

Article A Taxonomic Study of *Candolleomyces* Specimens from China Revealed Seven New Species

Xi-Xi Han ^{1,2,3}, Dorji Phurbu ⁴, Guo-Fei Ma ^{5,6}, You-Zhi Li ^{5,6}, Yu-Jiao Mei ^{5,6}, Dong-Mei Liu ⁷, Fu-Cheng Lin ^{8,9}, Rui-Lin Zhao ^{3,10}, Naritsada Thongklang ^{1,2,*} and Bin Cao ^{3,10,*}

- ¹ School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- ² Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- ³ State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences,
 - Beijing 100101, China
- ⁴ Tibet Plateau Institute of Biology, Lhasa 850000, China
- ⁵ Shennongjia National Park Administration, Shennongjia 442421, China
- ⁶ Hubei Provincial Key Laboratory on Conservation Biology of the Shennongjia Golden Snub-Nosed Monkey, Shennongjia 442421, China
- ⁷ Institue of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- ⁸ State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- ⁹ Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- ¹⁰ College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: naritsada.t@gmail.com (N.T.); caob@im.ac.cn (B.C.)

Abstract: Based on phylogenetic analysis, *Candolleomyces* (Psathyrellaceae, Agaricales) was established with *Psathyrella candolleana* as the type species. The basidiomes range from small to large and are typically terrestrial, lignicolous, and rarely fimicolous. We analysed the *Candolleomyces* species collected during five years in China, and based on morphological and molecular data (nrITS, nrLSU, and *tef-1* α), we propose seven new *Candolleomyces* species viz. *C. brevisporus*, *C. gyirongicus*, *C. lignicola*, *C. luridus*, *C. shennongdingicus*, *C. shennongjianus*, and *C. sichuanicus*. Full descriptions, colour photographs, illustrations, phylogenetic analyses results, and comparisons with related *Candolleomyces* species of the new taxa are provided. This study enriches the species diversity of *Candolleomyces* in China.

Keywords: Psathyrellaceae; multigene; phylogeny; taxonomy

1. Introduction

The recently established genus *Candolleomyces* D. Wächt. & A. Melzer is characterised by small to large basidiomes, being terrestrial, lignicolous, and rarely fimicolous, the veils are often fibrillose, scaly, or granulose, but very fugacious, stipes occasionally with an annulus, basidiospores are medium-sized, it is pale to medium-dark in colour, with a central, usually invisible, germ pore, the presence of cheilocystidia, and absence of pleurocystidia. Most of the species of *Candolleomyces* historically belonged to *Psathyrella* (Fr.) Quél. [1,2]. Smith (1972) and Kits van Waveren (1985) made remarkable works on *Psathyrella* from Europe and North America, and clarified the morphological species concept within this genus [3,4]. The former identified 11 subgenera viz. *Candolleana, Conocybella, Cystopsathyra, Homophron, Lacrymaria, Mycophila, Panaeolina, Pannucia, Psathyrella, Psathyroides,* and *Pseudostropharia* [3,4]. Meanwhile, the latter put *Psathyrella* into two subgenera, *Psathyra* and *Psathyrella* [3,4]. Molecular phylogeny based on the nuclear ribosomal internal transcribed spacer region (nrITS) and the nuclear ribosomal large subunit ribosomal RNA gene (nrLSU) did not distinguish the species well within *Psathyrella* [5]. Therefore, two protein-coding genes viz. the translation elongator factor alpha (*tef-1* α) and beta-tubulin (β -tub) were

Citation: Han, X.-X.; Phurbu, D.; Ma, G.-F.; Li, Y.-Z.; Mei, Y.-J.; Liu, D.-M.; Lin, F.-C.; Zhao, R.-L.; Thongklang, N.; Cao, B. A Taxonomic Study of *Candolleomyces* Specimens from China Revealed Seven New Species. *J. Fungi* 2024, *10*, 499. https://doi.org/ 10.3390/jof10070499

Academic Editor: Valeria Prigione

Received: 31 May 2024 Revised: 4 July 2024 Accepted: 16 July 2024 Published: 19 July 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). also employed for species classification of *Psathyrella* [6–8]. Based on numerous specimen studies, and morphological and phylogenetic analyses, Wächter and Melzer [9] revised the Psathyrellaceae and divided *Psathyrella* into 18 subclades, with one of them established as the new genus *Candolleomyces* and *C. candolleanus* (Fr.) D. Wächt. & A. Melzer as the species type.

In the field, the members of *c* are similar to those species of *Psathyrella*, as they share many similar macro-morphological features and ecological niches. However, *Candolleomyces* species can be distinguished micro-morphologically by the absence of pleurocystidia, and slightly thicker-walled sphaerocysts can be observed in the veil [9]. Therefore, accurate identification requires proper examination of micromorphological characterisation and molecular phylogenetic analyses. Up to now, 43 species of *Candolleomyces* were reported worldwide [9–20]. Of these, 15 species were reported in China [11,12,19,21].

Most species of this genus are terrestrial, lignicolous, and rarely fimicolous, and can grow on rotten wood, plant debris, or litter [9,14]. Recently two species (*C. brunneovagabundus*) and *C. albovagabundus*) were described to be in marine habitats [19]. *Candolleomyces* species, recognised as specialised saprophytes [9,14], were reported to be in temperate, tropical, and subtropical regions across Africa, Asia, Europe, North America, and South America [11–14,17,22]. In addition, some species of *Candolleomyces* were reported to have edible and medicinal values, while a few species were found to be poisonous fungi [23–25]. The type species *C. candolleanus* was reported to have medicinal value, although it may cause gastroenteritis and neurotoxicity [23–25]. *Candolleomyces tuberculatus* was reported to have edible value [23–25]. Based on poisoning incidents, *C. yanshanensis*, which was previously uncertain of its edibility, was found to be poisonous and can cause psychoneurological disorders [26].

In the present study, we collected 31 specimens from Beijing City, Guizhou, Hubei, Sichuan, and Yunnan provinces, and the Xizang Autonomous Region in China, and conducted comprehensive phylogenetic analyses using the nrITS, nrLSU, and *tef-1* α gene regions. Based on the phylogenetic and morphological analyses, seven new species from China are proposed.

2. Materials and Methods

2.1. Morphological Characteristic Examination

Fresh specimens were collected and photographed (Canon EOS 80D, Tokyo, Japan) in the field from Beijing City, Yunnan, Sichuan, Guizhou, and Hubei provinces, and the Xizang Autonomous Region in China from 2019 to 2023. To avoid mixing or crushing, specimens were packed separately in aluminium foils. Macroscopic characteristics were recorded when fresh, including features of the pileus, veil, context, lamellae, stipe, odour, and chemical reactions. The samples were completely dried with a food drier at 50 °C, sealed in plastic bags, and deposited in the Mycological Herbarium, Institute of Microbiology, Chinese Academy of Sciences (HMAS).

Microscopic characteristics, such as basidia, basidiospores, pileipellis, and cheilocystidia, were observed under an Olympus CX31 light microscope (Olympus, Tokyo, Japan), and at least 30 measurements were made for each character. The description of morphological characteristics followed the protocols of Largent [27]. Additionally, 5% KOH and sterilised water were used for microscopic characterisation. Measured values are given as (a)b–c(d), in which a is the lowest value, b–c includes at least 90% of the values, and d is the highest value. The Q value is the ratio of the length and width of a spore [11]. The colour designation refers to the Methuen Handbook of Colour.

2.2. DNA Extraction, PCR and Sequencing

DNA was extracted from dried specimens using a Broad-spectrum Plant Rapid Genomic DNA Kit (Biomed, Shiyan, China). Primers ITS1 and ITS4 were used for the nuclear internal transcribed spacer (nrITS) of the rDNA region [28], LR7/LR0R were used to amplify the large subunit nuclear ribosomal DNA (nrLSU) region [29], and EF983F/EF2218R

were used to amplify the translation elongation factor subunit 1 alpha (*tef-1a*) region [30]. PCR was performed in 25 μ L reactions consisting of 2 μ L genomic DNA, 1 μ L of each forward and reverse primers, 9 μ L ddH₂O, and 12 μ L 2 \times Es Taq MasterMix (Beijing Cowin Biotech Co., Ltd., Beijing, China). The PCR programmes follow Zhao et al. [31] and Bau and Yan [11]. The PCR products were detected by electrophoresis and sent to BGI Genomics Co., Ltd., Shenzhen, China, for purification and sequencing.

2.3. Phylogenetic Analyses

Considering the results of BLAST searches against GenBank and previous studies, we analysed the nrITS, nrLSU and *tef-1* α sequences of 94 taxa. The details are presented in Table 1. The sequences were aligned by Muscle version 3.6 separately [32], then manually adjusted in BioEdit version 7.0.4 to remove the ambiguous areas [33], and assembled in PhyloSuite version 1.2.3 [34]. The final alignments were deposited in TreeBASE (study no. 31401). Maximum likelihood (ML) analysis of concatenated sequences was carried out using raxmlGUI 1.3 with a GTRGAMMA model and one thousand rapid bootstrap (BS) replicates [35]. The best partitioning scheme and evolutionary models for three pre-defined partitions were selected using PartitionFinder2 v2.1.1 [36], with greedy algorithm and AICc criterion: GTR+I+G for nrLSU, GTR+G for nrITS, and GTR+I+G for *tef-1* α . Bayesian Inference (BI) analysis was performed using MrBayes v3.2.7a [37]. Six Markov chains were run for two million generations, and trees were sampled every 100th generation. Burn-ins were determined in Tracer version 1.6 with an ESS value higher than 200, and the remaining trees were used to calculate Bayesian posterior probabilities (PP). The trees were displayed in FigTree version 1.4.0 [38].

