Ogunbowale, Adeyemi and Georgieva, Elka R. (2024) Engineered Chimera Protein Constructs to Facilitate the Production of Heterologous Transmembrane Proteins in E. coli. International Journal of Molecular Sciences, 25 (4). p. 2354. ISSN 1422-0067
ijms-25-02354.pdf - Published Version
Download (2MB)
Abstract
To delve into the structure–function relationship of transmembrane proteins (TMPs), robust protocols are needed to produce them in a pure, stable, and functional state. Among all hosts that express heterologous TMPs, E. coli has the lowest cost and fastest turnover. However, many of the TMPs expressed in E. coli are misfolded. Several strategies have been developed to either direct the foreign TMPs to E. coli’s membrane or retain them in a cytosolic soluble form to overcome this deficiency. Here, we summarize protein engineering methods to produce chimera constructs of the desired TMPs fused to either a signal peptide or precursor maltose binding protein (pMBP) to direct the entire construct to the periplasm, therefore depositing the fused TMP in the plasma membrane. We further describe strategies to produce TMPs in soluble form by utilizing N-terminally fused MBP without a signal peptide. Depending on its N- or C-terminus location, a fusion to apolipoprotein AI can either direct the TMP to the membrane or shield the hydrophobic regions of the TMP, maintaining the soluble form. Strategies to produce G-protein-coupled receptors, TMPs of Mycobacterium tuberculosis, HIV-1 Vpu, and other TMPs are discussed. This knowledge could increase the scope of TMPs’ expression in E. coli.
Item Type: | Article |
---|---|
Subjects: | Journal Eprints > Multidisciplinary |
Depositing User: | Managing Editor |
Date Deposited: | 17 Feb 2024 05:18 |
Last Modified: | 17 Feb 2024 05:18 |
URI: | http://repository.journal4submission.com/id/eprint/3647 |