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Abstract 
In this article, we study the Kolmogorov-Smirnov type goodness-of-fit test for 
the inhomogeneous Poisson process with the unknown translation parameter 
as multidimensional parameter. The basic hypothesis and the alternative are 
composite and carry to the intensity measure of inhomogeneous Poisson 
process and the intensity function is regular. For this model of shift parame-
ter, we propose test which is asymptotically partially distribution free and 
consistent. We show that under null hypothesis the limit distribution of this 
statistic does not depend on unknown parameter. 
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1. Introduction 

One of the central themes of statistical theory and practice is the problem of the 
quality of goodness-of-fit tests. The problems of constructing the quality of 
goodness-of-fit tests in the case of i.i.d. are well studied in [1]. To set up a test 
that allows, if possible, accepting or rejecting the hypothesis to be tested against 
a given alternative, depending on a data set, a nonparametric study of the hypo-
thesis tests is required, including a typical example that is the goodness-of-fit test 
and other important examples for applications that are the tests for symmetry, 
independence and homogeneity. [2] [3], and many other authors have worked in 
this area mainly in the mini max approach which is considered in nonparametric 
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statistics as a good framework for determining the performance of an estimator. 
In classical mathematical statistics, [4] intensely studied the Chi-square, Kol-

mogorov-Smirnov and Cramér-von Mises tests, and the Kolmogorov-Smirnov 
and Cramér-von Mises goodness-of-fit tests shown are asymptotically statisti-
cally free (i.e. have independent laws of the distribution under the null hypothe-
sis). 

[5] recently studied in their paper the tests of nonparametric hypotheses for 
the intensity of the inhomogeneous Poisson process. The study they carried out 
is an extension to the Poisson processes of Ingster’s work. [4] studied nonpara-
metric tests for Gaussian white noise models with a ε  noise level tending to 0. 
[6] presented in their article a review of several results concerning the construc-
tion of Kolmogorov-Smirnov-type and Cramér-von Mises-type fit tests for con-
tinuous-time processes. As models, they considered a small noise stochastic dif-
ferential equation, an ergodic diffusion process, a Poisson process, and 
self-exciting or self-exciting point processes. [7] [8] consider the shift parameter 
model and the shift and scale parameter model, and show that the Cramér-von 
Mises test is asymptotically distribution free and asymptotically partially distri-
bution free, and consistent. For each model, they proposed the tests which pro-
vide the asymptotic size α  and describe the form of the power function under 
the local alternatives. 

In applications, the hypotheses to be tested are often of a more complex na-
ture. The first works on the problems of goodness-of-fit testing of composite 
hypotheses concerning classical statistics are due to [9] ([2]) who proposed to 
test composite hypotheses, in the case where the distribution function under the 
hypothesis to be tested depends on a multidimensional unknown parameter. 
The null hypothesis therefore becomes composite, i.e. it does not determine the 
distribution of the sample in a unique way. In the case where the parameters are 
estimated, the Kolmogorov-Smirnov test, as well as the Cramér-von Mises test is 
no longer asymptotically distribution free. 

It follows that the critical values change from one null hypothesis to another. 
Different values of the parameter result in different critical values, often within 
the same parametric family. The distribution free character is therefore crucial in 
applications since the critical values are calculated only once for any distribution 
defined under the hypothesis to be tested. To work around this problem, [9] 
suggested the split sample method. Durbin’s problem involves a martingale 
transformation of the parametric empirical process which was proposed by [10]. 

The martingale approach of [10] allows building asymptotically distribution 
free hypothesis tests. This approach proposed by [10] is used by various authors 
including [11] in the regression models, [12]. We use an approach similar to that 
of [10] to construct, in this article, Kolmogorov-Smirnov-type asymptotically 
distribution free and consistent goodness-of-fit tests. 

We will consider the same model as [7]. In general, dealing with the mea-
surement of the intensity of the Poisson process, we will consider the model de-
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pending on an unknown translation parameter with a composite parametric 
base assumption and show that the Kolmogorov-Smirnov test is asymptotically 
parameter free. 

2. Statement of the Problem and Auxiliary Results 

Suppose that we observe n independents inhomogeneous Poisson processes 
( ) ( )1, ,n

nX X X= �  where ( ){ },j jX X t t= ∈ , 1, ,j n= �  are trajectories of 
the Poisson processes with the mean function ( ) ( ) ( )dt

jt X t s sλ
−∞

Λ = = ∫ . 
Here ( ) 0λ ⋅ ≥  is the corresponding intensity function. 