Table 1. Sequences used in the phylogenetic analysis in this study. Missing sequences are indicated by "–".

Taxon	Voucher	Country	nrITS	nrLSU	tef-1a	Reference
Candolleomyces	GLMF116094	Kenya	MH880928	_	_	[39]
aberaarensis	UUD/10	V	NUC 401 E 1 E	N/IC/01E1E		[10]
C. aberaarensis	IHIB618	Kenya	MK421517	MK421517	-	[10]
C. albipes	DED8340	Sao Iome	KX017209	-	-	[40]
C. albosquamosus	TBGT18600 Type	India	OQ676550	-	-	[15]
C. albosquamosus	TBG118895	India	OQ676549	-	-	[15]
C. albovagabundus	HTBM1139 Paratype	China	OR711038	OR711054	-	[19]
C. albovagabundus	HKAS129660 Type	China	OR711041	OR711057	OR727285	[19]
C. asiaticus	LAH36975	Pakistan	OK392606	OQ802843	-	[14]
C. asiaticus	LAH36809 Type	Pakistan	NR182405	NG229114	-	[14]
C. badhyzensis	TAA79478 Type	Turkmenistan	KC992883	KC992883	-	[30]
C. badiophyllus	SZMC-NL-2347	-	FN430699	FM876268	FM897252	[41]
C. bivelatus	110114MFBPZHO777	China	MW554021	-	-	Non-referenced
C. bivelatus	MCVE29117	Italy	MF325962	-	MF521811	[42]
C. brevisporus	HMAS 258919 Type	China	OR822167	OR822149	OR819986	This study
C. brevisporus	HMAS 258920	China	OR822168	OR822150	OR819987	This study
C. brunneopileatus	TBGT18553	India	OQ878483	OR244398	-	[20]
C. brunneopileatus	TBGT18698 Type	India	OQ878348	OR244401	-	[20]
C. brunneovagabundus	HKAS129659 Type	China	OR711031	OR711047	OR791600	[19]
C. brunneovagabundus	HTBM1136 Paratype	China	OR711036	OR711052	-	[19]
C. cacao	FP1R4	USA	KU847452	-	-	Non-referenced
C. cacao	DED 8339 Type	Sao Tome	NR148106	-	-	[40]
C. campanulatus	LAH35719 Type	Pakistan	OO308881	OO802837	-	[18]
C. campanulatus	LAH37657	Pakistan	00308882	OO802838	_	[18]
C. candolleanus	LAS73030 Neotype	Sweden	KM030175	KM030175	_	[30]
C. candolleanus	LÖ38-00	Sweden	DO389720	DO389720	_	[5]
C. cladii-marisci	CLUF302 Type	Italy	MK080112	-	_	[43]
C. cladii-marisci	SDBR-CMUNK0507	Thailand	MZ145228	MZ145244	-	[13]
C efflorescens	Peoler2133(K)	Sri Lanka	KC992941	_	_	[30]
C eurusporus	GLMF126263 Type	Viet Nam	MT651560	MT651560	_	[10]
C. guirongicus	HMAS 287607	China	PP734608	PP734619	PP729321	This study
C quirongicus	HMAS 287608	China	PP734609	PP734620	PP729322	This study
C guirongicus	HMAS 287609	China	PP734610	PP734621	PP729323	This study
C. quirongicus	HMAS 287610	China	PP734611	PP734622	PP729324	This study

Table 1. Com.	Tab	le 1.	Cont.
---------------	-----	-------	-------

Taxon	Voucher	Country	nrITS	nrLSU	tef-1α	Reference
C. gyirongicus	HMAS 287611	China	PP734612	PP734623	PP729325	This study
C. gyirongicus	HMAS 287612 Type	China	PP734613	PP734624	PP729326	This study
C. gyirongicus	HMAS 287613	China	PP734614	PP734625	PP729327	This study
C. gyirongicus	HMAS 287614	China	PP734615	PP734626	PP729328	This study
C. halophilus	MICH AH-14321	Spain	MG825900	-	-	[44]
C. incanus	BJTC S173	China	ON042760	ON042767	ON098509	[12]
C. incanus	BJTC Z777 Type	China	ON042759	ON042766	ON098508	[12]
C. leucotephrus	LO138-01 (UPS)	Sweden	KC992885	KC992885	KJ732775	[30]
C. leucotephrus	MCVE28705	Spain	MF325979	-	MF521791	[42]
C. lignicola	HMAS 258921 Type	China	OR822169	OR822151	OR819988	This study
C. lignicola	HMAS 258922	China	OK822170	OK822152	OK819989	This study
C. Iuriaus	HMAS 258911	China	OR822159	OK822141 OB822142	OK819978	This study
C. Iuridus	HMAS 250912	China	OR822100	OR622142	OR819979	This study
C. Iuridus	HMAS 258913 Type	China	OR822101	OR822143	OR819900	This study
C luridus	HMAS 258915	China	OR822162	OR822144	OR819982	This study
C luteonallidus	HMIAU5148	China	MG734736	MW301084	MW314073	[45]
C. luteopallidus	Sharp20863 Type	USA	KC992884	KC992884	_	[30]
C. niveofloccosus	TBGT18412 Type	India	00878345	OR244387	_	[20]
C. niveofloccosus	TBGT18513	India	OO878251	OR244394	_	[20]
C. ruhunensis	HKAS123158 Type	Sri Lanka	ON685315	_	_	[17]
C. secotioides	AH31746 Type	Mexico	KR003281	KR003282	KR003283	[7]
C. shennongdingicus	HMAS 258916	China	OR822164	OR822146	OR819983	This study
C. shennongdingicus	HMAS 258917	China	OR822165	OR822147	OR819984	This study
C. shennongdingicus	HMAS 258918 Type	China	OR822166	OR822148	OR819985	This study
C. shennongjianus	HMAS 258907	China	OR822155	OR822137	OR819974	This study
C. shennongjianus	HMAS 258908	China	OR822156	OR822138	OR819975	This study
C. shennongjianus	HMAS 258909 Type	China	OR822157	OR822139	OR819976	This study
C. shennongjianus	HMAS 258910	China	OR822158	OR822140	OR819977	This study
C. sichuanicus	HMAS 287615	China	PP734616	PP734627	PP729329	This study
C. sichuanicus	HMAS 287616 Type	China	PP734617	PP734628	PP729330	This study
C. sichuanicus	HMAS 287617	China	PP734618	PP734629	PP729331	This study
C. sindhudeltae	LAH37632 Type	Pakistan	OQ247908	OQ247912	-	[16]
C. sinahuaeltae	LAH37633	Pakistan	OQ247909	OQ247913	- NAM214077	[16]
C. singeri		China	MG/34/18	MW201000	MW314077	[43]
C. singen		China	OP822171	OP822152	OP810000	[11] This study
C. singeri	HMAS 258925	China	OR822171	OR822155	OR819990	This study
C. subcacao	HMIAU37807 Type	China	MW301064	MW301092	MW314081	[11]
C subcação	HMIAU37808	China	MW301065	MW301092	MW314082	[11]
C subcandolleanus	BITC Z239 Type	China	ON042755	ON042762	ON098505	[12]
C. subcandolleanus	BITC Z232	China	ON042756	ON042763	-	[12]
C. subminutisporus	HMIAU37801 Type	China	MW301066	MW301094	MW314083	[11]
C. subminutisporus	HMJAU37916	China	MW301067	MW301095	MW314084	[11]
C. subsingeri '	HMIAU37913	China	MG734725	MW301098	MW314086	[45]
C. subsingeri	HMJAU37811 Type	China	MG734715	MW301097	MW314085	[45]
C. sulcatotuberculosus	LÖ55-12	Germany	KJ138422	KJ138422	-	[46]
C. sulcatotuberculosus	HFJAU1515	China	MW375696	-	MW382965	[11]
C. sultanii	LAH35714 Type	Pakistan	OQ308835	OQ801565	-	[18]
C. sultanii	LAH37658	Pakistan	OQ308836	OQ801566	-	[18]
C. thailandensis	SDBR-CMUNK0442	Thailand	MZ145232	-	-	[13]
C. thailandensis	SDBR-CMUNK0443 Type	Thailand	MZ146874	_	_	[13]
C. trinitatensis	TL9035	Ecuador	KC992882	KC992882	_	[30]
C. tuberculatus	ADK4162	Sweden	KC992886	KC992886	_	[30]
C. typhae	LÖ21-04	Sweden	DQ389721	DQ389721	KJ732776	[5]
C. yanshanensis	BJTC Z783	China	ON042757	ON042764	ON098506	[12]
C. yanshanensis	BJTC Z110 Type	China	ON042758	ON042765	ON098507	[12]
Hausknechtia	WII 122822 Tumo	Vanuatu	ON745412	ON745414	ON746007	[47]
floriformis	www.uzzosz type	vanuatu	011/40010	UN/40010	UN/4000/	[4/]
H. floriformis	WU22833	Vanuatu	ON745619	ON745615	ON746009	[47]
H. leucosticta	HFJAU1486 Epitype	China	OL435561	OL435565	OL439896	[47]
H. leucosticta	HFJAU1526	China	OL435563	OL435566	OL439897	[47]

The sequences generated in this study are marked in bold.

