Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia–thalamic communication

Schwab, Bettina C. and Kase, Daisuke and Zimnik, Andrew and Rosenbaum, Robert and Codianni, Marcello G. and Rubin, Jonathan E. and Turner, Robert S. and Gail, Alexander (2020) Neural activity during a simple reaching task in macaques is counter to gating and rebound in basal ganglia–thalamic communication. PLOS Biology, 18 (10). e3000829. ISSN 1545-7885

[thumbnail of file_id=10.1371%2Fjournal.pbio.3000829&type=printable] Text
file_id=10.1371%2Fjournal.pbio.3000829&type=printable - Published Version

Download (3MB)

Abstract

Task-related activity in the ventral thalamus, a major target of basal ganglia output, is often assumed to be permitted or triggered by changes in basal ganglia activity through gating- or rebound-like mechanisms. To test those hypotheses, we sampled single-unit activity from connected basal ganglia output and thalamic nuclei (globus pallidus-internus [GPi] and ventrolateral anterior nucleus [VLa]) in monkeys performing a reaching task. Rate increases were the most common peri-movement change in both nuclei. Moreover, peri-movement changes generally began earlier in VLa than in GPi. Simultaneously recorded GPi-VLa pairs rarely showed short-time-scale spike-to-spike correlations or slow across-trials covariations, and both were equally positive and negative. Finally, spontaneous GPi bursts and pauses were both followed by small, slow reductions in VLa rate. These results appear incompatible with standard gating and rebound models. Still, gating or rebound may be possible in other physiological situations: simulations show how GPi-VLa communication can scale with GPi synchrony and GPi-to-VLa convergence, illuminating how synchrony of basal ganglia output during motor learning or in pathological conditions may render this pathway effective. Thus, in the healthy state, basal ganglia-thalamic communication during learned movement is more subtle than expected, with changes in firing rates possibly being dominated by a common external source.

Item Type: Article
Subjects: Journal Eprints > Biological Science
Depositing User: Managing Editor
Date Deposited: 11 Jan 2023 09:53
Last Modified: 08 Jun 2024 07:41
URI: http://repository.journal4submission.com/id/eprint/1466

Actions (login required)

View Item
View Item