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Abstract

The blockchain technology introduced by bitcoin, with its decentralised peer-to-peer network

and cryptographic protocols, provides a public and accessible database of bitcoin transac-

tions that have attracted interest from both economics and network science as an example

of a complex evolving monetary network. Despite the known cryptographic guarantees pres-

ent in the blockchain, there exists significant evidence of inconsistencies and suspicious

behavior in the chain. In this paper, we examine the prevalence and evolution of two types

of anomalies occurring in coinbase transactions in blockchain mining, which we reported on

in earlier research. We further develop our techniques for investigating the impact of these

anomalies on the blockchain transaction network, by building networks induced by anoma-

lous coinbase transactions at regular intervals and calculating a range of network measures,

including degree correlation and assortativity, as well as inequality in terms of wealth and

anomaly ratio using the Gini coefficient. We obtain time series of network measures calcu-

lated over the full transaction network and three sub-networks. Inspecting trends in these

time series allows us to identify a period in time with particularly strange transaction behav-

ior. We then perform a frequency analysis of this time period to reveal several blocks of

highly anomalous transactions. Our technique represents a novel way of using network sci-

ence to detect and investigate cryptographic anomalies.

Introduction

Blockchain technology contains both structural and operational properties that are designed

to safeguard it, including an underlying open decentralized peer-to-peer network between

miners, cryptographic protocols, and validation of transactions between users. Its introduction

in 2008 has led to a proliferation of cryptocurrencies over the last decade, pioneered by bitcoin

[1]. The bitcoin blockchain contains a complete record of over half a billion bitcoin transac-

tions, between over 46 million digital wallets, stored in 670,000 blocks, representing over 18

million bitcoins. The economic impact of this novel technology and the accompanying finan-

cial system is already considerable and it has attracted researchers from various disciplines,
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including cryptography, economics and network science [2–4], as well as developments into

new and diverse applications spaces.

All transactions made using bitcoin are publicly recorded in the blockchain. Owing to this

and the dynamic nature of the blockchain, the large number of transactions, numerous wallet

and transaction features, and exogenous effects caused by its effective creation of an alternative

market based monetary system, it is particularly well suited for network analysis. There are

three constructs that can be analysed as bitcoin transaction networks [4]. Firstly, there is the

Bitcoin Address Network (BAN), the simplest, where wallets are nodes and transactions make

up directed edges. Secondly, the Bitcoin User Network (BUN) unifies wallets that belong to

the same user. Finally, the Bitcoin Lightning Network (BLN) is a recently introduced overlay

network using a Layer 2 protocol which is attempting to offload transactions from the block-

chain itself in order to increase transaction throughput. As the blockchain is growing over

time, these networks have become increasingly sparse and peculiar structural properties have

emerged [4].

Vallano et al.(2020) summarize research on bitcoin transaction networks, which have been

studied to some extent previously [4]. For example, there is an investigation of the acquisition

and spending behaviour of bitcoin owners [5]. It has also been observed that the BAN shows

evidence of the Pareto principle during the first four years of blockchain, meaning that prefer-

ential attachment drove the network’s growth and wealth distribution [6]. In updated research,

the authors show that preferential attachment still governs the growth of the transaction net-

work, which is now 100 times larger [7]. Two novel contributions perform a data driven analy-

sis of price fluctuations, user behaviour, and wealth accumulation in the bitcoin transaction

network, including an investigation of the richest wallets [8] and, an analysis of the transaction

network for the first nine years which identified a causal relationships between the movements

of bitcoin prices and changes of the transaction network topology [9].

In spite of the blockchain’s structural and operational properties which are designed to

safeguard it, anomalies, inconsistencies and suspicious behaviour have been observed, and

reported. Anomalous behaviour has been connected with colluding miners [10], enhanced

performance mining [11, 12], the so-called Patoshi pattern which was detected by Lerner in

the first 30,000 blocks [13] and selfish mining, where miners publish the blocks they mine

selectively [14]. Another stream of research has focused on detecting anomalies using data

driven and machine learning methods, both unsupervised [15–17] and supervised [18, 19].

More recently there has been a stronger focus on network based methods to detect these

anomalies, because of the natural structure of transactions [20]. In particular, Elliptic is a cryp-

tocurrency intelligence company focused on safeguarding cryptocurrency ecosystems from

criminal activity. introduced a public data set which contains several sub-networks for the

blockchain transaction network, with rich node features and labels for licit and illicit transac-

tions. This network has already caught the eye of several researchers [21, 22], who have com-

pared the performance of several supervised learning methods in detecting illicit transactions

[23] and address the high class imbalance in the data set using active learning [24].