Let us remind the construction of GoF test of Kolmogorov-Smirnov type in 
the case of simple null hypothesis. The class of tests ( ) 1n n≥

Ψ  of asymptotic size 
( )0,1ε ∈  is  

{ }0: lim .n nnε ε
→∞

= Ψ Ψ =  

Suppose that the basic hypothesis is simple, say, ( ) ( )0 0: Λ ⋅ = Λ ⋅ , where 
( )0Λ ⋅  is a known function which is continuous and differentiable, and satisfies 
( )0Λ ∞ < ∞ . The alternative is composite (non parametric) ( ) ( )1 0: Λ ⋅ ≠ Λ ⋅ . 

Then we can introduce the Kolmogorov-Smirnov (K-S) type statistic  

 
( ) ( ) ( )0

0

ˆsup ,n n
t

n t t
∈

Γ = Λ −Λ
Λ ∞ �

�  

where ( ) ( )1

1ˆ n
n jjt X t

n =
Λ = ∑  is the empirical mean of the Poisson process. It 

can be verified that under 0H , this statistic converges to the following limit:  

 ( )
0 1
sup ,n

s
W s

≤ ≤
Γ ⇒ Γ ≡�  

where ( ) ,0 1W s s≤ ≤  is a standard Wiener process. Therefore the K-S type test 

( ) { }1l
n

n
n cX

εΓ >
Ψ = �
�  with the threshold cε  defined by the equation  

( )cε εΓ > =  belongs to ε . This test is asymptotically distribution free 
(ADF) (see, e.g., [6] [13]). Remind that the test is called ADF if the limit distri-
bution of the test statistic under hypothesis does not depend on the mean func-
tion ( )0Λ ⋅ . 

Let us consider the case of the parametric null hypothesis. It can be formu-
lated as follows. We have to test the null hypothesis  

 ( ) ( ) ( ) ( ){ }0 0: , , L t t tϑ ϑΛ ⋅ ∈ Θ = Λ = Λ − ∈Θ ∈�  

against the alternative ( ) ( )1 : LΛ ⋅ ∉ Θ . Here ( )0 ,ϑΛ ⋅  is a known mean func-
tion of the Poisson process depending on some finite-dimensional unknown pa-
rameter ϑ∈Θ ⊂  . Note that under 0  there exists the true value 0ϑ ∈Θ  
such that the mean of the observed Poisson process ( ) ( )0 , , t t tϑΛ = Λ ∈ . 

The K-S type GoF test can be constructed by a similar way. Introduce the 
normalized process ( ) ( ) ( ) ( )( )0

ˆ ˆˆˆ , , , n n n n nu t u t n t t tϑ ϑ≡ = Λ −Λ ∈� , where n̂ϑ  
is the maximum likelihood estimator of the unknown parameter ϑ  which is (un-
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der hypothesis 0 ) consistent and asymptotically normal ( )0n̂n ϑ ϑ ξ− ⇒ . 
Therefore if we propose a goodness of fit test based on this statistic, say, 

( ) { }1l
n

n
n cX

αΓ >Φ =  then to find the threshold cα  such that n εΦ ∈  we have 
to solve the equation ( )

0
cϑ ε εΓ > = . The goal of this work is to show that if 

the unknown parameter ϑ , when ϑ∈Θ  is the shift parameter, then it is 
possible to construct a test statistic ˆ

nΓ  whose limit distribution does not de-
pend on 0ϑ . The test will be uniformly consistent against another class of alter-
natives  

 ( ) ( ) ( ) ( ){ }1 0: = : inf sup .
t

t tρ
ρ ϑ

ϑ ρ
∈Θ ∈

Λ ⋅ ∈ Λ ⋅ Λ −Λ − >


   

Here 0ρ >  is some given number. 
The mean function under null hypothesis is  

 ( ) ( )0 0, d ,  .
t

t s s tϑ λ ϑ
−∞

Λ = − ∈∫   

the proposed test statistic is  

 
( ) ( ) ( )0

0

ˆˆˆ sup , .
ˆ ,

n n n
t

n

n t tϑ
ϑ ∈

Γ = Λ −Λ
Λ ∞ �

 

We show that ˆ
nΓ ⇒ Γ , where ( )0Γ = Γ Λ , i.e. the distribution of the random va-

riable ( )0Γ Λ  does not depend on 0ϑ . Remind that the function ( )0 ,t tΛ ∈  
is known and therefore the solution ( )0c cε ε= Λ  can be calculated before the 
experiment using, say, numerical simulations. 