3. Results

3.1. Phylogeny

Eighty-nine specimens from 43 *Candolleomyces* species were included in the phylogenetic analyses with *Hausknechtia floriformis* (Hauskn.) D. Wächt. & A. Melzer and *H. leucosticta* (Pat.) Tkalčec, J.Q. Yan, C.F. Nie & C.K. Pradeep as outgroups. In total, 84 new sequences were generated in this study, which were from 28 specimens from China, all with the nrITS, nrLSU, and *tef-1a* sequences. The combined dataset with 3033 characters including gaps (679 for nrITS, 1322 for nrLSU, and 1032 for *tef-1a*) was included in the phylogenetic analyses. The phylogenetic tree of ML and MrBayes were almost identical. The ML tree is shown in Figure 1 with bootstrap values and Bayesian posterior probabilities indicated on the branches.

Figure 1. Molecular phylogenetic analyses of *Candolleomyces* species by the maximum likelihood (ML) method based on combined nrITS, nrLSU, and *tef-1* α sequences. Maximum likelihood bootstrap support values (ML) \geq 60% and Bayesian posterior probabilities (PP) \geq 0.95 are shown at the nodes as ML/PP. *Candolleomyces* species produced in this study are indicated in bold.

3.2. Taxonomy

Candolleomyces brevisporus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 2.

Figure 2. Basidiomata and microscopic features of *Candolleomyces brevisporus*. (**A**–**C**) Basidiomata: (**A**,**B**) HMAS 258919 (holotype); (**C**) HMAS 258920, (**D**) Basidiospores, (**E**) Pileipellis, (**F**) Cheilocystidia, and (**G**) Basidia. Scale bars: 10 mm (**A**–**C**); 5 μm (**D**); 20 μm (**E**); and 10 μm (**F**,**G**).

Fungal Names: FN571747.

Holotype: CHINA. Guizhou Province, Doupeng Mountain, 26°37′41″ N, 107°36′54″ E, 1057.8 m asl, 25 September 2021, *Yang Liu* and *Chen-Hao Li*, *ZRL*20211844 (holotype HMAS 258919). GenBank: OR822167 (nrITS), OR822149 (nrLSU), OR819986 (*tef-*1α).

Etymology: 'brevisporus' (Latin) referring to the shorter spores, a distinguishing characteristic of the species.

Diagnosis: *Candolleomyces brevisporus*, is distinguishable by its pileus, not hygrophanous. Basidiospores $(5.0)5.7-6.7(7.3) \times (3.3)3.7-4.2(4.5) \mu m$, germ pores are distinct. Pileipellis is a two to three-layered irregular epithelium composed of subglobose cells. Cheilocystidia claviform to utriform, rarely pyriform.

Pileus is 12–33 mm diam, plano-convex to nearly plane, becoming slightly concave at maturity, not hygrophanous, yellowish grey (4B2) to grey (5B1), darker in the centre, occasionally with yellowish grey (5F6) veil elements, becoming white (3A1) as pileus dries. Veil is yellowish grey (5F6), dispersed, fibrillose, falling off easily. Context is thin and very fragile, the same colour as the pileus. Lamellae is moderately close, adnate to slightly adnexed, grey (5B1) to brownish orange (5C3), and edge white as basidiospores mature. Stipes are 19–37 \times 1–3 mm, smooth, cylindrical, hollow, equal, and slightly yellowish white (3A2) at the apex. Odour is indistinct.

Basidiospores are $(5.0)5.7-6.7(7.3) \times (3.3)3.7-4.2(4.5) \mu m$, Q = 1.4–1.7, ellipsoid to oblong-ellipsoid, brown to dark brown in 5% KOH, smooth, and germ pores are dis-

tinct. Basidia 13.0–16.4 × 6.7–8.0 µm, clavate, hyaline, and four or two-spored. Pileipellis is a two to three-layered irregular epithelium composed of subglobose cells, oval, (29.2)30.0–42.0(54.0) µm broad, and hyaline. Cheilocystidia is (17.8)20.9–27.7(31.5) × (11.6)12.3–14.9(16.0) µm, claviform to utriform, and rarely pyriform. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: solitary, in pairs, or scattered on the ground with rich humus in broad-leaved forests or broad-leaved shrubs. So far only found in China.

Other specimens examined: CHINA. Guizhou Province, Doupeng Mountain, 26°37′41″ N, 107°36′54″ E, 1057.8 m asl, 25 September 2021, *Yang Liu* and *Chen-Hao Li*, *ZRL20211843* (HMAS 258920).

Notes: *Candolleomyces brevisporus* is reminiscent of *C. subcacao* T. Bau & J.Q. Yan with its dirty white pileus and pale brown veil. Both were originally described in China, but *C. subcacao* differs from *C. brevisporus* by having larger basidiospores (6.8–8.0 × 3.9–4.9 μ m), and longer basidia (17–22 × 6.1–7.3 μ m) [11]. In the multigene tree (Figure 1), *Candolleomyces brevisporus* formed a monophyletic sister clade to *C. lignicola* with high support, but the former pileus is not hygrophanous, pale grey to greyish brown, and the two have different nrITS and *tef-1* α sequences (Figure 3).

Figure 3. Nucleotide differences of *Candolleomyces brevisporus*, *C. shennongdingicus*, *C. gyirongicus*, *C. lignicola*, and *C. shennongjianus* across ITS, LSU, and *tef-1* α . The numbers at the top indicate the positions of the polymorphic sites in each fragment. The dashes indicate the lack of data for the respective positions.

Candolleomyces gyirongicus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 4. Fungal Names: FN 571921.

Holotype: CHINA. Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°24′ N, 85°18′ E, 2935 m asl, 1 August 2022, *Mao-Qiang He, Bin Cao, ZRL20220470* (holotype HMAS 287612). GenBank: PP734613 (nrITS), PP734624 (nrLSU), PP729326 (*tef-1*α).

Etymology: refers to Gyirong County, the locality of the type specimen.

Diagnosis: *Candolleomyces gyirongicus*, is distinguishable by its pileus, slightly hygrophanous. Basidiospores (5.5)6.1–6.9(8.0) × (3.2)3.8–4.3(4.7) μ m, often with germ pores. Pileipellis is a one to two-layered irregular epithelium composed of subglobose cells. Cheilocystidia utriform, sometimes claviform.

Pileus is 15–56 mm diam, paraboloid to hemispherical when young, broadly conical, convex to broadly convex, becoming plano-convex to nearly plane when mature, slightly hygrophanous, with grey (5B1) veil elements at a young stage, white (5A1), orange-white (5A2) to golden brown (5D7), paler at the margin, and usually white (5A1) to orange-white (5A2). Veil is grey (5B1), fibrillose, and evanescent. Context is 0.2–0.5 mm broad at the centre, same color as pileus, and fragile. Lamellae is very close to moderately close, adnate to adnexed, orange-white (5A2) to pale orange (5A3) when immature, becoming greyish orange (5B5), and nougat (5D3) to greyish brown (6D3) when mature. Stipes are $30–100 \times 3-6$ mm, smooth, hollow, with white (5A1) fibrils at the base, and white (5A1) to yellowish white (3A2). Odour is not distinctive. Taste is indistinct.

Figure 4. Basidiomata and microscopic features of *Candolleomyces gyirongicus*. (**A**–**F**) Basidiomata: (**A**) HMAS 287607; (**B**) HMAS 287610; (**C**,**D**) HMAS 287611; (**E**) HMAS 287612 (holotype); (**F**) HMAS 287614, (**G**) Basidiospores, (**H**) Pileipellis, (**I**) Cheilocystidia, and (**J**) Basidia. Scale bars: 10 mm (**A**–**F**); 5 μ m (**G**); 20 μ m (**H**); and 10 μ m (**I**,**J**).

Basidiospores are $(5.5)6.1-6.9(8.0) \times (3.2)3.8-4.3(4.7) \mu m$, Q = 1.5–1.7, ellipsoid to oblongellipsoid, pale brown to dark brown in 5% KOH, smooth, often with germ pore. Basidia is 15.5–19.7 × 7.2–8.5 μ m, clavate, hyaline, and four-spored. Pileipellis is a one to twolayered irregular epithelium composed of subglobose cells, (19.9)24.8–31.5(39.5) μ m broad, and hyaline. Cheilocystidia is (25.7)37.7–53.1(61.1) × (7.1)9.1–12.7(15.1) μ m, utriform, and sometimes claviform. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: solitary, scattered on soil, in bush, and broad-leaved or deciduous coniferous forest. So far only found in China.