In this paper we use network science to zoom in on two particular anomalies, which can be

seen in the nonce field, in blocks mined in the early years of the blockchain [25]. Given the

magnitude of these anomalies—the blocks in question represent well over 3 million mined

bitcoin—we investigate whether they may have led to false conclusions about some aspects of

bitcoin transactions. More precisely, we develop a methodology to detect cryptographic anom-

alies and abnormal behavior in bitcoin transactions. It consists of a few steps. Starting with the

identification of the anomalous coinbase transactions, we build sub-networks induced by nor-

mal and abnormal coinbase transactions. In order to manage the significant scalability and

processing issues caused by the size of the blockchain we use sampling strategies. Then we
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compute several network measures for the full network and the sub-networks, updating them

on a monthly basis. These network measures allow us to compare both the network character-

istics, their structural properties and the distribution of some node properties, such as transac-

tion amount and in-degree. Based on this we are able to show that the basic properties of the

sampled sub-networks are similar to the full network, making this a feasible approach to ana-

lyse big network data. Furthermore, by looking at their evolution over time, we are able to

detect periods that need further investigation. Building on our previous work, where the meth-

odology was first presented [26], here in addition to developing it further, we pay special atten-

tion to a particularly unusual time period, early in the blockchain which appears to mark the

beginning of deliberate dispersal of bitcoin presumably to create the monetary ecosystem. Our

results consequently cast some doubt on the origin story of bitcoin, and clearly identify the

period in 2010 when bitcoin’s use as a monetary unit appears to have been kick started by a

large number of transfers originating from coins mined with the cryptographic anomaly we

identified.

In the next section we present the methodology we use in this paper, starting with a descrip-

tion of the two anomalies, the sampling techniques developed and network measures, followed

by the results in Section, with our results. The paper concludes with a summary of our findings

and directions for future work.

Materials and methods

The methodology of this paper consists of three parts. Firstly, the description of two types of

anomalies in coinbase transactions, which is the motivation behind this paper. Secondly, the

creation of sub-networks associated with the two anomalies. Finally, the description of net-

work measures which we use to analyse and compare the sub-networks and the full network.

Background

The now well known origin story of bitcoin is that the technology originated with a posting

by a Satoshi Nakamato to the cryptography mailing list in 2008. This was followed by a slow

expansion during 2009-10 as early adopters installed mining software and began creating bit-

coins, followed by more wide spread adoption following a posting in the slashdot.com online

forum in July 2010. Although there has been some question as to whether a single individual

could have developed and tested this system, simply due to the range of expertise required, this

story has been broadly accepted by researchers.

At the end of 2019 we performed a simple frequency analysis of the hexadecimal values

(nibbles) by position, in the bitcoin blockchain. The blockchain itself is an 80 byte block

header sequence which is used to both cryptographically certify the transactions belonging to

any given mined block, and to provide a proof of work target in the form of a nonce which is

used by miners to find a block header that can be used to commit a set of bitcoin transactions.

This latter is achieved with a 4 byte nonce, effectively a 32 bit unsigned integer which in the

public code is repeatedly incremented by the mining software in order to find a value which

results in a double SHA256 operation on the block header that gives a value that is less than

the difficulty level governing their mining Difficulty levels are continuously adjusted to main-

tain a constant rate of mining around 10 minutes/block on average. [25]. Whilst parts of the

block header are predictable, notably the version, difficulty and most of the timestamp field,

the Merkle-Damgård hash, the previous block hash and the nonce should all be randomly dis-

tributed, as they are dependent on properties of the SHA256 algorithm.

Whilst no frequency distribution anomalies were found in either the Merkle-Damgård or

the previous block hash, two distinct anomalous patterns were detected in the nonce which is
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the key component of the proof of work performed by all miners to obtain bitcoins. The bit-

coin proof of work performed by miners is simply to repeatedly calculate two SHA256

functions, one of the block header, and the second on the result of the first SHA256. If the

numerical result of the second SHA256 operation is less than that specified by the governing

difficulty level, then the miner has found a block that can be linked into the blockchain, and

receives a specified amount of new bitcoins as a reward.