We are given n independent observations ( ) ( )1, ,n
nX X X= �  of inhomoge-

neous Poisson processes ( ){ },j jX X t t= ∈  with the mean function  
( ) ( ) , jt X t tΛ = ∈  . We have to construct a GoF test in the hypothesis testing 

problem with parametric null hypothesis 0H . More precisely, we suppose that 
under 0H , the mean function ( )tΛ  is absolutely continuous: ( ) ( )0 0 ,t tλ ϑΛ =� . 
Here 0ϑ  is the true value, and the intensity function is  

( ) ( )0 0 0 0, ,t tλ ϑ λ ϑ ϑ= − ∈Θ∈ . The set ( ), , 0α β α βΘ = < < < ∞ . Therefore 
if we denote ( ) ( )0 0 d , 

t
t tλ ν ν

−∞
Λ = ∈∫  , then the mean function under null 

hypothesis is ( ) ( ) ( )0 0 0 0,t t tϑ ϑΛ = Λ = Λ − . 
It is convenient to use two different functions ( )0 , tϑΛ  and ( )0 tΛ  and we 

hope that such notation will not be misleading. 
Therefore, we have the parametric null hypothesis  

 ( ) ( )0 :  Λ ⋅ ∈ Θ   

where the parametric family is  

 ( ) ( ) ( ) ( ){ }0: , , t t tϑ ϑΘ = Λ ⋅ Λ = Λ − ∈ ∈Θ  

Here ( )0Λ ⋅  is a known absolutely continuous function with properties: 
( ) ( )0 00,Λ −∞ = Λ ∞ < ∞ . 

In this work, we denote by ( ),f tϑ�  the derivative with respect to ϑ  of any 
function ( ) ( ),  , f t tϑ ϑ∈Θ ∈ . 
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We consider the class of tests of asymptotic level ε :  

 { }: lim , .n nnε ϑ ε ϑ
→∞

= Ψ Ψ = ∈Θ  

The test studied in this work is based on the following statistic of K-S type:  

 ( ) ( )0
ˆˆˆ supn n n

t
n t t ϑ

∈
Γ = Λ −Λ −

�
 

when n̂ϑ  is the MLE. 
As we use the asymptotic properties of the MLE n̂ϑ , we need some regularity 

conditions. 
Conditions    

● 1  The function ( ) ( )0 2λ ⋅ ∈   is strictly positive and three times conti-
nuously differentiable.  

● 2  Its derivatives belong to ( )2  . The Fisher information  

 ( ) ( )
( )

( )
( )

2 2
0 0

0
0 0

d dn

t s
I n t n s nI

t s
λ ϑ λ

ϑ
λ ϑ λ

+∞ +∞

−∞ −∞

−
= = ≡

−∫ ∫
� �

 

0 0I >  does not depend on ϑ .  
● 3  The derivative ( ) ( )0 1λ ⋅ ∈�  .  
● 4  For any 0ν >  we have  

 ( ) ( )
0

0 0 0inf 0.
ϑ ϑ ν ϑ

λ ϑ λ ϑ
− >

⋅ − − ⋅− >  

Here ϑ
⋅  is the usual ( )∞   norm define as ( ) ( )suptf f t∈∞

⋅ =  . 
Note that, by these conditions, the MLE n̂ϑ  is consistent, asymptotically 

normal  

 ( ) ( )1
0

ˆ 0,nn Iϑ ϑ −− ⇒   

and the moments converge: for any 0p >   

 ( )/2 1
0

ˆ , 0,
p pp

nn Iϑ ϑ ϑ ζ ζ −− →    

Moreover, it admits the representation (see [14], Theorem 3.1, page 101)  

 ( )
( ) ( ) ( )01 3 4

0
0

1ˆ dn n

t
I W t O n

tn
λ ϑ

ϑ ϑ
λ ϑ

+∞− −

−∞

−
= − +

−∫
�

        (2.1) 

where ( ) ( ) ( )( )0
ˆ

n nW t n t t ϑ= Λ −Λ − . For the proofs see [14]. 

3. Main Result 

Let us introduce the following random variable  

 ( )( ) ( ) ( )
( ) ( )( )01

0 0 0 0 0
0

sup d
t

s
W t t I W s

s
λ

λ
λ

+∞−

−∞∈
Γ = Λ − Λ∫

�


 

where ( )W ⋅  is a standard Wiener process. 
The main result of this work is the following theorem. 
Theorem 3.1. Let the conditions   are fulfilled. Then, the test  
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 ( )( ) ˆ{ }
ˆ 1l

n

n
n cX

εΓ >
Φ =  belongs to the class ε  

Proof.  
Let us consider n independent observations ( ) ( )1, ,n

nX X X= �  of inhomo-
geneous Poisson processes ( ){ },j jX X t t= ∈ . 