Other specimens examined: CHINA. Yunnan Province, Jingdong County, Ailao Mountain, 24°52′ N, 101°03′ E, 2443 m asl, 4 July 2021, *Rui-Lin Zhao, Mao-Qiang He, Xin-Yu Zhu, Ming-Zhe Zhang, ZRL20210352* (HMAS 287607); Xizang Autonomous Region, Nyingchi Municipality, Zayü County, 28°36' N, 98°05' E, 4110 m asl, 21 July 2021, *Rui-Lin Zhao, Ming-Yu Zhu, Bin Cao, ZRL20210621* (HMAS 287608); Xizang Autonomous Region, Nyingchi Municipality, Mêdog County, Xironggou, 29°42' N, 95°35' E, 2800 m asl, 25 July 2021, *Bin Cao, Xin-Yu Zhu, Ming-Zhe Zhang, ZRL20210861* (HMAS 287609); Xizang Autonomous Region, Nyingchi Municipality, Mêdog County, Xironggou, 29°42'N, 95°35' E, 2800 m asl, 25 July 2021, *Zhi-Lin Ling, Mao-Qiang He, ZRL20210966* (HMAS 287610); Xizang Autonomous Region, Shigatse Municipality, Dinggyê County, Chentang Town, Jiuyan hot spring, 27°55' N, 87°21' E, 3060 m asl, 29 July 2021, *Rui-Lin Zhao, Xin-Yu Zhu, ZRL20220325* (HMAS 287611); Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°26' N, 85°15' E, 3024 m asl, 1 August 2022, *Dorji Phurbu, Jia-Xin Li, ZRL20220628* (HMAS 287613); and Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°26' N, 85°15' E, 3024 m asl, 1 August 2022, *Dorji Phurbu, Jia-Xin Li, ZRL20220628* (HMAS 287613); and Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°26' N, 85°15' E, 3024 m asl, 1 August 2022, *Dorji Phurbu, Jia-Xin Li, ZRL20220628* (HMAS 287613); and Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°26' N, 85°15' E, 3024 m asl, 1 August 2022, *Dorji Phurbu, Jia-Xin Li, ZRL20220628* (HMAS 287613); and Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°26' N, 85°15' E, 3024 m asl, 1 August 2022, *Dorji Phurbu, Jia-Xin Li, ZRL20220628* (HMAS 287614).

Notes: In the field, *Candolleomyces gyirongicus* is morphologically similar to *C. candolleanus*. However, *C. gyirongicus* can be distinguished from *C. candolleanus* by its smaller basidiospores, which measure $(5.5)6.1-6.9(8.0) \times (3.2)3.8-4.3(4.7) \mu m$, and larger basidia $(15.5-19.7 \times 7.2-8.5 \mu m)$ [48,49]. In the multigene tree (Figure 1), *Candolleomyces gyirongicus* formed a monophyletic sister clade to *C. shennongjianus* with high support. However, *C. gyirongicus* has a narrower context, thinner stipe, as well as smaller basidiospores, slightly bigger basidia, and longer but narrower cheilocystidia. Additionally, there are some differences in the sequence of *tef-1a* (Figure 3). *Candolleomyces gyirongicus* is introduced as a new species based on morphology and phylogenetic analyses.

Candolleomyces lignicola R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 5.

Figure 5. Basidiomata and microscopic features of *Candolleomyces lignicola*. (**A**,**B**) Basidiomata: (**A**) HMAS 258922; (**B**) HMAS 258921 (holotype), (**C**) Basidiospores, (**D**) Pileipellis, (**E**) Cheilocystidia, (**F**) Basidia. Scale bars: 10 mm (**A**,**B**); 5 μm (**C**); 20 μm (**D**); and 10 μm (**E**,**F**).

Fungal Names: FN571749.

Holotype: CHINA. Yunnan Province, Chuxiong, Zixi Mountain, $25^{\circ}01'06''$ N, $101^{\circ}23'19''$ E, 2235 m asl, 18 July 2021, *Rui-Lin Zhao*, *Bin Cao* and *Xin-Yu Zhu*, *ZRL20210496* (holotype HMAS 258921). GenBank: OR822169 (nrITS), OR822151 (nrLSU), OR819988 (*tef-1a*).

Etymology: 'lignicola' (Latin) refers to the habitat, this species grows mainly on rotting wood.

Diagnosis: *Candolleomyces lignicola* differs by its pileus, hygrophanous. Basidiospores $(4.5)5.5-6.9(7.6) \times (3.5)3.7-4.3(4.8) \mu m$, a germ pore is absent or indistinct. Pileipellis is a two to three-layered irregular epithelium composed of irregular subglobose cells, irregular oval. Cheilocystidia claviform to somewhat broadly claviform or subsphaeropenduculate. Habitat on rotten wood.

Pileus has a 28–53 mm diam, flabellate, flattening with age, with or without obtuse umbo, hygrophanous, dark blonde (5D4) to yellowish brown (5D8) at the centre and golden blonde (5C4) to pale orange (5A3) toward the margin, becoming orange-white (5A2) as pileus dries, with split margins when mature. Veil is white (5A1), fibrillose, and evanescent. Context is thin and very fragile, the same colour as the pileus. Lamellae is close to moderately close, adnate to adnexed, nougat (5D3) to elay (5D5), and edge white (5A1) as basidiospores mature. Stipes are $23-51 \times 3-9$ mm, cylindrical, hollow, equal, white (5A1) to orange-white (5A2), and has a surface covered with yellowish white (3A2) fibrillose. Odour is not distinctive.

Basidiospores are (4.5)5.5–6.9(7.6) × (3.5)3.7–4.3(4.8) μ m, Q = 1.4–1.7, ellipsoid to oblong-ellipsoid, pale brown to brown in 5% KOH, smooth, a germ pore is absent or indistinct. Basidia is 12.1–15.8 × 6.1–7.9 μ m, clavate, hyaline, and 4 or 2-spored. Pileipellis is a two to three-layered irregular epithelium composed of irregular subglobose cells, irregular oval, (19.0)24.0–35.8(43.6) μ m broad, and hyaline. Cheilocystidia is (18.4)22.1–32.1(40.6) × (7.5)10.7–15.3(18.9) μ m, claviform to somewhat broadly claviform or subsphaeropenduculate, and rarely with deposits. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: solitary, in pairs, or scattered on rotten wood in broad-leaved forests or broad-leaved shrubs.

Other specimens examined: CHINA. Yunnan Province, Nangunhe Nature Reserve, 23°22′06″ N, 99°21′22″ E, 1633 m asl, 3 July 2021, *Rui-Lin Zhao, Mao-Qiang He,* and *Ming-Zhe Zhang*, ZRL20210404 (HMAS 258922).

Notes: *Candolleomyces lignicola* can easily be mistaken for *C. yanshanensis* in the field due to their similar macroscopic characteristics. However, *C. yanshanensis* differs from *C. lignicola* due to its slightly larger basidiospores (5.8–8.2 × 3.3–5.4 µm) and longer basidia (17–31 × 5.8–7.5 µm) [12]. *Candolleomyces lignicola* distinguishes itself from the sister species *C. brevisporus* by its broader pileus, wider lamellae, and longer and thicker stipes. Additionally, there are differences in their nrITS and *tef-1a* sequences (Figure 3). Notably, *Candolleomyces lignicola* was collected on wood rather than soil.

Candolleomyces luridus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 6.

Fungal Names: FN571751.

Holotype: CHINA. Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, $28^{\circ}14'24''$ N, $85^{\circ}10'48''$ E, 2935 m asl, 1 August 2022, *Dorji Phurbu* and *Jia-Xin Li*, *ZRL20220606* (holotype HMAS 258913). GenBank: OR822161 (nrITS), OR822143 (nrLSU), OR819980 (*tef-1* α).

Etymology: 'luridus' (Latin) refers to the yellowish brown colours of the pileus.

Diagnosis: *Candolleomyces luridus* is distinguished by its pileus, hygrophanous. Basidiospores are $(5.3)6.1-7.1(8.3) \times (3.4)3.9-4.6(5.2) \mu m$, germ pores are distinct. Pileipellis a one to two-layered irregular epithelium composed of irregular subglobose cells, that is an irregular oval. Cheilocystidia is narrowly utriform to utriform, sometimes subclaviform.

Figure 6. Basidiomata and microscopic features of *Candolleomyces luridus*. (**A**–**D**) Basidiomata: (**A**) HMAS 258913, (**B**) HMAS 258913 (holotype), (**C**) HMAS 258914, (**D**) HMAS 258915, (**E**) Basidiospores, (**F**) Pileipellis, (**G**) Cheilocystidia, and (**H**) Basidia. Scale bars: 10 mm (**A**–**D**); 5 μm (**E**); 20 μm (**F**); and 10 μm (**G**,**H**).

Pileus is 21–50 mm diam, broadly conical when young and convex when mature, with or without obtuse umbo, hygrophanous, golden yellow (5B7) to yellowish brown (5D8), with orange-white (5A2) veil elements at a young stage, striate up to halfway from the margin or indistinct, sometimes cleft or lobed. Veil is white (5A1), fibrillose, and falls off easily. Context is thin and very fragile, the same colour as the pileus. Lamellae is adnate to adnexed, pale orange (5A3) to elay (5D5), and edge is orange-white (5A2) to white (5A1) as basidiospores mature. Stipes are $39-72 \times 3-8$ mm, cylindrical, hollow, equal, orange-white (5A2) to pale orange (5A3), with a surface covered with slight white fibrils, and is evanescent. Odour is not distinctive.