The two anomalies found with frequency analysis of the individual nibbles of the 232 bit

nonce field, occur in the first hexadecimal position (nibble) of the block’s nonce field as shown

in Fig 1B, which in a disproportionate number of blocks has a value in the range 0-3. The sec-

ond, as shown in Fig 1A is in the penultimate position of the nonce where an abnormal num-

ber of 0´s can be seen in the first 18 months of mining. We refer to these as the P (extended

Patoshi) anomaly and the Z (Zerononce) anomaly, respectively.

Both patterns seem to be associated with the originators of bitcoin. The extended patoshi

anomaly in the first nibble of the nonce appears in all of the first 64 blocks mined, and is a

notable feature of the first months of mining. This was first noticed by Sergio Lerner who

observed this feature as part of an analysis on the extra-nonce behaviour in the first year, and

attributed this to mining by Nakamato, which seems apparent from its presence in the first

blocks mined. Our analysis however also revealed that it returns between mid 2010-11, 2012-

14 and 2016-18 as shown in Fig 1B. The second, “penultimate zero”, pattern also occurs almost

from the beginning of the blockchain, but appears to only occur once, although a very slightly

above expected value for zeros in this field is present from 2016.

Although it has been argued online that the patoshi pattern is a consequence of miners eval-

uating the nonce sequentially, and thus introducing a bias towards lower nonce values, this is

not consistent with the expected frequency of valid nonces per block, since in practice these

are extremely rare. Courtois et al. (2013) observe that since the nonce value is constrained to

32 bits, the probability of a valid nonce existing for any given block can be expressed as 232

difficulty,

which would imply on average one valid nonce per block at the easiest difficulty level used

until the end of December 2010, and significantly less with the higher difficulty levels used

after that. This was verified by an exhaustive search of the nonce space for the first 2000 blocks.

[12].

After accounting for the expected number of blocks that would contain these values, (6.25%

in the penultimate zero case, and 25% in the patoshi anomaly in the first nibble), we estimate

that approximately one third of all coins mined at the first difficulty level are obtained from

Fig 1. Anomalous patterns discovered by frequency analysis of the hexadecimal values by position in the bitcoin

blockchain. A: Penultimate Zero Anomaly B: Extended Patoshi Anomaly.

https://doi.org/10.1371/journal.pone.0258001.g001
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blocks mined with these features. Across the entire ten years of both patterns, well over 3 mil-

lion bitcoins appear to have been obtained from blocks with these distinguishing features.

The size of these two patterns clearly warrants further investigation to see if additional

information can be found in the transactions derived from coins mined in these blocks. Previ-

ous research into early transactions in the bitcoin network has thrown up evidence of suspi-

cious clusters, notably Shamir and Dorit’s work [5] which discovered a large number of coins

being progressively consolidated into a small number of apparently connected wallets, how-

ever generally research in this area has not had a clear marker of the blocks themselves on

which to attach suspicion.

Induced transaction sub-networks

One of the contributions of this paper is a methodology for extracting specific sub-networks

from the blockchain transaction network.

The first step is to prepare the transaction database. For this we extract the entire bitcoin

blockchain from origin to November 2019. The data underlying the results presented in the

study are publicly available from www.bitcoin.com. We parse the blocks and construct a database

of transactions with information about the from wallet and one or more to wallets. Each transac-

tion corresponds to the movement of bitcoin between wallets. The transactions are furthermore

marked with their timestamp and the transaction amount. Wallets that received the miner’s

reward coins (otherwise known as coinbase transactions) from blocks with the two anomalous

patterns are marked as tainted. As coins are transferred to other wallets, the percentage taint for

each pattern is calculated and updated for the receiving wallet. The transaction database is thus

an edge list of timestamped transactions between wallets, together with the transaction amount

and the tainted ratio of both P and Z anomaly. We use the edge list to create a directed network.

This type of network is also called the bitcoin address network (BAN) [4]. We focus on the BAN

in this research, since we want a representation of the raw transactions between addresses.

The next step in our methodology is extracting specific networks of interest, more specifi-

cally, networks that originate with certain coinbase transactions. The process is as follows. We

start from the set of all transactions from the origin of the blockchain, until a given time point

and use this data to create a BAN. From this BAN we consider sub-networks induced by spe-

cific coinbase transactions. This entails snowball sampling where we start from a set of coin-

base transactions, follow their edges to the linked wallets, which are added to the sub-network

together with the transactions. Subsequently, any wallet in the full network that is linked via a

transaction to one of the most recently added wallet in the sub-network, is also added to the

sub-network. This process is repeated until no more transactions can be added. Since the full

network is static and directional, the process will terminate.

