3 Validation of Docking Results 
 
Validation of docking result was performed by 
alignments of EGFR4 kinase domain receptor 
sequences from the Pubmed repository against 
the ChemBL Database (www.ebiac.uk/chembl/) 
The eighty-five (85) EGFR4 (PDB ID: 3BEL) 
kinase inhibitors (compounds) obtained were 
downloaded in text format and converted to PDB 
format by Data Warrior version 2, and finally 
converted to PDBQT. The compounds obtained 

were docked into the kinase domain (X= 16.1 Y= 
34.65 Z= 91.68). A correlation coefficient analysis 
of the relationship between the docking scores of 
the compounds and their corresponding pIC50 
values was determined. The docking scores and 
the vHTS were also validated by determined the 
root mean square deviation (RMSD) of the co-
crystallized compound within the catalytic domain. 
The co-crystallized compound was re-docked 
into the catalytic domain of 3BEL and RMSD was 
evaluated.  
 

2.4 ADMET Filtering 
 
According to Lipinski et al. [16] the ‘rule of five' 
depicts bioavailability of drugs. “When there are 
more than 5 H-bond donors, 10 H-bond 
acceptors, molecular weight (MWT) greater than 
500 and the calculated Log P (CLogP) greater 
than 5 (or MlogP>4.15), Poor absorption or 
permeation is more likely.  The rule of five also 
describes molecular properties that are vital to 
the pharmacokinetics of drugs; these include the 
absorption, distribution, metabolism and 
excretion of compound” [17]. “The Lipinski rule of 
five was used to filter our lead compounds. The 
Mavin Viewer software was used to establish the 
conformity of the lead compounds to the rule of 
five. The number of rotatable bonds and polar 
surface area, which are known to differentiate 
compounds that are orally active from those that 
are not” [18]. “Compounds with 10 or fewer 
rotatable bonds and polar surface area equal or 
less than 140Å² have good oral bioavailability” 
[19]. 
 

2.5 Quantitative Structure Activity 
Relationship (QSAR) 

 
2.5.1 Data collection and descriptor 

calculation 
 
“The bioassay IC50 data for EGFR4 kinase 
domain was downloaded from the chEMBL 
database (http://ebi.ac.uk), in excel format and 
converted to SDF using DataWarrior.  The SDF 
structures were catenated and converted to 3-
Dimensional structures using command lines. 
The Chemistry Development Kit (CDK) 1.4.6 was 
used to calculate the molecular descriptors” [20]. 
 
2.5.2 Data pre-treatment 
 
The pre-treatment of the bioassay IC50 data from 
the chEMBL database (http://ebi.ac.uk) was 
carried out with V-WSP algorithm [21] to remove 
co-linearity of descriptors. 

http://www.rcsb.org/
http://ebi.ac.uk/
http://ebi.ac.uk/
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2.5.3 Data set division: Training and test Sets 
 
A dataset of 100 EGFR4 kinase domain inhibitors 
was obtained from the chEMBL database 
(http://ebi.ac.uk). The data set was split into 
training (70%) and test (30%) dataset with the 
Kennard Stone algorithm (Dataset Division GUI 
1.2) [22]. 
 
2.5.4 Genetic algorithm and multiple linear 

regression  
 
Genetic algorithm was used to perform the 
selection of significant variables (descriptors) [23]. 
The training set was used for the generation of 
the QSAR model. Multiple linear regression 
(MLR) was used for the generation of unbiased 
model.  
 

3. RESULTS AND DISCUSSION  
 
3.1 Virtual High Throughput Screening 
 
The docking score of the co-crystallized, POX, 
(4-amino-6- {[1-(3-fluorobenzyl)-1-Hindazol-5-yl] 
amino} pyrimidine-5-carbaldehyde O- (2-
methoxyethyl) oxime) [24] against the EGFR4 
kinase domain, 9.7 kcal/mol was used as the cut 
off for the selection of lead phytochemicals. 
Seven (7) phytochemicals with docking scores 
equal or greater than -9.7 kcal/mol were the lead 
phytochemicals (Table 1). 
 