Basidiospores are $(5.3)6.1-7.1(8.3) \times (3.4)3.9-4.6(5.2) \mu m$, Q = 1.4-1.7, ellipsoid to oblong-ellipsoid, pale brown to brown in 5% KOH, smooth, and germ pores are distinct. Basidia is $16.7-19.5 \times 7.3-8.6 \mu m$, clavate, hyaline, and four or two-spored. Pileipellis is a one to two-layered irregular epithelium composed of irregular subglobose cells, is an irregular oval, $(14.3)22.0-36.0(42.9) \mu m$ broad, and hyaline. Cheilocystidia is $(20.6)26.0-41.4(53.8) \times (7.6)9.0-11.8(14.4) \mu m$, narrowly utriform to utriform, sometimes subclaviform, and rarely with deposits. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: in pairs, scattered or clustered on humus-rich ground or decaying wood in broad-leaved or deciduous coniferous forests.

Other specimens examined: CHINA. Xizang Autonomous Region, Shigatse Municipality, Gyirong County, Gyironggou, 28°14′24″ N, 85°10′48″ E, 2935 m asl, 1 August 2022, *Dorji Phurbu* and *Jia-Xin Li*, *ZRL20220625* (HMAS 258914) and *ZRL20220627* (HMAS 258915); Sichuan Province, Liangshan Yi Autonomous Prefecture, Yanyuan County, Xiamosuogou, 27°39′31″ N, 101°16′6″ E, 1953 m asl, 8 August 2019, *Rui-Lin Zhao*, *Bin Cao*, and *Zhi-Lin Ling*, *ZRL20190449* (HMAS 258912); Sichuan Province, Ganzi Tibetan Autonomous Prefecture, Xiangcheng County, Fozhuxia Nature Reserve, 29°3′53″ N, 99°56′16″ E, 3090 m asl, 21 August 2020, *Rui-Lin Zhao* and *Xi-Xi Han*, *ZRL20201771* (HMAS 258911); Beijing City, Miyun District, Taishitun Town, Bailongtan, 40°29′32″ N, 117°4′0″ E, 302 m asl, 28 August 2023, *Bin Cao*, *Ming-Yu Zhu* and *Bei Han*, *ZRL20230723* (HMAS 287929); and Beijing City, Pinggu District, Laoquankou Village, 40°29′32″ N, 117°4′0″ E, 229 m asl, 15 August 2023, *Jia-Xin Li, Wen-Qiang Yang* and *Ze-Zhi Wang*, *ZRL20233312* (HMAS 287930).

Notes: *Candolleomyces luridus* is easily confused with *C. candolleanus* and *C. gyirongicus* in the field due to its similar macroscopic characteristics, but *C. candolleanus* differs from *C. luridus* in having larger basidiospores (7–8 × 4.5–5.5 µm) and smaller basidia (14–17 × 6–7 µm) [48,49], while *C. gyirongicus* has a longer cheilocystidia. The nrITS and *tef-1* α sequences of *C. luridus* are distinct from other members of *Candolleomyces* (Figure 3). Therefore, we introduce *C. luridus* as a new species based on morphology and phylogenetic analyses (Figures 1, 2 and 6).

Candolleomyces shennongdingicus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 7. Fungal Names: FN571750.

Holotype: CHINA. Hubei Province, Shennongjia National Park, Shennongding, Jinhou Ridge, $31^{\circ}16'48''$ N, $110^{\circ}10'47.9''$ E, 2498 m asl, 25 August 2022, *Rui-Lin Zhao* and *Mao-Qiang He*, *ZRL20220855* (holotype HMAS 258918). GenBank: OR822166 (nrITS), OR822148 (nrLSU), OR819985 (*tef-1a*).

Etymology: 'shennongdingicus' refers to the location Shennongding where the holotype was collected.

Diagnosis: *Candolleomyces shennongdingicus* is recognised by the pileus, hygrophanous. Basidiospores are $(5.3)6.2-7.4(8.5) \times (3.4)3.8-4.3(4.7) \mu m$, and germ pores are distinct but small. Pileipellis is a one to two-layered irregular epithelium composed of subglobose cells. Cheilocystidia is narrowly utriform, seldom cylindrical to claviform.

Pileus has a 25–53 mm diam, parabolic when young and convex when mature, with or without obtuse umbo, hygrophanous, is darker in the centre, golden yellow (5B7) to golden brown (5D7) at the centre and golden blonde (5C4) to nougat (5D3) toward the margin, with striate up to halfway from the margin or indistinct. Veil is white (5A1), fibrillose, and gradually disappearing in later stages. Context is grey (5C1), thin, and very fragile. Lamellae is adnate, moderately close, orange-grey (5B2) to grey (5D1), and the edge becomes white as basidiospores mature. Stipes are $34-53 \times 3-5$ mm, cylindrical, hollow, equal, and white (5A1) to orange-white(5A2), with the same color flocculent fibres. Odour is not distinctive.

Basidiospores are $(5.3)6.2-7.4(8.5) \times (3.4)3.8-4.3(4.7) \mu m$, Q = 1.5–1.8, ellipsoid to oblong, brown to dark brown in 5% KOH, smooth, the germ pore is distinct but small. Basidia 15.8–21.2 × 6.4–7.9 μ m, short clavate, hyaline, 4 or 2-spored. Pileipellis is a one to two-layered irregular epithelium composed of subglobose cells, (14.9)19.8–29.5(37.4) μ m broad,

hyaline. Cheilocystidia (23.8)29.8–40.5(49.1) \times (8.2)9.5–13.3(15.3) µm, narrowly utriform, seldom cylindrical to claviform, thin-walled, rarely with deposits. Trama of gills is irregular. Pleurocystidia is absent.

Figure 7. Basidiomata and microscopic features of *Candolleomyces shennongdingicus*. (**A**,**B**) Basidiomata: (**A**) HMAS 258918 (holotype); (**B**) HMAS 258916, (**C**) Basidiospores, (**D**) Pileipellis, (**E**) Cheilocystidia, (**F**) Basidia. Scale bars: 10 mm (**A**,**B**); 5 μm (**C**); 20 μm (**D**); 10 μm (**E**,**F**).

Habit and habitat: solitary, scattered or clustered on the ground with rich humus in broad-leaved or deciduous coniferous forests.

Other specimens examined: CHINA. Xizang Autonomous Region, Shigatse Municipality, Dinggyê County, Chentang Town, Xiaerba Village, 27°31′12″ N, 87°15′0″ E, 2600 m asl, 30 July 2022, *Dorji Phurbu*, *ZRL20220339* (HMAS 258917); Xizang Autonomous Region, Shigatse Municipality, Dinggyê County, Chentang Town, Jiuyan hot spring, 27°33′0″ N, 87°12′36″ E, 3060 m asl, 29 July 2022, *Mao-Qiang He, Bin Cao, Jia-Xin Li, ZRL20220411* (HMAS 258916).

Notes: In the field, *Candolleomyces shennongdingicus* can be easily confused with *C. shennongjianus* at first glance, as both species have parabolic pileus when young and convex when mature, and yellowish brown pileus. Additionally, both species exhibit white stipes with pale yellowish brown bases. However, *C. shennongdingicus* can be distinguished by its slightly smaller basidiospores, longer basidia, as well as fusiform, seldom cylindrical to clavate, and smaller cheilocystidia. Moreover, phylogenetic analysis reveals that *C. shennongdingicus* is distinct from *C. shennongjianus* (Figure 3). Based on morphology and

phylogenetic analyses, *Candolleomyces shennongdingicus* is introduced as a new species (Figures 1 and 7).

Candolleomyces shennongjianus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 8.

Figure 8. Basidiomata and microscopic features of *Candolleomyces shennongjianus*. (**A**–**C**) Basidiomata: (**A**) HMAS 258909 (holotype); (**B**) HMAS 258907; (**C**) HMAS 258910, (**D**) Basidiospores, (**E**) Pileipellis, (**F**) Cheilocystidia, and (**G**) Basidia. Scale bars: 10 mm (**A**–**C**); 5 μm (**D**); 20 μm (**E**); and 10 μm (**F**,**G**).

Fungal Names: FN571748.

Holotype: CHINA. Hubei Province, Shennongjia National Park, Shennongding, Jinhou Ridge, $31^{\circ}16'48''$ N, $110^{\circ}10'47.9''$ E, 2498 m asl, 25 August 2022, *Rui-Lin Zhao*, *Mao-Qiang He*, *ZRL20220858* (holotype HMAS 258909). GenBank: OR822157 (nrITS), OR822139 (nrLSU), OR819976 (tef-1 α).

Etymology: *shennongjianus* refers to the location Shennongjia National Park, where the type specimen was collected.

Diagnosis: *Candolleomyces shennongjianus* is distinguishable by its pileus, hygrophanous. Basidiospores are $(5.9)6.7-8.4(9.4) \times (3.9)4.2-4.9(5.3) \mu m$, the germ pore is distinct but small. Pileipellis is a two to three-layered irregular epithelium composed of irregular subglobose cells, and is a irregular oval. Cheilocystidia is utriform, subclaviform, and sometimes pyriform.