Due to the size of the entire blockchain it is not feasible to build the sub-networks with the

snowball sampling technique using all the specific coinbase transactions under consideration.

To mitigate this, we choose a random sample from the considered coinbase transaction to

start the snowball sampling with. To get more robust results this is repeated several times.

In this paper, we apply our proposed methodology to the two anomalies that were identified

in the coinbase transactions, namely the Z and the P anomaly, and compare their induced sub-

networks to the full network and the sub-network that does not stem from either of the two

anomalies. We thus consider three sets of coinbase transactions to induce our sub-networks as

listed below.

TZ = {cb| The Z anomaly is in the nonce of the cb block}

TP = {cb|The P anomaly is in the nonce of the cb block}
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:Z \ :P = {cb|Neither the Z anomaly nor the P anomaly is in the nonce of the cb block}

As a result, we obtain, in addition to the full network –which we refer to as All– three sets of

sub-networks, each one induced by the sub-sets of transactions listed above. We refer to these

as Tainted Z, Tainted P and Not Tainted Z & Not Tainted P, respectively. We build these sub-

networks and the full network incrementally, first using transactions from the origin until Jan-

uary 2010 and then in each iteration adding one more month until May 2012. When inducing

each sub-network, we randomly sample 1000 of the respective coinbase transactions and

repeat the process ten times. In the Results section, we show the mean of these ten repetitions.

When we take a closer look at the last months of 2010, we build the networks at more frequent

intervals, with 1-4 days between increments.

Network measures

The objective of this paper is to compare the structure and properties of the full BAN to the

sub-networks induced by tainted and non tainted coinbase transactions. Below, we describe

the network measures which we include in our analyses.

First we measure basic properties of the networks. The three fundamental measures are the

number of nodes, density and diameter [27]. Number of nodes is simply the total number of

nodes in the network. Network density is defined as the number of edges divided by the maxi-

mum possible number of edges. It gives an indication of how well connected the network is.

Finally, network diameter is a measure of the length of the longest shortest path in the network.

Given a pair of connected nodes in a network, there is a path between them that is shorter

than any other path between them. The diameter is the longest of such paths in the network.

Similar to the diameter of a circle, it gives the longest distance to connect any two nodes. In

our analyses we calculated the network diameter based on a random sample of 1000 pairs of

nodes, because of the time complexity when finding the shortest path between all pairs of

nodes.

In their study of transaction dynamics in the BAN, Kondor et al. (2014) used the Gini coef-

ficient to quantify inequality in the network [6]. Generally, the Gini coefficient is defined as

G ¼
2
Pn

i¼1
ixi

n
Pn

i¼1
xi
�
nþ 1

n
ð1Þ

where {xi} is a monotonically non-decreasing ordered sample of size n. Thus, G = 0 indicates

perfect equality, or every observation being equal in terms of the value being considered,

whereas G = 1 indicates complete inequality. In this paper we use the Gini coefficient to char-

acterize the heterogeneity of the distribution of in-degree, out-degree, tainted Z ratio, tainted P
ratio and transaction amount of the nodes in the full network and sub-networks.

Kondor et al. (2014) also investigated structural properties of the network in terms of assor-

tativity and clustering coefficient [6]. Assortativity or degree correlation of the network mea-

sures the nodes’ tendency to be linked to nodes with a similar degree [27]. It is obtained using

the Pearson correlation coefficient of the out- and in-degrees of connected node pairs

r ¼
P

eðj
out
e � joutÞðkine � kinÞ

Lsoutsin

ð2Þ

where for the edge e that links node vfrom to vto, joute is the out-degree of node vfrom and kine is the

in-degree of node vto,

kin ¼
X

e

kine =L and s2

in ¼
X

e

ðkine � kinÞ2=L: ð3Þ
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σout and kout are computed in a similar way. An assortative network (where r> 0) is character-

ized by high degree nodes being linked to other high degree nodes and low degree nodes being

linked to other low degree nodes. In contrast, in a disassortative network (r< 0) high degree

nodes have a tendency to connect to low degree nodes, creating a hub and spoke structure.

