Augusto, Danniel Dias (2022) Magic Polygons and Combinatorial Algorithms. Asian Research Journal of Mathematics, 18 (11). pp. 27-39. ISSN 2456-477X
![[thumbnail of 583-Article Text-1038-1-10-20220929.pdf]](http://repository.journal4submission.com/style/images/fileicons/text.png)
583-Article Text-1038-1-10-20220929.pdf - Published Version
Download (689kB)
Official URL: https://doi.org/10.9734/arjom/2022/v18i1130424
Abstract
In this work, we study the Magic Polygons of order 3 (P(n; 2)) and we introduce some properties that were useful to build an algorithm to find out how many Magic Polygons exists for the regular polygons up to 24 sides. The concepts of Equivalents Magic Polygons and Derivatives Magic Polygons which allowed to classify, and avoid ambiguity about the representations of such elements, are also introduced.
Item Type: | Article |
---|---|
Subjects: | Journal Eprints > Mathematical Science |
Depositing User: | Managing Editor |
Date Deposited: | 17 Feb 2023 07:33 |
Last Modified: | 22 Mar 2024 04:12 |
URI: | http://repository.journal4submission.com/id/eprint/1312 |