Pileus is 23–63 mm diam, paraboloid when young, obtusely conical, convex, or planoconvex when mature, with or without obtuse umbo, and sometimes cleft or lobed; surface is glabrous, dull, hygrophanous, oak brown (5D6) to bronze (5E5), darker in the centre, and striate up to halfway from the margin or indistinct. Veil is white (5A1), dispersed, fibrillose, and falls off easily. Context is 0.5–1.0 mm broad at the centre, the same colour as pileus. Lamellae is moderately close, adnate to slightly adnexed, grey (5C1), brownish orange (5C3) to hair brown (5E4), and the edge becomes white as basidiospores mature. Stipes are $45-70 \times 4-9$ mm, sometimes with occasional white flocculation, hollow, white (5A1) to pale orange (5A3), and sometimes dark blond (5D4) at the base. Odour is indistinct.

Basidiospores are $(5.9)6.7-8.4(9.4) \times (3.9)4.2-4.9(5.3) \mu m$, Q = 1.5–1.8, ellipsoid to oblong, brown (#b06500) to dark brown (#4f484c) in 5% KOH, abundant, smooth, germ pores are distinct but small. Basidia is 13.3–18.3 × 6.6–8.7 µm, clavate, hyaline, and four-spored. Pileipellis is a two to three-layered irregular epithelium composed of irregular subglobose cells, is an irregular oval, (15.7)19.2–28.8(38.0) µm broad, and hyaline. Cheilocystidia is (27.5)35.0–45.3(51.3) × (8.2)11.2–14.7(16.9) µm, utriform, subclaviform, sometimes pyriform, rarely with deposits, and thin-walled. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: Solitary, in pairs, or scattered on the ground with rich humus in broad-leaved or deciduous coniferous forests.

Other specimens examined: CHINA. Hubei Province, Shennongjia National Park, Shennongding, Jinhou Ridge, 31°16′48″ N, 110°10′47.9″ E, 2498 m asl, 25 August 2022, *Rui-Lin Zhao* and *Mao-Qiang He*, *ZRL20220857* (HMAS 258910); and Hubei Province, Shennongjia National Park, Shennongding, Guanyin Cave, 31°17′24″ N, 110°10′12″ E, 2283 m asl, 2 September 2022, *Rui-Lin Zhao, Bin Cao, Xi-Xi Han* and *Xin-Yu Zhu, ZRL20221427* (HMAS 258907) and *ZRL20221467* (HMAS 258908).

Notes: *Candolleomyces shennongjianus* is morphologically similar to *C. asiaticus*. However, *C. asiaticus* can be distinguished by its broader basidiospores (7.2–7.6 × 4.5–6 vs. 6.7–8.4 × 4.2–4.9 μ m), larger basidia (19.3–22.5 × 9.4–10.5 vs. 13.3–18.3 × 6.6–8.7 μ m), and shorter cheilocystidia (21–38 × 9.6–16 vs. 35.0–45.3 × 11.2–14.7 μ m) [14]. In addition, there are differences in their nrITS and *tef-1* α sequences (Figure 3). Based on morphological characteristics and phylogenetic analyses, *C. shennongjianus* is introduced as a new species (Figures 1, 3 and 8).

Candolleomyces sichuanicus R.L. Zhao, B. Cao & X.X. Han, sp. nov., Figure 9. Fungal Names: EN 571922

Fungal Names: FN 571922.

Holotype: CHINA. Sichuan Province, Ganzi Tibetan Autonomous Prefecture, Derong County, Xiayong Nature Reserve, 28°22′ N, 99°21′ E, 3399 m asl, 22 August 2020, *Bin Cao, Jia-Xin Li, ZRL20201861* (holotype HMAS 287616). GenBank: PP734617 (nrITS), PP734628 (nrLSU), PP729330 (*tef-1*α).

Etymology: refers to Sichuan Province, the locality of the type specimen.

Diagnosis: *Candolleomyces sichuanicus* differs from other species by its pileus, not hygrophanous. Basidiospores is (5.6)6.4– $7.9(8.6) \times (3.4)4.0$ – $4.8(5.1) \mu m$, sometimes germ pores are absent. Pileipellis a two to three-layered irregular epithelium composed of irregular subglobose cells, and is an irregular oval. Cheilocystidia is utriform, rarely subclaviform.

Pileus is 8–42 mm diam, paraboloid to hemispherical when young and convex to plano-convex when mature, sometimes cleft or lobed, moist, smooth, not hygrophanous, not striate to rimos, and golden blonde (5C4) to yellowish brown (5D8). Veil is white (5A1), fibrillose, and evanescent. Context is thin and very fragile, and the same colour as the pileus. Lamellae is adnexed, grey (5B1) to nougat (5D3), and the edge becomes white (5A1) as spores mature. Stipes are 21–68(74) \times 3–7 mm, hollow, and white (5A1) to grey (5B1). Odour is not distinctive. Taste is indistinct.

Basidiospores are $(5.6)6.4-7.9(8.6) \times (3.4)4.0-4.8(5.1) \mu m$, Q = 1.5–1.8, ellipsoid to oblong, pale brown to brown in water, abundant, smooth, and sometimes germ pores are absent. Basidia is $17.4-22.4 \times 7.9-8.9 \mu m$, clavate, hyaline, and four-spored. Pileipellis is a two to three-layered irregular epithelium composed of irregular subglobose cells, is an irregular oval, (12.2)17.9–26.3(33.2) μm broad, and hyaline. Cheilocystidia is (27.7)35.0–44.6(55.1) \times (9.9)11.7–15.1(17.8) μm , utriform, rarely subclaviform. Trama of gills is irregular. Pleurocystidia is absent.

Habit and habitat: Scattered or clustered on the ground with rich humus in broadleaved or deciduous coniferous forests. So far only found in China in July/August.

Figure 9. Basidiomata and microscopic features of *Candolleomyces sichuanicus*. (**A**–**C**) Basidiomata: (**A**) HMAS 287615; (**B**,**C**) HMAS 287616 (holotype), (**D**) Basidiospores, (**E**) Pileipellis, (**F**) Cheilocystidia, and (**G**) Basidia. Scale bars: 10 mm (**A**–**C**); 5 μm (**D**); 20 μm (**E**); and 10 μm (**F**,**G**).

Other specimens examined: CHINA. Sichuan Province, Ganzi Tibetan Autonomous Prefecture, Yajiang County, Gexigou National Nature Reserve, 30°3′ N, 100°56′ E, 2953 m asl, 15 August 2020, *Rui-Lin Zhao*, *Ming-Zhe Zhang*, *Mei-Qi Wang*, *ZRL*20200271 (HMAS 287615).

Notes: *Candolleomyces sichuanicus* is morphologically similar to *C. cladii-marisci* and *C. gyirongicus*. *Candolleomyces cladii-marisci* differs from *C. sichuanicus* by having larger basidiospores (7–9.5 × 4–5.5 vs. 6.4–7.9 × 4.0–4.8 µm), smaller basidia (8.5–20.5 × 6–9 vs. 17.4–22.4 × 7.9–8.9 µm), and narrower cheilocystidia (21.5–54 × 6–11 vs. 35.0–44.6 × 11.7–15.1 µm) [13]. In contrast, *Candolleomyces gyirongicus* can be distinguished by its longer stipe, smaller basidiospores, shorter basidia, and longer but narrower cheilocystidia. Phylogenetic analysis and morphological characteristics supported the proposal of this new species (Figures 1, 3 and 9).

Key to Candolleomyces species distributed in Chinese	
1a Spores very pale, nearly hyaline in 5% KOH	2
1b Spores pale yellowish brown, greyish brown or darker	8
2a Spores mostly larger than 8.0 μm	3
2b Spores less than 8.0 μm	4
3a Spores larger than 8.5 μm and mostly wider than 5.0 μm	C. luteopallidus
3b Not as above	C. sulcatotuberculosus
4a Spores less than 7.0 μm	5
4b Not as above	7
5a Basidiomata slender, spores nearly hyaline in water	C. subminutisporus
5b Basidiomata stout, spores orange-white to pale orange in water	6
6a Pileus 5–20 mm, brown to golden brown	C. subcandolleanus
6b Pileus 5–25 mm, incanus to nude	C. incanus
7a Basidiomata stout, spores up to 5.5 μm wide	C. singeri
7b Basidiomata slender, spores up to 4.5 μm wide	C. subsinger
8a Spores larger than 10.0 μm	C. typhae
8b Not as above	9
9a Spores without a germ pore, sequestrate basidoma and marine habits	10
9b Spores with a germ pore	11
10a Brownish basidoma	C. brunneovagabundus
10b Whitish basidoma	C. albovagabundus
11a Sometimes germ pore absent	12
11b Germ pore distinct	15
12a Pileipellis isa one to two-layered irregular epithelium	C. gyirongicus
12b Pileipellis is a two to three-layered irregular epithelium	13
13a Spores up to 5.0 μm wide	C. yanshanensis
13b Not as above	14
14a Cheilocystidia claviform to somewhat broadly claviform or	C. lignicola
subsphaeropenduculate	
14b Cheilocystidia utriform, rarely subclaviform	C. sichuanicus
15a Spores up to 5.0 μm wide, larger than 8.0 μm	C. leucotephrus
15b Not as above	16
16a Spores less than 4.0 μm wide, pileus 6–22 mm	C. albipes
16b Spores 3.7–4.9 μm wide, pileus 10–100 mm	17
17a Basidiomata slender, pileus yellowish grey to grey, brown, becoming	18
white as dries	
17b Basidiomata stout, orange-white, golden yellow to yellowish brown	19
18a Spores less than 6.8 μ m	C. brevisporus
18b Not as above	C. subcacao
19a Spores less than 7.5 μ m	20
19b Spores up to 7.5 μ m, germ pore distinct but small	21
20a Spores 6.2–7.4 \times 3.8–4.3 µm, germ pore distinct but small	C. shennongdingicus
20b Spores 6.1–7.1 × 3.9–4.6 μ m, germ pore distinct	C. luridus
21a Pileus 23–63 mm, spores 6.7–8.4 \times 4.2–4.9 μ m	C. shennongjianus
21b Pileus 10–100 mm, spores 6.1–9.0 \times 3.7–4.5 μ m	C. candolleanus