The clustering coefficient of a network is defined as the density of triangles in the network,

or

C ¼
1

N

X

v

2Dv

dvðdv � 1Þ
ð4Þ

where Δv is the number of triangles with node v and dv is the degree of node v. The sum runs

over all nodes in the network [27]. To compute C we must ignore the directionality of the

network. The clustering coefficient measures how connected the nodes are in their closest

neighborhoods.

These measures are computed for each full and sub-network as they are incrementally built

from month-to-month. As a result we obtain times series showing the development of the net-

works’ properties.

Results

Trends in the early years of blockchain

We start by looking at the properties of the sub-networks in comparison to the All network.

Fig 2 shows the diameter, number of nodes and density for the networks as subsequent months

are added. Note the log scale on the y-axis. Firstly, and not surprisingly, the All network has

the most nodes, however as we consider a longer timespan, the sizes of the sub-networks grow

in the same manner as the All network. Secondly, the density of the sub-networks is higher

than that of the All network. This is expected because of the way the sub-networks are

Fig 2. Evolution of diameter, number of nodes and density in the network of all transactions and in the three sub-networks.

https://doi.org/10.1371/journal.pone.0258001.g002
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constructed. At the beginning, each source node induces an almost fully connected network,

but as more nodes are added, the number of edges is proportionally lower, and thus the density

decreases. Finally, the diameter is rather fuzzy in the beginning, but as the networks grow in

size, the diameter becomes similar for all of them. This indicates that the sub-networks span a

similar range as the All network. To conclude, our proposed way of constructing sub-networks

induced by a sample of coinbase transactions, seems to generate networks that are comparable

to the All network.

Next we look at the structural properties of the All and sub-networks, including the distri-

bution of equality. Figs 3 and 4 show the Gini coefficient for in-degree, out-degree, transaction

amount, tainted Z and tainted P, on the one hand, and the degree correlation and clustering

coefficient, on the other hand, for the All network and each of the three sub-networks as

months are added incrementally. In each plot, the red line denotes the whole network. We can

see how the values for the sub-network all converge towards to each other and are slowly near-

ing the red line. The distance between them can probably be attributed to the way the sub-net-

works are created. Moreover, we see that in the beginning, the in-degree tends to be more

equally distributed in the sub-networks than in the whole network, whereas there is an oppo-

site behavior for out-degree, the distribution of out-degree is less equal in the sub-networks.

Kondor et al. (2014) speculated that the reason for the Gini being high for in-degree and low

for the out-degree, was that at the beginning of the blockchain, people were collecting their

coins into one wallet, since they were unable to exchange them [6]. In our case, the reason

for the Gini being low for the in-degree and high for the out-degree can be explained by the

way the sub-networks are created. When adding a transaction to the sub-network, its prior

transactions are not added, so it is expected that the in-degree for all newly added transactions

are similar, since new nodes start from ‘square zero’. We note that the Gini of the out-degree

converges to the full network ahead of the others, implying that the behavior of the first few

months is due to the building of the sub-network.

Next we look at the Gini coefficient of the Tainted Z and Tainted P ratio. For all sub-net-

works, the Tainted Z Gini remains higher than in the All network, and they converge early on.

This implies that these coinbase transactions get distributed in the transaction network

quickly. The Tainted P Gini is higher in the sub-networks at first, but in October 2010, the All

network takes over. The Gini of the Tainted Z is higher than that of the Tainted P in the sub-

networks and the full network. Regarding the inequality in terms of amount, we see that at the

beginning both Tainted P and Tainted Z sub-network have very high values, indicating a very

unequal distribution of wealth in these sub-networks. However, the Gini value quickly drops

and then remains below the Gini of the full network.

We can see from Fig 4 that in 2010 all the networks have a rather high clustering coefficient,

which decreases as time goes on. The clustering coefficient is comparable in the All and the

sub-networks. The degree correlation fluctuates a lot during the time period we consider, espe-

cially in the sub-networks. There it also remains higher than in the full network until early

2011. Both sub-networks of not tainted transactions have a high clustering coefficient in the

beginning, whereas all converge to the same low value towards the end of the period. This indi-

cates that the structural properties of the networks we consider vary greatly between them-

selves and also across time, which gives cause for further investigation.