Table 1. The lead phytochemicals from the 
selected plants 

 

Annona muricata Docking Scores 
Isoannonacin -9.7 
Spondias mombin Docking Scores 
Lupeol -9.8 
Anacardium occidentale Docking Scores 
Actinidine -11.5 
Chlorogenic Acid  -10.2 
Corydaline -10.1 
Berberine -9.9 
Occimum gratissimum Docking Scores 
Rosmarinic acid -9.7 

 

3.2 Validation of Docking Scores 
 
Analysis of the relationship between pIC50 and 
the corresponding docking scores of 85 
compounds downloaded from Chembl 
(www.ebiac.uk/chembl/) gave a strong correlation 
of .577, significant at p<0.01 indicating a strong 
positive correlation (Table 2). This confirms that 
the Autodock algorithm used for Virtual 

Screening is reliable for predicting binding affinity 
of compounds and can be used to replicate wet 
experimental data. The redocked almost fit 
perfectly with the co-crystallized compound, and 
with RMSD of 0.09 Å. This further validated the 
reliability of the docking scores and vHTS. 
 

 
 

Fig. 1. The redocked (green) and the co-
crystallized compound (red) within the 

catalytic domain of 3BEL with RMSD of 0.09 Å 
 

3.3 ADME and Drug-Likeness Screening 
of Lead Compounds 

 
ADME (Absorption, Distribution, Metabolism and 
Excretion) and drug-likeness of compounds can 
be determined using the Lipinski’s rule of five 
[16]. Using the docking score of POX, the co-
crystalized inhibitor of the protein (-9.7 kcal/mol) 
as cut off for the selection of leads, only seven of 
all the phytochemicals docked have docking 
scores equal or greater than -9.7kcal/mol. The 
ADME determination was carried out with Marvin 
suite. 
  
Table 3 shows the result of screening of the lead 
compounds using the Lipinski’s rule, drugs with 
good oral bioavailability should violate not more 
than one of the rules of five. Chlorogenic acid, 
Lupeol, and Rosmarinic violated just one of the 
rules, however, Isoannonacin violated three of 
the rules of five hence it is filtered out. Actinidine, 
berberine, corydaline fit perfectly into the rule of 
five. 
 

3.4 QSAR Analysis 
 
A QSAR predict the relationship that exists 
between the structure of compounds and 
biological activity of a molecular system, 
geometric and chemical characteristics.  Seventy 

http://ebi.ac.uk/
http://www.ebiac.uk/chembl/
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EGFR kinase domain inhibitors obtained from 
ChemBL Database (www.ebiac.uk/chembl/) were 
used as the training set. Multiple linear 
regression and Genetic algorithm were used for 
the analysis. 

 
3.4.1 Model summary 

 
Adjusted R square was calculated using the 
Stein’s formula (Stein, 1972): 

 

Adjusted R2 = 1- [(
𝑛−1

𝑛−𝑘−1
) (

𝑛−2

𝑛−𝑘−2
) (

𝑛+1

𝑛
)] (1 − 𝑅2)  

 
Where: 

 
R2 = Measurement of the variability in the 
pIC50 accounted for by the descriptors in the 
model 
n = Number of compounds in the training       
set 
k = Number of descriptors in the model 

 

The summary of the model is shown in Table 4, 
with R-value, Pearson correlation of .988. The 
model shows a very high positive Pearson 
Correlation. The R square value of .976 indicates 
the model can account for more than 97% of 
pIC50. The adjusted R2 is concerned with how 
well the model generalizes, that is, external 
validation of the model. The adjusted R2 of .941 
value depicts the external cross validation of the 
model is very good with a negligible 3.5% 
shrinkage in predicting external pIC50 and the 
model could be used for predicting pIC50 of 
potential EGFR kinase domain inhibitors with 
about 94% accuracy. A correlation plot (Fig. 2) of 
the observed pIC50 versus the predicted pIC50 
gives an R2 value of 0.976, depicting a very 
strong corelation between the observed pIC50 
and predicted pIC50. This shows the model can 
accurately predict pIC50 values (Fig. 2) (Table 
S1). The closeness values of some of the 
training set in Table 2 further gives credence to 
the robustness of the model. 