4. Discussion

At present, 15 species in *Candolleomyces* were reported from China viz. *C. albipes* [50], C. albovagabundus [19], C. brunneovagabundus [19], C. candolleanus [21], C. incanus [12], C. leucotephrus [21], C. luteopallidus [21], C. singer [21], C. subcacao [11], C. subcandolleanus [12], C. subminutisporus [11], C. subsingeri [21], C. sulcatotuberculosus [11], C. typhae [21], and C. yanshanensis [12]. Yan (2018) reported the distribution of C. leucotephrus, C. singer, and C. subsingeri in China based on morphological characteristics and ITS sequences [21]. Subsequently, in 2021, Bau and Yan supplemented these specimens with LSU, *tef-1a*, and β -Tub sequences [11]. Additionally, they identified the sample with the voucher of HFJAU1515 as C. sulcatotuberculosus and provided its ITS, tef-1 α , and β -Tub sequences but did not describe its morphology [11]. Furthermore, Psathyrella typhae var. bispora was reported as a new variety in China in 2018 [21], and it became synonymised with Candolleomyces typhae [21]. However, only its SSU sequence is available in NCBI, lacking the complete sequence data needed to verify its presence in China through phylogenetic analysis. On the other hand, C. albipes has only morphological descriptions in China, with no associated molecular data, leaving its actual presence in the region uncertain and requiring further investigation [50]. Furthermore, although C. singeri was previously reported in Hubei, this paper marks the first record of the species in the Shennongjia National Park. In the

recorded 43 *Candolleomyces* species, 36 species have nrITS sequences, 27 species have nrLSU sequences, and 16 species have *tef-1* α sequences. However, only 14 species have nrITS, nrLSU, and *tef-1* α sequences. All five new species revealed in this study provided sequences of nrITS, nrLSU, and *tef-1* α .

Significant progress for Candolleomyces was made in the study, but there are still some challenges. Existing classifications primarily rely on a combination of morphological characters and molecular data [18,20]. However, due to the variability of morphological traits and the limited availability of gene sequence data, the identification and classification of certain species remain problematic [9]. In recent years, the development of molecular biology techniques, such as *tef-1* α and β *-tub* gene sequence analyses, greatly facilitated systematic taxonomic studies of the genus [11,12,19]. The ongoing discovery of well-defined boundaries in new taxa, as demonstrated by this study, enhances our understanding of species within this genus. In addition, the edible and medicinal values, as well as the toxicity, of only a few species, such as C. candolleanus, C. tuberculatus, and C. yanshanensis, were clarified, while those of most other species remain unknown. Meanwhile, the ecological functions and distribution ranges of the majority of species are still ambiguous. The diversity of the genus Candolleomyces continues to increase with the discovery of new species, necessitating more comprehensive field investigations, as well as morphological and molecular studies to refine the taxonomic system [12]. Future research should focus on integrating morphological, molecular, and ecological methods to further elucidate the phylogenetic relationships and species diversity within the genus.

5. Supplementary Note

In the paper "Zhi-Lin Yuan, Fu-Cheng Lin, Chu-Long Zhang, Christian P. Kubicek, A new species of *Harpophora* (Magnaporthaceae) recovered from healthy wild rice (*Oryza granulata*) roots, representing a novel member of a beneficial dark septate endophyte [51], the authors propose corrections for the invalid publication name, which does not conform to Nom. inval., Art. 40.7 (Melbourne). Two strain numbers are provided, where the holotypes lyophilised culture no. R5-6-1 was deposited. These were corrected as follows: China General Microbiological Culture Collection Center (CGMCC 2737) was designated as the holotype, and Centraalbureau voor Schimmelcultures (CBS 125863) was designated as the paratype.

Harpophora oryzae Z.L. Yuan, C.L. Zhang & F.C. Lin Holotype: CGMCC 2737 Paratype: CBS 125863

Author Contributions: Conceptualisation, X.-X.H.; field sampling, X.-X.H., D.P., G.-F.M., Y.-Z.L., Y.-J.M. and D.-M.L.; molecular experiments and data analysis, X.-X.H. and F.-C.L.; morphological observation, X.-X.H. and F.-C.L.; writing—original draft preparation, X.-X.H.; writing—review and editing, N.T., R.-L.Z. and B.C.; supervision, N.T. and B.C.; project administration, B.C.; funding acquisition, B.C. and R.-L.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Project of Background Resources Survey in Shennongjia National Park (SNJNP2022004), the Open Project Fund of Hubei Provincial Key Laboratory for Conservation Biology of Shennongjia Snub-nosed Monkeys (SNJGKL2022004), the Project of Science and Technology Programs of Tibet (XZ202202YD0031C), the Survey of Wildlife Resources in Key Areas of Tibet (ZL202203601), the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment, China (2019HJ2096001006), and the National Natural Science Foundation of China (31961143010, 31970010, 31470152).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All sequence data are available in NCBI GenBank following the accession numbers in the manuscript.

