Deep Machine Learning Model Trade-Offs for Malaria Elimination in Resource-Constrained Locations

Eze, Peter U. and Asogwa, Clement O. (2021) Deep Machine Learning Model Trade-Offs for Malaria Elimination in Resource-Constrained Locations. Bioengineering, 8 (11). p. 150. ISSN 2306-5354

[thumbnail of bioengineering-08-00150-v2.pdf] Text
bioengineering-08-00150-v2.pdf - Published Version

Download (864kB)

Abstract

The success of deep machine learning (DML) models in gaming and robotics has increased its trial in clinical and public healthcare solutions. In applying DML to healthcare problems, a special challenge of inadequate electrical energy and computing resources exists in regional and developing areas of the world. In this paper, we evaluate and report the computational and predictive performance design trade-offs for four candidate deep learning models that can be deployed for rapid malaria case finding. The goal is to maximise malaria detection accuracy while reducing computing resource and energy consumption. Based on our experimental results using a blood smear malaria test data set, the quantised versions of Basic Convolutional Neural Network (B-CNN) and MobileNetV2 have better malaria detection performance (up to 99% recall), lower memory usage (2MB 8-bit quantised model) and shorter inference time (33–95 microseconds on mobile phones) than VGG-19 fine-tuned and quantised models. Hence, we have implemented MobileNetV2 in our mobile application as it has even a lower memory requirement than B-CNN. This work will help to counter the negative effects of COVID-19 on the previous successes towards global malaria elimination.

Item Type: Article
Subjects: Journal Eprints > Engineering
Depositing User: Managing Editor
Date Deposited: 08 Mar 2023 08:12
Last Modified: 02 Jan 2024 13:02
URI: http://repository.journal4submission.com/id/eprint/922

Actions (login required)

View Item
View Item