Table 2. The spearman rank correlation (R) coefficient of docking scores against the pIC50 
 

Correlation Coefficient 
 

.577** 

Sig. (2-tailed) 
 

.000 
N 

  
85 

Bootstrap Bias 
 

.006  
Std. Error 

 
.076 

 95% Confidence interval Lower .42 
Upper .703 

** Correlation is significant at P<0.01 level 

 
Table 3. Molecular properties of the lead compounds with respect to the Lipinski’s rule of five 

 

Lead Compounds Docking 
Scores 

H.B.A 
(<=10) 

H.B.D 
(<=5) 

R.B 
(<=10) 

XLog P 
(<=5) 

M.M 
(<500) 

PSA (<140 
Å2) 

Actinidine -11.5 1 0 0 2.4 147.221 12.89 
Chlorogenic Acid* -10.2 9 6 5 -0.4 354.311 164.75 
Corydaline -10.1 5 0 4 3.6 369.461 40.16 
Berberine -9.9 4 0 2 3.6 336.124 40.8 
Lupeol* -9.8 1 1 1 9.9 426.729 20.23 
Isoannonacin*** -9.7 7 3 26 8.1 596.89 113.29 
Rosmarinic Acid* -9.7 8 5 7 2.4 360.318 144.52 

Note: H.B.A: number of Hydrogen bond acceptors; H.B.D: number of Hydrogen bond donors 
R.B: number of Rotatable bonds; XLogP: Octanol-water partition coefficient; M.W: Molecular weight; P.S.A: Polar 

surface area; Indicates the number of violations of the Lipinski’s rule of five 

 
Table 4. Summary of the model table: The R, R squared, Adjusted R squared and the Durbin-

Watson constant 
 

R R Square Adjusted R Square 

.988 .976           .941 
Predictors: (Constant), XLogP, khs. sCH3, MOMI-XZ, WTPT-4, VC-5, Weta1.unity, PPSA-2, Lipinski 

Failures, Wnu2.unity, WT.unity; Dependent Variable: pIC50 (pIC50 = -log IC50) 
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3.4.3 Generation of QSAR Model Equation 
 

The equation of a straight line is given as 
 

Y = MX + C                         (i)  
 
The equation of regression line is given as: 
 

Y = B + B1X1! + B2X2! + B3X3! + … + BnXn! (ii)

   
pIC50 = Bo + B1X1! + B2X2! + B3X3! + … 
BnXn!                    (iii) 

 
The equation of the model is given as: 
 

Predicted pIC50 = 5.309 + ( -0.535 * XLog) + 
( 0.222 * MOMI-XZ ) + ( 8.154 * VC-5 ) + ( -
0.34 * WTPT-4 ) + ( -0.024 * Khs.sCH3 ) + 
(  10.161 * Weta1.unity) + (-0.005 * WT.unity ) 
+ ( 4.994 * Wnu2.unity ) + ( 0.001 * PPSA-2) 
+ (-0.428 * Lipinski Failure)                       (iv) 

 
Y = pIC50 = dependent variable 
b0 is the constant 
b1is the regression coefficient 
x1 is the independent variable     

                                                                                            
Where, 
 

WTPT-4: Sum of path lengths starting from 
oxygens 
khs.sCH3 : Isothermal compressibility of the 
reference hard-sphere mixture 
Weta1.unity: Directional WHIM, weighted by 
unit weights 
WT.unity: Non-directional WHIM, weighted 
by unit weights 
Wnu2.unity: Directional WHIM, weighted by 
unit weights 

PPSA-2: Partial positive surface area * total 
positive charge on the molecule  
LipinskiFailures: Number failures of the 
Lipinski's Rule Of 5 
XLogP: Octanol-water partition Coefficient 
MOMI-XZ: Moment of inertia along X/Z-axis  
VC-5: Valence cluster, order 

 
3.4.4 Contribution of the descriptors to the 

model  
 
Fig. 3 shows the contribution of the                   
descriptors to the QSAR model.  The 
Weta1.unity descriptor contributes the                     
most to the model, followed by MOMI-XZ,              
VC-5, Wnu2.unity, PPSA-2 and WT.unity 
respectively. 
 