We have to show that ( )ˆlim ,n
n n Xϑ ε ϑ→∞ Ψ = ∈Θ . 

We have  

 

( ) { }

( ) ( )( )
( )

ˆ

0

ˆ 1l

ˆˆsup

sup

n

n
n c

n n
t

n
t

X

n t t c

u t c

εϑ ϑ

ϑ ε

ϑ ε

ϑ

Γ >

∈

∈

Ψ =

 = Λ −Λ − >  
 = >  

�

�

 





 

where we put ( ) ( ) ( )( )0
ˆˆ

n n nu t n t t ϑ= Λ −Λ − . 
The parametric empirical process defined by  

 

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( )

0

0 0 0 0 0

0 0 0 0 0

0 0 0

ˆˆ

ˆˆ

ˆˆ

ˆ .

n n n

n n

n n

n n

u t n t t

n t t t t

n t t n t t

W t n t t

ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

= Λ −Λ −

= Λ −Λ − + Λ − −Λ −

= Λ −Λ − − Λ − −Λ −

= − Λ − −Λ −

  (3.2) 

Since the function ( )0 t ϑΛ −  is differentiable on Θ , according to the for-
mula of finite increments applied to 0Λ  on 0

ˆ, nϑ ϑ 
  , we have:  

( ) ( ) ( ) ( ) ( )( )( )0 0 0 0 0 0 0
ˆ ˆ ˆ .n n n n nt t t o tϑ ϑ ϑ ϑ ϑ ϑ ϑΛ − −Λ − = Λ − ⋅ − + Λ − −� �� �J  

where n
�J  is an intermediate point between 0ϑ  and n̂ϑ . 

According to (3.2), we have the representation  

 
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

0 0 0 0

0 0

ˆ ˆ

d ,

n n n n n n

n n n n

u t W t t n o t n

W t t h s W s r t

ϑ ϑ ϑ ϑ ϑ ϑ

ϑ ϑ
∞

−∞

= −Λ − ⋅ − − Λ − −

= + Λ − − +∫

� �� �

��
 (3.3) 

where  

( ) ( )( ) ( ) ( )( )1 4
0 0 0

ˆ
n n n nr t O n t o t nϑ ϑ ϑ ϑ−= ⋅Λ − − Λ − −� �� �  

is the remainder. 

Let us put ( ) ( )
( )

01
0

0

v
h v I

v
λ
λ

−=
�

, ( ) ( ) ( )( )0 0
ˆ n nW t n t t ϑ= Λ −Λ −  and denote 

by 0ϑ  the true value. Then relation (2.1) becomes  

( ) ( ) ( )( )1 4
0 0

1ˆ dn nh t W t O n
n

ϑ ϑ ϑ
∞ −

−∞
− = − − +∫  

and we have  

( ) ( ) ( ) ( )1 4
0 0

ˆ d .n nn h t W t O nϑ ϑ ϑ
∞ −

−∞
− = − − +∫  

Therefore,  
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 ( ) ( ) ( ) ( )0 ,n n n n nu t W t t v r tϑ= + Λ − ⋅ +��                (3.4) 

where we have set ( ) ( )0 dn nv h s W sϑ
∞

−∞
= −∫ . Since nϑ�  is himself an estimator 

of 0ϑ  therefore nϑ�  converges to 0ϑ . Also ( )nr t  converge in probability to 0. 
Under these considerations we can rewrite ( )nu t  as follow  

 ( ) ( ) ( )0 0 ,n n nu t W t t vϑ= + Λ − ⋅�                   (3.5) 

Furthermore, we put  

 ( ) ( ) ( )0
ˆˆ ˆ ,n n n nu t W t t vϑ= + Λ − ⋅�                   (3.6) 

where ( ) ( )ˆˆ dn n nv h s W sϑ
∞

−∞
= −∫ . 

The intensity function ( ) ( )0 0 0, t tλ ϑ λ ϑ= −  is strictly positive. Therefore it 
was shown that the process ( )nW ⋅  is asymptotically the composition of a 
Brownian motion (in the sense of the weak convergence) with ( )0 , tϑΛ  whitch 
we note ( )( )0 ,W tϑΛ , ( ) ( )0 0, 0, ,tϑ ϑ Λ ∈ Λ +∞  . In the other words ( )nW t  
converge weakly to the process ( )( )0W t ϑΛ −  in the space ( )00,Λ +∞   . 