The development of the distribution of inequality in the sub-networks compared to the full

network shows how the tainted coinbase transactions blended in with the rest of the transac-

tions in the blockchain. Our analysis helps identify peculiarities in the transaction network at

certain moments in time where the transaction network ought to be investigated in more

detail. For example, the development of the networks’ degree correlations raises questions,

because of the varied patterns in the sub-networks. In addition, there is a considerable change
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Fig 3. Evolution of Gini coefficients of in-degree, out-degree, tainted Z ratio, tainted P ratio and transaction amount, for the all transaction network

and three sub-networks.

https://doi.org/10.1371/journal.pone.0258001.g003
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in all the measures around November 2010. The tainted Z ratio seems to be least affected by

this, however. We will take a closer look at this behavior in the next subsection.

A closer look at November 2010

In our analysis so far, we witnessed a shift in both the Gini measures and the network struc-

tural measures in the final quarter of 2010. Therefore we will take a closer look at the months

October, November and December of 2010. We repeat our analysis from before, this time with

smaller time steps and more granularity. Fig 5 shows the Gini values at a more granular level

and Fig 6 shows the same for the degree correlation and the clustering coefficient of the full

network and the three sub-networks, for the months October, November and December 2010.

These values are obtained by increments of 1-5 day in each step.

We see from these figures that the shift happens around November 15th and that it is a

rather drastic shift. For example, in Fig 5, the in-degree Gini coefficient of the full network

changes from close to 0.8 til almost 0.6. For the full network, the Gini decreases in terms of in-

degree, out-degree and amount, but increases in terms of tainted Z and tainted P. The sub-net-

works show a similar trend, except for tainted P where their values decrease after the middle of

November, in contrast to the full network. The change is more drastic in the sub-networks

than in the full network when looking at out-degree, tainted P and amount. It is interesting to

look at the development of the tainted P inequality in the tainted P network. Before the shift, it

Fig 4. Evolution of degree correlation and clustering coefficient for the all transaction network and three sub-networks.

https://doi.org/10.1371/journal.pone.0258001.g004
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Fig 5. Evolution of Gini coefficients of in-degree, out-degree, tainted Z ratio and tainted P ratio and transaction amount in the full transaction

network and three sub-networks in October, November and December 2010.

https://doi.org/10.1371/journal.pone.0258001.g005
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is very high, above 0.5, but it takes a large dive around mid November and is the lowest in all

networks. At the same time, the tainted P inequality increases overall, i.e. in the full network.

In terms of the structural measures, see Fig 6, the clustering coefficient drops in all net-

works, and relatively more in the sub-networks than in the full network. This implies that

many transactions are being added, which dilutes the ratio of triangles and thus the clustering

is reduced. We also see here that the degree correlation fluctuates more than the other mea-

sures. The tainted Z and not tainted sub-networks are similar in their trends, with a big

increase. However, both the full network and the tainted P sub-network, take a sudden dip on

November 15th, then they increase (the increase is bigger in the sub-network) before going

down again in the first half of December. This similarity in behavior, again indicates that the P
anomaly needs closer inspection.

Transaction count analysis. Following this analysis we sampled blocks mined during this

period and their associated transactions manually. Another way to examine the evolution of

the use of bitcoin as a monetary unit is to simply look at the number of transactions associated

with each block. The creation of bitcoin blocks is independent of the number of transactions,

the blockchain difficulty level is automatically adjusted to cause bitcoin blocks to be created on

average every 10-12 minutes. This, in conjunction with the requirement that all miners must

see all transactions that will be committed by the winning block, is what determines the upper

limit on the total number of transactions that any block can contain. In later years this is 3-

4000 transactions/block. In the first year of mining however the majority of blocks only had a

Fig 6. Evolution of degree correlation and clustering coefficient in the full transaction network and three sub-networks in October, November and December

2010.

https://doi.org/10.1371/journal.pone.0258001.g006
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single transaction, the coinbase transaction awarding the miner of that block with the mined

bitcoins, as very few transactions between bitcoin holders were performed. This pattern con-

tinued into early 2010 as shown in Fig 7.

Fig 8 focuses on the period in the second half of 2010 identified by the preceding network

analysis. Rather than a gradual increase in transactions over time, as might have been expected

if bitcoin adoption followed a diffusion process as interest spread among enthusiasts, we see

isolated instances of very large numbers of transactions being made extremely quickly, often

Fig 7. Average number of transactions/block mined between 2009-2011.

https://doi.org/10.1371/journal.pone.0258001.g007

Fig 8. Average number of transactions/block mined in period of interest in 2010.

https://doi.org/10.1371/journal.pone.0258001.g008
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committed in the same or consecutive blocks, which implies they were made within the same

�12 minutes. Following each of these instances there is a marked increase in the average num-

ber of transactions until November 2010 when starting on November 15th at 18:45:30 (block

height 92037) there is a two week period of bursts of blocks with large numbers of transactions,

corresponding exactly with the time period identified by the above network analysis.