3.5 Molecular Interactions of the Lead 
Compounds 

 

Actinidine binds in between the N- and C- lobes 
(Fig. 4A). Actinidine binds to the active state of 
the kinase with the activation loop in an “open” 
conformation and the DFG motif in the “out” 
conformation Fig. 4A. Actinidine forms  hydrogen 
bond interaction with thr-854, it also forms 
hydrophobic interactions with lys-745, met-766, 
leu-788 thr-790, phe-856 and leu-858, (Fig. 4B). 
The formation of hydrophobic interaction with 
phe -856 of the DFG-out conformation is critical 
to the inhibitory potential of actinidine.  This helps 
to prevent D and the F of the DFG motif from 
swapping positions [25]. It is noteworthy that 
actinidine forms hydrophobic interaction                         
with the gatekeeper residue thr-315. This 
hydrophobic bond not only strengthens binding 
potency, but also increases kinase specificity  
[26]. 

 

 
 

Fig. 2. Scattered Plot of the observed pIC50 values against the predicted pIC50 Values of the 



 
 
 
 

Adeniran; Asian J. Biochem. Gen. Mol. Biol., vol. 16, no. 7, pp. 69-84, 2024; Article no.AJBGMB.118796 
 
 

 
75 

 

training set 

 
 

Fig. 3. Contributions of the Descriptors to the QSAR Model 
* Significant contribution at P<0.05 (95% confidence Interval) 
** Significant contribution at P<0.01 (99% confidence Interval) 

 

 
                                     A                                                                      B 

Fig. 4. A). Crystal structure of the EGFR kinase domain in complex with Actinidine, (red), the 
inhibitor (actinidine) occupies the cleft between the N- and C-lobes of the kinase domain. The 
gatekeeper residue, thr-315, two residues of the DFG motif, asp-855 and phe-856 are revealed. 

Actinidine binds to the active state of the kinase with the activation loop in an “open” 
conformation and the DFG motif in the “out” conformation. B). Showing the specific 

interactions of actinidine (red) within the ATP binding site, the blue lines represent hydrogen 
bonds while the dotted red lines represent hydrophobic interactions 

 
Berberine also binds in between the N- and C- 
lobes (Fig. 5A). Berberine binds to the active 
state of the kinase with the DFG motif in the “out” 
conformation Figure 5A [27-30]. It forms two 
hydrogen bonds with asp-855. This prevent the D 
and the F of the DFG motif from swapping 
positions and this in turn give credence to the 

inhibitory potential of berberine. It also forms 
hydrophobic interactions with val-726, ala-743, 
lys-745, leu-788 and with the gatekeeper residue 
thr-790.  The hydrophobic interaction of 
berberine with the gatekeeper residue not only 
strengthens binding potency, but also increases 
kinase specificity [26]. 
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A                                                                                 B 
 

Fig. 5. A). Crystal structure of the EGFR kinase domain in complex with Berberine (hot red), it 
occupies the cleft between the N- and C-lobes of the kinase domain. The gatekeeper residue, 

thr-790, two residues of the DFG motif, asp-855 and phe-856 and the activation loop tyr-827 are 
shown. Berberine binds to the active state of the kinase with the activation loop in an “open” 

conformation and the DFG motif in the “out” conformation. B). Showing the specific 
interactions of berberine (hot pink) within the ATP binding site, the blue lines represent 

hydrogen bonds while the dotted red lines represent hydrophobic interactions 

 

 
A                                                                                B 

Fig. 6. A). Crystal structure of the EGFR kinase domain in complex with Corydaline (blue), it 
occupies the cleft between the N- and C-lobes of the kinase domain. The gatekeeper residue, 

thr-790, two residues of the DFG motif, asp-855 and phe-856 and the activation loop tyr-827 are 
shown. Corydaline binds to the active state of the kinase with the activation loop in an “open” 

conformation and the DFG motif in the “out” conformation. B). Showing the specific 
interactions of corydaline (blue) within the ATP binding site, the blue lines represent hydrogen 

bonds while the dotted red lines represent hydrophobic interactions 
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A.                                                                B. 