We introduce the stochastic process  

 ( ) ( )( ) ( ) ( ) ( )( )0 0 0 0 0 0 0ˆ d .u t W t t h s W sϑ ϑ ϑ ϑ
∞

−∞
= Λ − + Λ − − Λ −∫�     (3.7) 

It is easy to see that, if we change the variables 0t uϑ− =  and 0s vϑ− =  in the 
integrals then we obtain the following equality  

( ) ( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( )
( ) ( )( )

0 0 0

01
0 0 0 0

0

0

ˆ dsup sup

dsup

.

t u

u

u t W u u h v W v

v
W u u I W v

v
λ

λ
λ

∞

−∞∈ ∈

+∞−

−∞∈

= Λ + Λ Λ

= Λ − Λ

= Γ

∫

∫

�

�
 


 

The proof of the theorem is based on the proof of the following fundamental 
lemma. 

Lemma 3.2. Let the conditions   are satisfied. The process ( )ˆnu t , t∈  
converges weakly in the space ( ),−∞ ∞  to the process ( )û t  as n →∞ . 
Since ( )T ⋅  is a continuous function in ( ),−∞ ∞  in sense of the Skorohod 
distance, the random variable ( ) ( )ˆ ˆsupn t nT u u t∈=   converges weakly to the 
random variable ( ) ( )ˆ ˆsuptT u u t∈=  . In other words, we have  

 ( ) ( ) 0ˆ ˆ .sup supn n
t t

u t u t
∈ ∈

Γ = ⇒ = Γ
 

 

To prove the Lemma 3.2, we need the following lemmas. 
Lemma 3.3. Let the conditions   are satisfied. Then the following conver-

gence hold  

 ( ) ( ) ( )ˆ 1 .n nu t u t o− =   

Proof of Lemma 3.3. For this, we need two relations  

 ( ) ( ) ( )0 0 0
ˆ 1 ,sup n

t
t t oϑ ϑ

∈
Λ − −Λ − =� �




            (3.8) 

 ( ) ( ) ( ) ( )0
ˆ d 1 .n nh t h t W t oϑ ϑ

∞

−∞
 − − − = ∫              (3.9) 
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Indeed, for the first relation, since the consistent estimator n̂ϑ  converges to the 
true value 0ϑ  and ( )Λ ⋅�  is a continuous function for all t∈ , then ( )0 n̂t ϑΛ −�  
converges in probability to ( )0 0t ϑΛ −�  for all t∈ . Hence  

 ( ) ( ) ( )0 0 0
ˆ 1sup n

t
t t oϑ ϑ

∈
Λ − −Λ − =� �




 

Furthermore by the condition 1 , the function ( )0 0t ϑΛ −�  is also bounded. 
Hence, we can easily obtain the relation (3.8). 

Further, for the second relation, we have  

( ) ( )( ) ( )( )
( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )

0

0

0

0

2

0

2

0 0 0

2

0 0 0

22
0 0 0

ˆ d

ˆ d

ˆ d

ˆ d

n n

n

n n

n

h t h t W t

h t h t t

h s t

C t

ϑ

ϑ

ϑ

ϑ

ϑ ϑ

ϑ ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

∞

−∞

∞

−∞

∞

−∞

∞

−∞

− − −

= − − − Λ −

= − ⋅ − Λ −

= − ⋅ Λ −

∫

∫

∫

∫

� �









 

Remind that ( ) ( )
0

2

0
2 3ˆ 1

2nn oϑ ϑ ϑ
π

 − = Γ + 
 

 , ( )0 0Λ −∞ =  and  

( )0Λ ∞ < ∞ , therefore  

( ) ( )
0

22
0 0 0

ˆ d 0.n nC tϑ ϑ ϑ ϑ
∞

→+∞−∞
− ⋅ Λ − →∫   

Hence  

 ( ) ( )( ) ( )( )0

2

0
ˆ d 0.n n nh t h t W tϑ ϑ ϑ

∞

→+∞−∞
− − − →∫   

which gives the proof of relation (3.9). 
Now we can evaluate the difference ( ) ( )ˆn nu t u t− . 
We have  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) [ ] ( ) ( )

0 0 0

0 0 0

0 0 0 0 0

0 0 0 0

ˆˆ ˆ

ˆ ˆ

ˆ ˆ ˆˆ

ˆ ˆˆ .