All of these large bursts of transactions are heavily sourced from tainted coins from both

patterns, and manual examination shows interesting and distinguishable characteristics with

the transactions in these blocks, notably large numbers of transfers of the same amount, trans-

fers going immediately through a wallet which is never used again, and in the early blocks,

notably 51728 and 51729 a series of transfers each precisely 0.01 bitcoins less then the previous

one, although originating from different wallets. The earlier and smaller bursts may indicate

testing of the software that was presumably used to create these transactions, it seems highly

improbable that these were performed manually given the short time frame, and number

of transactions made. For example, block 51729 https://www.blockchain.com/btc/block/

000000001786abd75dc912d8eabe85080c7e822858d445644fa3a3e059c2033b. This activity

appears to begin early in 2010, with 6 transactions made on block 35637, shown in Fig 9.

There then appear to be three distinct instances of these disbursements in 2010, what appears

to be a short burst on 1st April 2010, a larger instance in July following which average transac-

tion activity begins to noticeably increase, culminating with a major set of transactions in

November 2010, beginning on the 15th the same period identified by the network analysis as

marking a noticeable shift in the Gini coefficient and other measures.

Fig 9. Transactions on block 35637, mined 21.02.2010.

https://doi.org/10.1371/journal.pone.0258001.g009
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Conclusion

Analysis of the entire transaction network for any cryptocurrency is prohibitively expensive

both in CPU and disk time, frustrating what would otherwise be an ideal target for network

science. If this form of monetary unit is to be adopted widely then its integrity must be verifi-

able. Finding an anomaly in the cryptographic underpinnings is not particularly useful in itself,

without being able to investigate how coins related to that anomaly subsequently behaved.

In this paper we used network science to look at the evolution of several network measures

and distribution of transaction properties in the bitcoin transaction network to investigate the

prominence of two anomalies which stem from coinbase transactions. We presented a meth-

odology for constructing sub-networks induced by certain bitcoin transactions using sampling

which allowed us to adequately estimate the networks’ properties. We compared the networks’

structural characteristics to the full network and saw that the distribution of several node prop-

erties, such as in-degree, transaction amount and tainted ratio is different in the sub-networks

when compared to the full network. This is apparent in the networks until late 2010, when

they start to converge to what is observed in the full network. In particular, degree correlation

of the sub-network with both anomalies shows a great deviation from the rest at the same time

as both these anomalies were prominent in block mining. Based on this information we then

examined transactions in the period we had identified more closely, and also performed a sim-

ple frequency analysis which clearly illustrated the highly anomalous transaction behaviour

around the dates identified by the network analysis.

The size of the blockchain and its transactions places a prohibitively high computational

complexity on analysing its network behaviour, hence using this approach as a basis for similar

methods to compress computation time for block chain transaction analysis is worth exploring.

In contrast to anomaly detection methods which aim at detecting specific anomalous transac-

tions, our technique is meant to investigate the entire transaction network with the goal of

finding abnormal behavior in its structure, as measured by various network measures. This

approach can help narrow down the set of transactions that need to be investigated further as

we did in this paper, since it is difficult to label each and every transaction as anomalous or not.

Further work is needed to get a better understanding of the networks we examined and the

bitcoin transaction network. We saw in our analyses that the more frequent updates of the

development of network measures gave more detailed insights, and we could see better when

and how the anomalies are having an effect on transaction patterns. We would like to carry

out our analyses for the entire blockchain at this more granular level. Also, we have only ana-

lysed transactions until mid 2012. In our continued work, our plan is to consider the entire

blockchain, and investigate the recurrence of the P anomaly in 2012-13 and 2016-17. Finally,

we included only a handful of network measures in our analyses. Many other exist, which

could be included in a follow up study.
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7. Kondor D, Bulatovic N, Stéger J, Csabai I, Vattay G. The rich still get richer: Empirical comparison of

preferential attachment via linking statistics in Bitcoin and Ethereum. arXiv preprint arXiv:210212064.

2021.