Acknowledgments: We thank the Mycological Herbarium, Institute of Microbiology, Chinese Academy of Sciences (HMAS), and all the individuals in our laboratory. We thank Luis A. Parra and Shaun Pennycook (Manaaki Whenua Landcare Research, New Zealand) for his valuable suggestions on the fungal nomenclature. We thank Qianlan Ma (International Department, Beijing BAYI School) for her help in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Singer, R. The Agaricales (Mushrooms) in Modern Taxonomy; Instituto Miguel Lillo: Tucuman, Argentina, 1951; pp. 1–832.
- 2. Singer, R. The Agaricales in Modern Taxonomy, 2nd ed.; Cramer: Weinheim, Germany, 1962.
- 3. Kits van Waveren, E. The Dutch, French and British Species of *Psathyrella*. Persoonia-Supplement **1985**, 2, 3–300.
- 4. Smith, A.H. The north American species of *Psathyrella*. Mem. N. Y. Bot. Gard. 1972, 24, 1–633.
- Larsson, E.; Örstadius, L. Fourteen coprophilous species of *Psathyrella* identified in the Nordic countries using morphology and nuclear rDNA sequence data. *Mycol. Res.* 2008, 112, 1165–1185. [CrossRef] [PubMed]
- Bau, T.; Yan, J.-Q. A new genus and four new species in the *Psathyrella* s.l. clade from China. *MycoKeys* 2021, 80, 115–131. [CrossRef] [PubMed]
- Moreno, G.; Heykoop, M.; Esqueda, M.; Olariaga, I. Another lineage of secotioid fungi is discovered: *Psathyrella secotioides* sp. nov. from Mexico. *Mycol. Prog.* 2015, 14, 34. [CrossRef]
- Yan, J.-Q.; Bau, T. New and newly recorded species of *Psathyrella* (Psathyrellaceae, Agaricales) from Northeast China. *Phytotaxa* 2017, 321, 139–150. [CrossRef]
- 9. Wächter, D.; Melzer, A. Proposal for a subdivision of the family Psathyrellaceae based on a taxon-rich phylogenetic analysis with iterative multigene guide tree. *Mycol. Prog.* **2020**, *19*, 1151–1265. [CrossRef]
- Büttner, E.; Karich, A.; Nghi, D.; Lange, M.; Liers, C.; Kellner, H.; Hofrichter, M.; Ullrich, R. *Candolleomyces eurysporus*, a new Psathyrellaceae (Agaricales) species from the tropical Cúc Phương National Park, Vietnam. *Austrian J. Mycol.* 2020, 28, 79–92. [CrossRef]
- Bau, T.; Yan, J.-Q. Two new rare species of *Candolleomyces* with pale spores from China. *MycoKeys* 2021, 80, 149–161. [CrossRef] [PubMed]
- 12. Zhou, H.; Cheng, G.; Sun, X.; Cheng, R.; Zhang, H.; Dong, Y.; Hou, C. Three new species of *Candolleomyces* (Agaricomycetes, Agaricales, Psathyrellaceae) from the Yanshan Mountains in China. *MycoKeys* **2022**, *88*, 109–121. [CrossRef]
- Bhunjun, C.S.; Niskanen, T.; Suwannarach, N.; Wannathes, N.; Chen, Y.-J.; McKenzie, E.H.C.; Maharachchikumbura, S.S.N.; Buyck, B.; Zhao, C.-L.; Fan, Y.-G.; et al. The numbers of fungi: Are the most speciose genera truly diverse? *Fungal Divers*. 2022, 114, 387–462. [CrossRef]
- 14. Asif, M.; Izhar, A.; Niazi, A.R.; Khalid, A.N. *Candolleomyces asiaticus* sp. nov.(Psathyrellaceae, Agaricales), a novel species from Punjab, Pakistan. *Eur. J. Taxon.* **2022**, *826*, 176–187. [CrossRef]
- 15. Nayana, P.K.; Pradeep, C.K. A new species of *Candolleomyces* (Psathyrellaceae, Agaricales) from Western Ghats, India. *Phytotaxa* **2023**, 606, 63–72. [CrossRef]
- Haqnawaz, M.; Niazi, A.R.; Khalid, A.N. A study on the genus *Candolleomyces* (Agaricales: Psathyrellaceae) from Punjab, Pakistan. BMC Microbiol. 2023, 23, 181. [CrossRef] [PubMed]
- 17. Ediriweera, A.N.; Voto, P.; Karunarathna, S.C.; Kumla, J.; Thiyagaraja, V.; Wijesooriya, M.K.; Wadduwage, K.S.; Lu, W.H.; Stephenson, S.L.; Xu, J.C. A new species and a new record in the Agaricales from Sri Lanka. *Mycol. Obs.* **2023**, *6*, 92–107.
- Izhar, A.; Asif, M.; Khan, Z.; Khalid, A.N. Introducing two new members of the genus *Candolleomyces* (Agaricales, Psathyrellaceae) from Punjab, Pakistan. *Plant Syst. Evol.* 2023, 309, 40. [CrossRef]
- 19. Yang, K.L.; Lin, J.Y.; Li, G.-M.; Yang, Z.L. Mushrooms Adapted to Seawater: Two New Species of *Candolleomyces* (Basidiomycota, Agaricales) from China. *J. Fungi* 2023, *9*, 1204. [CrossRef] [PubMed]
- 20. Nayana, P.K.; Pradeep, C.K. New species and new record of *Candolleomyces* (Psathyrellaceae) from India. *Botany* **2023**, 101, 472–484. [CrossRef]
- 21. Yan, J.Q. Taxonomy and Molecular Phylogeny of *Psathyrella* and Related Genera in China. Ph.D. Thesis, Jilin Agricultural University, Changchun, China, 2018; pp. 1–181.
- 22. Al-Habib, M.N.; Holliday, J.C.; Tura, D. The pale brittle stem mushroom, *Psathyrella candolleana* (higher Basidiomycetes): An indigenous medicinal mushroom new to Iraq. *Int. J. Med. Mushrooms* **2014**, *16*, 617–622. [CrossRef]
- Li, H.; Zhang, H.; Zhang, Y.; Zhou, J.; Yin, Y.; He, Q.; Jiang, S.; Ma, P.; Zhang, Y.; Yuan, Y.; et al. Mushroom poisoning outbreaks—China, 2021. *China CDC Wkly.* 2022, 4, 35–40. [PubMed]
- 24. He, M.-Q.; Wang, M.-Q.; Chen, Z.-H.; Deng, W.-Q.; Li, T.-H.; Vizzini, A.; Jeewon, R.; Hyde, K.D.; Zhao, R.-L. Potential benefits and harms: A review of poisonous mushrooms in the world. *Fungal Biol. Rev.* **2022**, *42*, 56–68. [CrossRef]
- Li, H.; Tian, Y.; Menolli, N.; Ye, L.; Karunarathna, S.C.; Perez-Moreno, J.; Rahman, M.M.; Rashid, H.; Phengsintham, P.; Rizal, L.; et al. Reviewing the world's edible mushroom species: A new evidence-based classification system. *Compr. Rev. Food Sci. Food Saf.* 2021, 20, 1982–2014. [CrossRef] [PubMed]

- 26. Li, H.; Zhang, Y.; Zhang, H.; Zhou, J.; Liang, J.; Yin, Y.; He, Q.; Jiang, S.; Zhang, Y.; Yuan, Y.; et al. Mushroom Poisoning Outbreaks—China, 2022. *China CDC Wkly.* **2023**, *5*, 45–50. [CrossRef] [PubMed]
- 27. Largent, D. How to Identify Mushrooms to Genus Vol. I. Macroscopic Features; Mad River Press: Eureka, CA, USA, 1986; p. 166.
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; Volume 18, pp. 315–322.
- 29. Hopple, J.S., Jr.; Vilgalys, R. Phylogenetic relationships in the mushroom genus *Coprinus* and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: Divergent domains, outgroups, and monophyly. *Mol. Phylogenet. Evol.* **1999**, *13*, 1–19. [CrossRef] [PubMed]
- 30. Örstadius, L.; Ryberg, M.; Larsson, E. Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: Introduction of three new genera and 18 new species. *Mycol. Prog.* **2015**, *14*, 25. [CrossRef]
- 31. Zhao, R.; Karunarathna, S.; Raspé, O.; Parra, L.A.; Guinberteau, J.; Moinard, M.; De Kesel, A.; Barroso, G.; Courtecuisse, R.; Hyde, K.D.; et al. Major clades in tropical *Agaricus. Fungal Divers.* **2011**, *51*, 279–296. [CrossRef]
- 32. Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Res.* 2004, 32, 1792–1797. [CrossRef] [PubMed]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98.
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.X.; Wang, G.T. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. *Mol. Ecol. Resour.* 2020, 20, 348–355. [CrossRef]
- 35. Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [CrossRef]
- 36. Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. *Mol. Biol. Evol.* **2017**, *34*, 772–773. [CrossRef] [PubMed]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. *Syst. Biol.* 2012, *61*, 539–542. [CrossRef] [PubMed]
- Rambaut, A.; Drummond, A. FigTree v1. 3.1. Institute of Evolutionary Biology; University of Edinburgh: Edinburgh, UK, 2010; Volume 2010.
- 39. Melzer, A.; Kimani, V.W.; Ullrich, R. *Psathyrella aberdarensis*, a new species of *Psathyrella* (Agaricales) from a Kenyan National Park. *Austrian J. Mycol.* **2018**, 27, 23–30.
- Desjardin, D.E.; Perry, B.A. Dark-spored species of Agaricineae from Republic of São Tomé and Príncipe, West Africa. *Mycosphere* 2016, 7, 359–391. [CrossRef]
- 41. Nagy, L.G.; Walther, G.; Hazi, J.; Vágvölgyi, C.; Papp, T. Understanding the evolutionary processes of fungal fruiting bodies: Correlated evolution and divergence times in the Psathyrellaceae. *Syst. Biol.* **2011**, *60*, 303–317. [CrossRef] [PubMed]
- 42. Voto, P.; Dovana, F.; Garbelotto, M. A revision of the genus *Psathyrella*, with a focus on subsection Spadiceogriseae. *Fungal Syst. Evol.* **2019**, *4*, 97–170. [CrossRef] [PubMed]
- 43. Sicoli, G.; Passalacqua, N.G.; De Giuseppe, A.B.; Palermo, A.M.; Pellegrino, G. A new species of *Psathyrella* (Psathyrellaceae, Agaricales) from Italy. *MycoKeys* 2019, *52*, 89–102. [CrossRef] [PubMed]
- 44. Broussal, M.; Carbó, J.; Mir, G.; Pérez-de-Gregorio, M. Psathyrella salina, nouvelle espèce des milieux halophiles méditerranéens. *Bull. Féd. Assoc. Mycol. Méditerr.* **2018**, *53*, 17–30.
- 45. Yan, J.Q.; Bau, T. The Northeast Chinese species of Psathyrella (Agaricales, Psathyrellaceae). MycoKeys 2018, 33, 85–102. [CrossRef]
- 46. Battistin, E.; Chiarello, O.; Vizzini, A.; Örstadius, L.; Larsson, E. Morphological characterisation and phylogenetic placement of the very rare species *Psathyrella sulcatotuberculosa*. *Sydowia* **2014**, *66*, 171–181. [CrossRef]
- Nie, C.; Wang, S.-N.; Tkalčec, Z.; Yan, J.-Q.; Hu, Y.; Ge, Y.; Na, Q.; Zeng, H.; Ding, H.; Huo, G.; et al. *Coprinus leucostictus* Rediscovered after a Century, Epitypified, and Its Generic Position in *Hausknechtia* Resolved by Multigene Phylogenetic Analysis of Psathyrellaceae. *Diversity* 2022, 14, 699. [CrossRef]
- 48. Pegler, D.N. Agaric flora of Sri Lanka. *Kew Bull.* **1986**, *12*, 1–519.
- Kits van Waveren, E. Checklist of synonyms, varieties and forms of *Psathyrella candolleana*. *Trans. Br. Mycol. Soc.* 1980, 75, 429–437. [CrossRef]
- 50. Bi, Z.S.; Zheng, G.Y.; Li, T.H. *Macrofungus Flora of Guangdong Province*; Guangdong Science and Technology Press: Guangzhou, China, 1994; pp. 1–879.
- Yuan, Z.L.; Lin, F.C.; Zhang, C.L.; Kubicek, C.P. A new species of *Harpophora* (Magnaporthaceae) recovered from healthy wild rice (*Oryza granulata*) roots, representing a novel member of a beneficial dark septate endophyte. *FEMS Microbiol. Lett.* 2010, 307, 94–101. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.