n n n n n n n

n n n

n n n n n n n

n n n n n

u t u t W t t v W t t v

t v t v

t v t v t v t v

t v v t t v

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ

− = + Λ − ⋅ − −Λ − ⋅

= Λ − ⋅ − Λ − ⋅

= Λ − ⋅ − Λ − ⋅ + Λ − ⋅ − Λ − ⋅

 = Λ − ⋅ − + Λ − −Λ − ⋅ 

� �

� �

� � � �

� � �

 

Since ( )n̂ϑΛ ⋅−�  is a uniformly consistent estimator of ( )0ϑΛ ⋅−�  on  , then 

( ) ( ) ( )0
ˆ 1nt t oϑ ϑΛ − −Λ − =� �

 . 
Further the relation (3.9) allows  

 ( ) ( ) ( ) ( )0
ˆˆ d 1 .n n n nv v h s h s W s oϑ ϑ

∞

−∞
 − = − − − = ∫   

The function ( ) ( ) ( )0 0 0
ˆ 1nt t oϑ ϑΛ − = Λ − + < ∞� �

 , implies that  

( ) ( )0
ˆ 1nt OϑΛ − =�

 , and  

 ( ) ( ) ( )( ) ( ) ( )
0 0 0

22 2
0 0 0 0d d ,n nv h s W s h s sϑ ϑ ϑϑ ϑ ϑ

∞ ∞

−∞ −∞
= − = − Λ − < ∞∫ ∫    

implies also that ( )1nv O=  . 
Therefore the Lemma 3.3 is proved.  
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Lemma 3.4. Let the conditions   are satisfied, then the finite dimensional 
distributions of the process ( )ˆnu t , t∈  converge to the finite dimensional 
distributions of the process ( )û t , t∈  as n →∞ .  

Proof of the Lemma 3.4. The proof of the Lemma is based on the Central 
Limit theorem for stochastic integrals (see, e.g., Kutoyants [14], Theorem 1.1). 
We follow the proof of this theorem. In particular, we obtain the convergence 
when n →∞  of the characteristic function ( )nφ µ  to the characteristic func-
tion of the limit process ( )0φ µ . 

They are defined as following  

( ) ( ){ } ( ) ( ){ }0 0 0
ˆ ˆexp expn n n n ni u t i W t i t vϑ ϑφ µ µ µ µ ϑ= = + Λ −�     (3.10) 

( ) ( ){ }
( )( ) ( ) ( ) ( )( ){ }

0

0

0

0 0 0 0 0 0

ˆexp

exp d .

i u t

i W t i t h s W s

ϑ

ϑ

φ µ µ

µ ϑ µ ϑ ϑ
+∞

−∞

=

= Λ − + Λ − − Λ∫�




 (3.11) 

Indeed, we have  

 

( ) ( ) ( )( )
( ) ( )

( ) ( )

( ) ( )

{ } ( )

0 0

0 0
1

0 0
1

0 0
1

1

ˆ

1

1

1 d d

1 1l d

n n

n

j
j

n

j
j

n t
j

j

n

js t
j

W t n t t

n X t t
n

X t t
n

X s s s
n

s
n

ϑ

ϑ

ϑ

λ ϑ

π

=

=

−∞
=

+∞

<−∞
=

= Λ −Λ −

 
= −Λ − 

 

 = −Λ − 

 = − − 

=

∑

∑

∑∫

∑∫

           (3.12) 

where we put ( ) ( ) ( )0 0j jt X t tπ ϑ= −Λ − .  
On the other hand, we have  

 ( ) ( ) ( ) ( )0 0
1

1d d .
n

n j
j

h s W s h s s
n

ϑ ϑ π
+∞ +∞

−∞ −∞
=

− = −∑∫ ∫          (3.13) 

Taking into account the expression (3.12) and (3.13), we have the representation 
of ( )ˆnu t   

 
( ) ( ) ( )

{ } ( ) ( ) ( )

0

0
1

ˆˆ ˆ

1 ˆ ˆ1l d .

n n n n

n

n n js t
j

u t W t t v

t h s s
n

ϑ

ϑ ϑ π
+∞

<−∞
=

= + Λ −

 = + Λ − − ∑∫

�

�
      (3.14) 

Thus, we can calculate the characteristic function as following  

 
( ) { } ( ) ( )

{ } ( ) ( )

0

0

ˆ ˆexp exp 1l

ˆ ˆ1 1l d .

n n ns t

n ns t

in t h s
n

i t h s s
n

µφ µ ϑ ϑ

µ ϑ ϑ

+∞

<−∞

<

     = + Λ − −      
 − − + Λ − −   

∫ �

�
   (3.15) 