8. Pavithran D, Al-Karaki JN, Thomas R, Shibu C, Gawanmeh A. Data-Driven Analysis of Price Change,

User Behavior and Wealth Accumulation in Bitcoin Transactions. In: 2019 Advances in Science and

Engineering Technology International Conferences (ASET). IEEE; 2019. p. 1–6.

9. Bovet A, Campajola C, Mottes F, Restocchi V, Vallarano N, Squartini T, et al. The evolving liaisons

between the transaction networks of Bitcoin and its price dynamics. arXiv preprint arXiv:190703577. 2019.

10. Dev JA. Bitcoin mining acceleration and performance quantification. In: 2014 IEEE 27th Canadian con-

ference on electrical and computer engineering (CCECE). IEEE; 2014. p. 1–6.

11. Eyal I, Sirer EG. Majority is not enough: Bitcoin mining is vulnerable. In: International conference on

financial cryptography and data security. Springer; 2014. p. 436–454.

12. Courtois NT, Grajek M, Naik R. The unreasonable fundamental incertitudes behind bitcoin mining. arXiv

preprint arXiv:13107935. 2013.

13. McGinn D, McIlwraith D, Guo Y. Towards open data blockchain analytics: a Bitcoin perspective. Royal

Society open science. 2018; 5(8):180298. https://doi.org/10.1098/rsos.180298 PMID: 30225017

14. Li SN, Yang Z, Tessone CJ. Mining blocks in a row: A statistical study of fairness in Bitcoin mining. In:

2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). IEEE; 2020. p. 1–4.

15. Pham T, Lee S. Anomaly detection in the bitcoin system-a network perspective. arXiv preprint

arXiv:161103942. 2016.

16. Monamo P, Marivate V, Twala B. Unsupervised learning for robust Bitcoin fraud detection. In: 2016

Information Security for South Africa (ISSA). IEEE; 2016. p. 129–134.

17. Monamo PM, Marivate V, Twala B. A multifaceted approach to Bitcoin fraud detection: Global and local

outliers. In: 2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA).

IEEE; 2016. p. 188–194.

18. Bartoletti M, Pes B, Serusi S. Data mining for detecting Bitcoin Ponzi schemes. In: 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT). IEEE; 2018. p. 75–84.

19. Michalski R, Dziubałtowska D, Macek P. Revealing the character of nodes in a blockchain with super-

vised learning. Ieee Access. 2020; 8:109639–109647. https://doi.org/10.1109/ACCESS.2020.3001676

20. Hu Y, Seneviratne S, Thilakarathna K, Fukuda K, Seneviratne A. Characterizing and Detecting Money

Laundering Activities on the Bitcoin Network. arXiv preprint arXiv:191212060. 2019.

21. Turner AB, McCombie S, Uhlmann AJ. Discerning payment patterns in Bitcoin from ransomware

attacks. Journal of Money Laundering Control. 2020;. https://doi.org/10.1108/JMLC-02-2020-0012

22. Alarab I, Prakoonwit S, Nacer MI. Comparative Analysis Using Supervised Learning Methods for Anti-

Money Laundering in Bitcoin. In: Proceedings of the 2020 5th International Conference on Machine

Learning Technologies; 2020. p. 11–17.

PLOS ONE Strangely mined bitcoins

PLOS ONE | https://doi.org/10.1371/journal.pone.0258001 September 30, 2021 16 / 17

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1257/jep.29.2.213
https://doi.org/10.1371/journal.pone.0086197
http://www.ncbi.nlm.nih.gov/pubmed/24505257
https://doi.org/10.1098/rsos.180298
http://www.ncbi.nlm.nih.gov/pubmed/30225017
https://doi.org/10.1109/ACCESS.2020.3001676
https://doi.org/10.1108/JMLC-02-2020-0012
https://doi.org/10.1371/journal.pone.0258001


23. Weber M, Domeniconi G, Chen J, Weidele DKI, Bellei C, Robinson T, et al. Anti-money laundering in

bitcoin: Experimenting with graph convolutional networks for financial forensics. arXiv preprint

arXiv:190802591. 2019.

24. Lorenz J, Silva MI, Aparı́cio D, Ascensão JT, Bizarro P. Machine learning methods to detect money

laundering in the Bitcoin blockchain in the presence of label scarcity. arXiv preprint arXiv:200514635.

2020.

25. Mallett J. A Report on Cryptographic Anomalies in the Bitcoin Blockchain; 2020.
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