 
Fig. 7. A). Crystal structure of the EGFR kinase domain in complex with co-crystallized 

compound, 4-amino-6- {[1-(3-fluorobenzyl)-1-Hindazol-5-yl] amino} pyrimidine-5-carbaldehyde 
O- (2-methoxyethyl) oxime (pale yellow), it occupies the cleft between the N- and C-lobes of the 

kinase domain. The two residues of the DFG motif, asp-855 and phe-856 and the activation 
loop tyr-827 are shown. The co-crystallized binds to the active state of the kinase with the 

activation loop in an “open” conformation and the DFG motif in the “out” conformation. B). 
Showing the specific interactions of the co-crystallized (pale yellow) within the ATP binding 

site, the blue lines represent hydrogen bonds, the dotted lines represent hydrophobic 
interactions, the green line represents halogen interaction while the wheat yellow colour 

represents pication 
 

Table 5. Experimental and predicted pIC50 values of the of some of the Training set 
 

CHEMBL ID Structures Observed 
pIC50 

Predicted 
pIC50 

Residual 

CHEMBL596964 

 

6.57 6.56249 -0.10823 

CHEMBL605976 

 

7.89 7.90649 0.16206 
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CHEMBL ID Structures Observed 
pIC50 

Predicted 
pIC50 

Residual 

CHEMBL598406 

 

6.9 6.72146 0.04253 

CHEMBL598407 

 

6.21 6.37234 -0.2095 

CHEMBL598377 

 

8.51 8.65839 -0.21549 

CHEMBL598610 

 

8.16 8.20095 -0.20451 
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CHEMBL ID Structures Observed 
pIC50 

Predicted 
pIC50 

Residual 

CHEMBL598797 

 

8.62 8.56748 -0.1327 

CHEMBL553 

 

7.32 7.31971 0.12878 

CHEMBL596755        

 

7.81 7.86024 0.02803 

CHEMBL597551 

 

8.15 8.18002 -0.08444 
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CHEMBL ID Structures Observed 
pIC50 

Predicted 
pIC50 

Residual 

CHEMBL597569 

 

7.98 7.98699 0.1867 

CHEMBL596754 

 

8.7 8.75149 0.19166 

CHEMBL596736 

 

8.34 8.48269 0.05709 

CHEMBL554 

 

7.95 7.85316 0.04382 
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CHEMBL ID Structures Observed 
pIC50 

Predicted 
pIC50 

Residual 

CHEMBL598163 

 

8.47 8.17369 0.27881 

CHEMBL596957 

 

7.14 7.2049 -0.04972 

CHEMBL597773 

 

8.68 8.57047 -0.10916 

CHEMBL599398 

 

7.82 7.84704 -0.00573 



 
 
 
 

Adeniran; Asian J. Biochem. Gen. Mol. Biol., vol. 16, no. 7, pp. 69-84, 2024; Article no.AJBGMB.118796 
 
 

 
82 

 

Corydaline equally binds in between the N- and 
C- lobes (Fig. 5A). It binds to the active state of 
the kinase with the DFG motif in the “out” 
conformation Fig. 6A. The inhibitory potential of 
Corydaline on the EGFR kinase domain is 
enhanced by the formation of both hydrophobic 
and hydrogen bonds interactions with asp-855, 
thereby preventing the D and the F of the DFG 
motif from swapping positions (Fig. 6B).  It also 
forms hydrophobic interactions with leu-718, ala-
743, lys-745, leu-792, leu-844, thr-854 and one 
additional hydrogen bond interaction with lys-745 
(Fig 6B). The extensive hydrophobic cum 
hydrogen bonds interactions of corydaline with 
important residues within the ATP pocket of the 
EGFR kinase domain depicts it as a good 
inhibitor. These lead compounds on the other 
hand share common interactions with the co-
crystallized (val-726, lys-745, and thr-790) (Fig. 
7A and B) [31-33]. 
 

4. CONCLUSION 
 

Actinidine, berberine, and corydaline fit perfectly 
into the rule of five. They are potential EGFR 
kinase domain inhibitors.  The QSAR model 
generated in the present study is statistically 
robust and thoroughly validated. The formation of 
hydrophobic interaction with phe -856 of the 
DFG-out conformation is critical to the inhibitory 
potential of actinidine. Berberine forms two 
hydrogen bonds with asp-855. Corydaline forms 
extensive hydrophobic and hydrogen bond 
interactions with important residues within the 
ATP pocket of the EGFR kinase domain. The 
QSAR model herein can reliably predict potential 
EGFR kinase domain inhibitors. Hence these 
procedures can help in the prediction of anti-
tumour compounds. 
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