By the Taylor formula  

( ) ( )
2

2e 1 ,
2

i i
i oφ φ
φ φ− − = +  
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we have as n →∞   

 ( ) { } ( ) ( ) ( )
2 2

0 0 0 0 0exp 1l d .
2n s t t h s s sµφ µ ϑ ϑ λ ϑ

+∞

<−∞

  → − + Λ − − −   
∫ �  (3.16) 

This last expression (3.16) is equivalent to:  

 ( )( ) ( ) ( ) ( )( ){ }0 0 0 0 0 0 0exp d ,i W t i t h s W sϑ µ ϑ µ ϑ ϑ
+∞

−∞
Λ − + Λ − − Λ∫�  

which is the characteristic function defined in (3.11). 
Therefore, we have the convergence of the one-dimensional distributions. In 

the general case, the verification of the convergence is entirely similar. 
Lemma 3.5. For any n∈ , and for any 1 2,t t ∈ , we have  

 ( ) ( )
0

2
1 2 1 2 .n nu t u t C t tϑ − ≤ −  

Proof of the Lemma 3.5. For any n∈ , and for any 1 2,t t ∈  (say 1 2t t≥ ), 
we have 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

0

0

0

0

2
1 2

1 0 1 0 0

2

2 0 2 0 0

2
1 2

2

0 1 0 0 2 0 0

d

d

2

2 d

n n

n n

n n

n n

n

u t u t

W t t h s W s

W t t h s W s

W t W t

t t h s W s

θ

ϑ

ϑ

ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ

∞

−∞

∞

−∞

∞

−∞

−

= + Λ − ⋅ −

− −Λ − ⋅ −

≤ −

 + Λ − −Λ − − 

∫

∫

∫

�

�

� �









 

     

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

1 0 1 0

2 0 2 0

0 1 0 0 2 0

2 2
0 1 0 0 2 0 0 0 0

2 2
0 0 0 0 0

2
2 2

1 2 0 1 2 0

2
1 2 1 2 1 2

2

2 d

2 d 2 d d

2 sup 2 sup d

.

t t

t t

s s

t t

t t h s s

s s h s s s

t t s t t s h u u u

C t t C t t C t t

ϑ ϑ

ϑ ϑ

ϑ ϑ

ϑ ϑ ϑ ϑ

λ λ τ τ ϑ λ ϑ

λ λ λ

∞

−∞

− − ∞

− − −∞

∞

−∞∈ ∈

= Λ − −Λ −

 + Λ − −Λ − − Λ − 

≤ + − −

 ≤ − + −  
 

′ ′′≤ − + − ≤ −

∫

∫ ∫ ∫

∫
� �

� �

�

�

 

Note that the two lemmas above are not sufficient to establish the weak con-
vergence of the process nu  in the space ( ),−∞ ∞  and also the convergence 
of the random process ( )nT u . However, the increments of the process nu  be-
ing independent, the convergence of the process nu  on finite intervals 
[ ],A B ⊂   (that is, convergence in the Skorohod space [ ],A B  of functions 
on [ ],A B  without discontinuities of the second kind) follows from ([15], 
Theorem 6.5.5), that is Lemma 3.4 and the following lemma. 

Lemma 3.6. For any 0ε > , we have  

 ( ) ( ){ }
1 2

1 20
lim lim sup 0.n nn t t

u t u t
κ κ

ε
→ →∞ − <

− > =  

Proof of the Lemma 3.6. For all 0ε > , we must show that  

 ( ) ( ){ }
1 2

1 20
lim lim sup 0.n nn t t

u t u t
κ κ

ε
→ →∞ − <

− > =  
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In fact, by Bienaymé-Chebyshev inequality we have:  

 
( ) ( ){ } ( ) ( )

0 0

2
1 2 1 22

1 2 02 2

1

0.

n n n nu t u t u t u t

C Ct t

ϑ ϑ

κ

ε
ε

κ
ε ε →

− > ≤ −

≤ − ≤ →

 
 

Therefore the Lemma 3.2 is proved. 
So, the last ingredient of the proof of Theorem 3.1 is the following estimate on 

the tails of the process ( )nu t . 
Lemma 3.7. Let the conditions   are satisfied. For any 0ε > , there exist 

0T >  and 0n  such that for all 0n n≥ , we have  

 ( )
0

sup n
s T

u sϑ ε ε
>

 
> ≤ 

 
                      (3.17) 

Proof of the Lemma 3.7. We have  

( ) ( ) ( )
0 0 0

sup sup supn n n
s T s T s T

u s u s u sϑ ϑ ϑε ε ε
> > <−

     > ≤ > + >         
        (3.18) 

we have for the first expression  

( )
( )

0

0

2

2sup n
n

s T

u s
u s K ϑ

ϑ ε
ε>

 > ≤ 
 


  

Direct calculation allows verifying that  

( )
0

2
1ˆsup n

s
u s Cϑ ≤  

where the constant 1 0C >  does not depend on n. Hence  

( )
0

1
2sup 0n

s T

Cu s Kϑ ε
ε>

 > ≤ → 
 

  

For the second term of 18, in a similar manner, we obtain a bound  

( )
0

2
2sup 0n

s T

Cu s Kϑ ε
ε<−

  ′> ≤ → 
 

  

This convergence allows us to say that for 0n n≥  with some 0n , we obtain the 
estimate (3.17) 

Proposition 3.8. Let the conditions   are satisfied. Then the test  
( )( ) { }ˆ

ˆ 1l
n

n
n c

X
εΓ >

Φ =  

is consistent under alternatives 1 , that is:  

( )ˆ , 1,n nβ →∞Φ Λ →  

and it is uniformly consistent under alternatives 1
ρ , that is:  

( )
( )ˆinf , 1.n n

ρ
β →∞Λ ⋅ ∈

Φ Λ →


 

Proof of the Proposition 3.8. Under the hypothesis 1 , the power 

( )ˆ ,nβ Φ Λ  is  
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( ) ( )

( ) ( )
0 0

1

ˆ , do not choose / is false

ˆ ˆ/ .
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n nc cε ε

β

Λ

Φ Λ =

= Γ > = Γ >



 

 


 

We can write  
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( ) ( ) ( ) ( )

( ) ( ) ( )
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0 ˆ

0 ˆˆ

0ˆ ˆ
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ˆ
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ˆ ˆ
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n n

n
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n n

n n

n n

n

c n t c

n n c

n n c

W n c
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ε ε
ϑ

εϑϑ

εϑ ϑ

εϑ ϑ

εϑ

ϑ

ϑ

ϑ

ϑ

Λ Λ

Λ

Λ

Λ

Λ

 Γ > = Λ −Λ ⋅− > 
 
 ≥ Λ ⋅ − Λ ⋅− − Λ ⋅ − Λ ⋅ > 
 
 = Λ ⋅ − Λ ⋅ < Λ ⋅ − Λ ⋅− − 
 
 = ⋅ < Λ ⋅ − Λ ⋅− − 
 

≈ ⋅ < −

 









 

( ){ }sup 1n
u

W u→∞
∈

→ < ∞ =
�

  

where we have put  

 ( ) ( )0inf 0.g
ϑϑ

ϑ
∈Θ

= Λ ⋅ − Λ ⋅− >  

Therefore the Kolmogorov-Smirnov type test is consistent for this alternative. 
The presented above proof allows verifying the uniform consistency of this test 
against the alternative 1

ρ . 
Indeed we have  

 
( )

( ) ( )( )ˆ
ˆinf , 1

n
n n nW ng c

ρ
ρ εϑ

β Λ →∞Λ ⋅ ∈
Φ Λ ≥ ⋅ < − →


 

where ( ) ( ) ( )0inf inf 0g
ρρ ϑ ϑ

ϑ∈ΘΛ ⋅ ∈= Λ ⋅ − Λ ⋅− >  
The Proposition 3.8 is thus proved. 

4. Conclusions 

This work is devoted to the Kolmogorov-Smirnov test in the case of observations 
of non-homogeneous Poisson processes. The main results are obtained in the 
situation where, under the null hypothesis, the intensity functions of the ob-
served inhomogeneous Poisson processes depend on an unknown parameter. 

As the GoF test studied in this work is mainly based on the maximum likelih-
ood estimator (MLE), we present the asymptotic properties of MLE in asymp-
totics of large samples. The conditions of coherence and asymptotic normality 
are given. 

We have studied the Kolmogorov-Smirnov test for inhomogeneous Poisson 
processes with a parametric null hypothesis. The unknown parameter is the 
translation parameter. The construction of the test is based on the MLE of this 
parameter and the main result is that due to the structure of the statistics the 
substitution of the estimator instead of the unknown parameter leads to the limit 
of the test statistic with distribution which does not depend on the unknown 
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parameter. 
In this work, we find the Kolmogorov-Smirnov GoF test based on sup-metrics 

in the case of the translation parameter. It is natural to ask: what if we take 
( )2   metrics? 
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